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a b s t r a c t

An efficient widely linear prediction algorithm is introduced for the class of wide-sense

stationary quaternion signals. Specifically, using second order statistics information in

the quaternion domain, a multivariate Durbin–Levison-like algorithm is derived.

The proposed solution can be applied under a very general formulation of the problem,

allowing for the estimation of a function of the quaternion signal which is observed

through a system with both additive/multiplicative noises.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

The recent progress in sensor technology has brought to
light several classes of multidimensional and multivariate
signals, for which many established algorithms are used in
an ad hoc fashion to handle these signals in the real domain.
For three- and four-dimensional signals, this approach,
though practical, does not offer the generality of quater-
nions, since e.g. real and complex numbers are special
instances of quaternions. In other words, a quaternion-
valued solution may solve a real- or complex-valued pro-
blem, but the reverse may not hold. This advantage has led
to the growing popularity of quaternion in the signal
processingcommunity [18].

Quaternions offer a new possibility to the signal proces-
sing community, to operate directly in a multidimensional
. All rights reserved.
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domain. In doing so, we treat a multidimensional signal as a
single variable, which offers generality and flexibility.
For instance, quaternions facilitate the modeling of three-
and four-dimensional signals, and account for the co-
information between the data channels in a natural way.
In terms of applications, quaternions have been employed in
image processing [11], seismic processing [17], robotics [8],
biomedicine [16], avionics [1], security [2], Kalman filtering
[9], MUSIC spectrum estimation [15], and singular value
decomposition for vector sensing [14], among others.
Another benefit of quaternions comes from the fact that
they allow correlation and coupling to prevail within the
channels of a multivariate independent component, for
which independent component analysis in the real domain
[13] is not suitable.

One important paradigm in statistical signal processing
is prediction. The problem can also be naturally addressed
in the multidimensional domain where the correlation
information between quaternion components is accounted
for. Following this conventional or strictly linear (SL)
processing, a quaternion least mean square (QLMS) pre-
diction algorithm is proposed by Cheong Took and Mandic
[4]. Moreover, benefits reported by a widely linear (WL)
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processing in the complex field, characterized by taking
both correlation and complementary functions into
account, have motivated the authors to also derive an
augmented QLMS (AQLMS) by considering an augmented
vector formed by the signal and its conjugate. However, if
this augmented vector is sufficient to obtain a complete
description of the second order statistics of a complex
signal, in the quaternion domain the three perpendicular
quaternion involutions must be also considered for this
purpose. In this framework, the augmented statistics
and the corresponding WL processing were introduced
by Cheong Took and Mandic [5] to formulate a widely
linear QLMS (WL-QLMS) prediction algorithm. All these
algorithms cater for non-stationary signals such as wind.
The non-stationarity of the data makes the explicit com-
putation of the correlation matrices redundant, hence the
suitability of these adaptive predictors.

For stationary signals, the readily available of second
order statistics implies that there is a high potential for
enhanced accuracy of the prediction solution, especially
when the Yule–Walker equations are considered. The
most elegant way to solve these equations is to employ
the Durbin–Levison (DL) recursion [3]. However, the
derivation of the DL recursion in the quaternion domain
is not straightforward. Although quaternions have a divi-
sion algebra which is a generalization of that in the real
and complex domains, the non-commutativity of quater-
nion product is a stumbling block that should be
addressed in the derivation of the DL algorithm. Moreover
for generality, the DL method has to be formulated in such
a way that (i) it can account for the estimation of any
function (linear/non-linear) of multivariate quaternion
signals and (ii) it should operate under both additive
and multiplicative noise.

This work aims to provide some fundamental tools for
quaternion signal processing in the context of linear and
widely linear prediction of stationary data. To this end, we
first provide a one-stage prediction algorithm by follow-
ing quaternion WL (QWL) processing in Section 3. Next,
the computational efficiency of DL recursion is exploited
and adapted to the non-commutative algebra of quater-
nions. Specifically, to make full use of statistical proper-
ties of the quaternion-valued signal, the so-called
augmented statistics is incorporated in the derivation of
the DL algorithm, through the consideration of perpendi-
cular quaternion involutions. In Section 4, the quaternion
DL algorithm is extended to a more general prediction
problem where the estimation of a quaternion signal
based upon noisy observations is addressed. Finally,
simulations on both synthetic and real-world data sup-
port the proposed approach. For clarity, we start with a
brief review of some properties of quaternion random
vectors that will be used throughout the paper.
1 Note that this choice is not unique and any other combination of

four elements of fqt ,q
n
t ,qi

t ,q
j
t ,q

k
t g, with qk

t ¼ at�ibt�jctþkdt , or their

conjugates can be used with the same effect, due to the relationship

qn
t ¼

1
2 ½q

i
tþqj

tþqk
t�qt � [6].
2. Preliminaries

In the following, all signals are assumed to be zero-
mean. The superscripts ‘n’, ‘T’ and ‘H’ represent the
quaternion conjugate, transpose and quaternion conju-
gate transpose operators, respectively.
A quaternion random signal can be defined by
qt ¼ atþ ibtþ jctþkdt , where at ,bt ,ct ,dt 2 R are random
variables and i2

¼ j2
¼ k2
¼ ijk¼�1, which implies that

ij¼ k, ki¼ j, and jk¼ i.
Let x¼ ½x1, . . . ,xn1

�T and y¼ ½y1, . . . ,yn2
�T be two n1 and

n2-dimensional quaternion random vectors, where xi and
yj are quaternion random signals. Define the outer pro-
duct /x,ySQ ¼ E½xyH� with

xyH ¼

x1yn
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where xiy
n

j represents the quaternion product between
the quaternions xi and yn

j (see [6] for more details).
The complete description of the second order statistics

of the quaternion qt in the quaternion domain H can be
given by the augmented quaternion vector qt ¼ ½qt ,q

n
t ,

qi
t ,q

j
t�
T, where qn

t , qi
t and qj

t are defined by1 [6]

qn

t ¼ at�ibt�jct�kdt

qi
t ¼ atþ ibt�jct�kdt

qj
t ¼ at�ibtþ jct�kdt

Denote by spfq1, . . . ,qng the closed span of fq1, . . . ,qng.
Moreover, the concept of wide-sense stationarity

(WSS) in the quaternion domain was introduced by
Cheong Took and Mandic [6]. A centered quaternion
random signal qt is said to be WSS if and only if it fulfills
the following two conditions:
1.
 The correlation and its complementary correlations are
functions of only the lag t, that is
� correlation function: CqðtÞ ¼ E½qtq

n
tþt�,

� i-correlation function: Cq,qi ðtÞ ¼ E½qtq
in

tþt�,
� j-correlation function: Cq,qj ðtÞ ¼ E½qtq

jn

tþt�,
� k-correlation function: Cq,qk ðtÞ ¼ E½qtq

kn

tþt�.

2.
 The correlation function is finite, i.e., CqðtÞo1.

Note that, condition 2 is equivalent to assuming that
the autocorrelation function of the augmented quaternion
vector qt is a function of only the lag t, that is

CqðtÞ ¼/qtþt,qtSQ ð1Þ

On the other hand, for a quaternion random signal,
there exist two main kinds of properness [18]:
Q-properness (or H-circularity) and CZ-properness
(or CZ-circularity). A quaternion random vector qt is
Q-proper if and only if the three complementary func-
tions Cq,qi ðt,sÞ ¼ E½qtq

in

s �, Cq,qj ðt,sÞ ¼ E½qtq
jn

s � and Cq,qk ðt,sÞ ¼
E½qtq

kn

s � vanish. Moreover, a quaternion random vector qt

is CZ-proper, for any pure imaginary unit Z 2 fi,j,kg if and
only if all the complementary functions vanish except
Cq,qZ ðt,sÞ ¼ E½qtq

Zn

s �. Note that, Q-properness implies
CZ-properness.



2 kn , nZ0, depends also of the value of m and, following the same

argument, this is omitted.
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3. One-stage prediction algorithm

In this section, the aim is to provide an efficient
computational algorithm for the one-stage prediction
problem for the quaternion qt, that is, we aim to predict
the signal qnþ1 on the basis of the set of observations
fq1, . . . ,qng, under a WL processing in the quaternion
domain. This predictor will be denoted by q̂

WL
ðnþ1=nÞ.

This problem can be posed as estimating the correct
projection of the augmented quaternion vector qnþ1 onto
the space spfq1, . . . ,qng. This projection is of the form

q̂ðnþ1=nÞ ¼
Xn

j ¼ 1

Hn,jqnþ1�j ð2Þ

where the coefficients Hn,j can be determined from the
projection theorem, and thus, the QWL estimator of qnþ1

is trivially

q̂
WL
ðnþ1=nÞ ¼

Xn

j ¼ 1

hn,jqnþ1�j

with hn,j ¼ ½1,0,0,0�Hn,j for which the associated mean-
square error, termed WL-QMSE, is en,1 ¼ ½1,0,0,0� Rn,1

½1,0,0,0�T, where

Rn,1 ¼/qnþ1�q̂ðnþ1=nÞ,qnþ1�q̂ðnþ1=nÞSQ

A priori, the computation of (2) proves to be more
difficult than the direct computation of q̂

WL
ðnþ1=nÞ.

However, exploiting the WSS quaternion properties leads
to the efficient computation of the terms Hn,j and Rn,1.
Hence, using the Hilbert space theory and property (1),
a method similar to the DL algorithm is next proposed for
the efficient computation of these terms.

This algorithm requires the simultaneous solution of
two sets of equations, one arising from the computation
of the predictor (2) and the other from the computation of
the estimator

q̂ð1=2, . . . ,nÞ ¼
Xn

j ¼ 2

~Hn�1,j�1qj ð3Þ

where q̂ð1=2, . . . ,nÞ denotes the estimator q1 based on the
observations q2, . . . ,qn, for which the mean-square error is
given by

~Rn�1,1 ¼/q1�q̂ð1=2, . . . ,nÞ,q1�q̂ð1=2, . . . ,nÞSQ ð4Þ

In the next algorithm, the multivariate DL method [3]
is generalized in order to operate in the quaternion
domain. This extension is non-trivial, as the problem of
the non-commutativity of the quaternion product is
encountered and needs to be addressed.

Algorithm 1.
Hn,n ¼Dn�1

~R
�1

n�1,1

~Hn,n ¼DH
n�1R

�1
n�1,1

Hn,j ¼Hn�1,j�Hn,n
~Hn�1,n�j, j¼ 1, . . . ,n�1

~Hn,j ¼
~Hn�1,j�

~Hn,nHn�1,n�j, j¼ 1, . . . ,n�1 ð5Þ

where

Rn,1 ¼Rn�1,1�Hn,nD
H
n�1

~Rn,1 ¼
~Rn�1,1�

~Hn,nDn�1
Dn ¼Cqðnþ1Þ�
Xn

j ¼ 1

Hn,jCqðnþ1�jÞ ð6Þ

with

R0,1 ¼
~R0,1 ¼Cqð0Þ

D0 ¼Cqð1Þ

4. A generic prediction algorithm

In this section, our purpose is to extend the previous
results to a more general scope. In particular, we consider
a quaternion signal xt that cannot be observed directly but
through a function of the signal qt ¼LðxtÞ, in such a
way that qt is a WSS quaternion. Based on the quaternion
observations qt, we aim to estimate a function of xt,
zt ¼ T ðxtÞ, such that zt has correlation function gzðk,lÞ ¼
/zk,zlSQ and cross-correlation function with the augmen-
ted quaternion qt , aðk,lÞ ¼/zk,qlSQ. Suppose that, for
kZ l, this function aðk,lÞ only depends on the difference
k�l, that is aðtÞ ¼/ztþt,qtSQ.

The following results provide recursive algorithms for
this estimation problem. Specifically, we focus on the
prediction and filtering cases, that is, we aim to estimate
znþm on the basis of the observations q1, . . . ,qn, for some
m¼ 0,1, . . .. Thus, the value m¼0 corresponds to the
filtering problem and for m40 we have the prediction
problem. Define the QWL predictor of znþm as follows:

ẑ
WL
ðnþm=nÞ ¼

Xn

j ¼ 1

pm
n,jqnþ1�j ð7Þ

and its associated WL-QMSE as

en,m ¼/znþm�ẑ
WL
ðnþm=nÞ,znþm�ẑ

WL
ðnþm=nÞSQ ð8Þ

Observe that the terms pm
n,j in (7) and en,m in (8)

depend on the fixed instant prediction ahead m consid-
ered in the estimation. However, in order to simplify the
notation, for clarity we omit the index m in both
expressions.

A recursive algorithm for computing pn,j and en in (7)
and (8), can be summarised as in Algorithm 2.

Algorithm 2.
pn,n ¼ kn�1

~R
�1

n�1,1

pn,j ¼ pn�1,j�pn,n
~Hn�1,n�j, j¼ 1, . . . ,n�1 ð9Þ

where2

k0 ¼ aðmÞ

kn ¼ aðnþmÞ�
Xn

j ¼ 1

aðnþm�jÞ ~H
H

n,j, nZ1

and the matrices ~Hn,j and ~Rn,1 are computed from (5) and

(6), respectively.
The error en is equal to

e0 ¼ gzðm,mÞ



J. Navarro-Moreno et al. / Signal Processing 93 (2013) 2573–25802576
en ¼ en�1�pn,nk
H
n�1

þgzðnþm,nþmÞ�gzðnþm�1,nþm�1Þ, nZ1 ð10Þ

Proof. First of all, we need to compute p1,1. Consider
ẑ

WL
ð1þm=1Þ ¼ p1,1q1. Thus,

p1,1 ¼/z1þm,q1SQ/q1,q1S
�1
Q ¼ aðmÞC�1

q ð0Þ

and then it is verified that k0 ¼ aðmÞ.
The error e1 is given by

e1 ¼/z1þm�ẑ
WL
ð1þm=1Þ, z1þm�ẑ

WL
ð1þm=1ÞSQ

¼/z1þm�ẑ
WL
ð1þm=1Þ, z1þmSQ

¼/z1þm�p1,1q1, z1þmSQ

¼ gzð1þm,1þmÞ�p1,1a
HðmÞ

where we have used the orthogonality condition of
ẑ

WL
ð1þm=1Þ. Hence, e0 ¼ gzðm,mÞ.

The following step is to prove (9) and (10) for n41. Let
PK denotes the projection operator on an arbitrary set
of quaternions K. Let Kn

1 ¼ spfq2, . . . ,qng and Kn
2 ¼ sp

fq1�PKn
1
q1g be two subspaces of spfq1, . . . ,qng. It is easy

to check that spfq1, . . . ,qng ¼Kn
1 �Kn

2, that is, spfq1, . . . ,
qng is the direct sum of Kn

1 and Kn
2, so that

ẑ
WL
ðnþm=nÞ ¼ PKn

1
znþmþPKn

2
znþm ð11Þ

Next, PKn
1
znþm and PKn

2
znþm are obtained. Suppose that

PKn
1
znþm can be expressed in the form

PKn
1
znþm ¼

Xn

j ¼ 2

aj�1qnþ2�j

then, it follows that

aðiþm�2Þ ¼/znþm,qnþ2�iSQ ¼/PKn
1
znþm,qnþ2�iSQ

¼
Xn

j ¼ 2

aj�1Cqði�jÞ

for i¼ 2, . . . ,n. By solving this system of equations, we can
check that aj ¼ pn�1,j, j¼ 1, . . . ,n�1, and hence

PKn
1
znþm ¼

Xn

j ¼ 2

pn�1,j�1qnþ2�j ð12Þ

On the other hand, by expressing PKn
2
znþm ¼ cðq1�

PKn
1
q1Þ, we obtain that

c¼/znþm,q1�PKn
1
q1SQ/q1�PKn

1
q1,q1�PKn

1
q1S

�1
Q

and taking (3) and (4) into account we get3

c¼ aðnþm�1Þ�
Xn

j ¼ 2

aðnþm�jÞ ~H
H

n�1,j�1

0
@

1
A ~R

�1

n�1,1

Consequently, denoting

kn�1 ¼ aðnþm�1Þ�
Xn

j ¼ 2

aðnþm�jÞ ~H
H

n�1,j�1
3 Note that PKn
1
q1 ¼ q̂ð1=2, . . . ,nÞ.
it follows that

PKn
2
znþm ¼ kn�1

~R
�1

n�1,1ðq1�PKn
1
q1Þ ð13Þ

and, from (11), (12), (3) and (13), we have that

ẑ
WL
ðnþm=nÞ ¼ kn�1

~R
�1

n�1,1q1

þ
Xn�1

j ¼ 1

ðpn�1,j�kn�1
~R
�1

n�1,1
~Hn�1,n�jÞqnþ1�j

Finally, by the uniqueness of ẑ
WL
ðnþm=nÞ we prove (9),

for n41.
From (11) and the orthogonality condition of ẑ

WL

ðnþm=nÞ, we have that its associated error is given by

en ¼/znþm�ẑ
WL
ðnþm=nÞ,znþm�ẑ

WL
ðnþm=nÞSQ

¼/znþm�ẑ
WL
ðnþm=nÞ,znþmSQ

¼/znþm�PKn
1
znþm,znþmSQ�/PKn

2
znþm,znþmSQ ð14Þ

We shall now compute the last two terms in (14). From
(12), we obtain

/znþm�PKn
1
znþm,znþmSQ

¼ gzðnþm,nþmÞ�
Xn

j ¼ 2

pn�1,j�1a
Hðjþm�2Þ ð15Þ

On the other hand, since ẑ
WL
ðnþm=nÞ ¼

Pn
j ¼ 1 pn,j

qnþ1�j, we have

en ¼/znþm�ẑ
WL
ðnþm=nÞ,znþmSQ ¼ gzðnþm,nþmÞ

�
Xn

j ¼ 1

pn,ja
Hðjþm�1Þ

Thus, (15) can be expressed in the form

/znþm�PKn
1
znþm,znþmSQ ¼ gzðnþm,nþmÞ

þen�1�gzðnþm�1,nþm�1Þ ð16Þ

As for the second term, by using (9) and (13), it can be
calculated as

/PKn
2
znþm,znþmSQ ¼ kn�1

~R
�1

n�1,1/q1�PKn
1
q1,znþmSQ

¼ pn,nk
H
n�1 ð17Þ

where we have taken into account that kn�1 ¼/znþm,
q1�PKn

1
q1SQ.

Finally, using (16) and (17) in (14) we have (10), for
nZ1. &

Remark 1. Algorithm 2 runs in Oðn2Þ time, with the same
order of computational complexity as the classical DL
algorithm.

5. Numerical examples

The benefits of the proposed approach were validated over
three sets of experiments. The first two examples show
the simultaneous forecasting of three-dimensional (3D)
wind fields4 from datasets recorded by a three-dimensional
4 The wind data can be obtained from http://www.commsp.ee.ic.ac.

uk/�mandic/research/Smart-Grid-and-Renewables.htm.

http://www.commsp.ee.ic.ac.uk/~mandic/research/Smart-Grid-and-Renewables.htm
http://www.commsp.ee.ic.ac.uk/~mandic/research/Smart-Grid-and-Renewables.htm
http://www.commsp.ee.ic.ac.uk/~mandic/research/Smart-Grid-and-Renewables.htm
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ultrasonic anemometer at Imperial College London (ICL)
in a controlled/closed environment (Example 1) and an
open space (Example 2). In the third simulation example,
the three-dimensional velocity of an aircraft is predicted
from noisy measurements of its three-dimensional
position.

Additionally, to compare the performance of the pro-
posed algorithm with standard methods, a new synthetic
example was considered, where a signal was defined in
such a way that it is WSS and obeys a state-space model,
and our solution is compared with a quaternion Kalman
filter.

5.1. Example 1. Wind data in a controlled environment

In this experiment, wind data were recorded at a
sampling frequency of 32 Hz in a controlled environment
at ICL by using three fans placed around the anemometer
at a distance up to 1 m. The air temperature was also
measured and then such four-dimensional data sets were
considered; the three speed direction of the wind (north–
south, east–west and vertical direction) which are taken
as pure quaternion components, together with the air
temperature represent the real dimension of the full
quaternion.

Then, on the basis of a sampling of 100 observed data,
we considered the problem of predicting the quaternion
signal (the three speed directions and the temperature) at
the prediction horizon of m¼10 steps ahead. For this
purpose, Algorithm 2 was applied for the computation of
the QWL estimator as well as its mean-square error, the
WL-QMSE in (8). This error was compared in Fig. 1 with
the mean-square errors associated to the m steps ahead
quaternion predictions derived from a strictly linear
processing (SL-QMSE), which only considers the informa-
tion supplied by the quaternion signal,5 and an augmen-
ted quaternion mean-square error (AQMSE) which uses
information derived from solely the correlation and com-
plementary functions, that is, second order statistics of
the quaternion signal and its conjugate.

As expected, although augmented quaternion (AQ)
predictions outperformed quaternion SL (QSL) predictions,
the proposed QWL algorithm outperforms both AQ and
QSL prediction results.

5.2. Example 2. Wind data in an urban environment

In this example, we computed the wind acceleration
from the wind speed observations. Specifically, the signal
xt was a pure quaternion model formed by the three
orthogonal wind speed components (north–south, east–
west and vertical direction). Thus, we considered a set of
observations of the signal provided by the three-
dimensional ultrasonic anemometer in an interval of time
where conditions for applying our solution are verified.
From this set of observations, our aim was to predict, one-
stage ahead, its mean-square derivative zt ¼ _xt .
5 Note that the SL-QMSE coincides with that of the classical Wiener

filter for quaternion signals.
Fig. 2 compares the WL-QMSE associated to the
QWL predictor ẑ

WL
ðnþ1=nÞ, for n¼ 1, . . . ,100, with the

SL-QMSE obtained through a QSL processing. Again, we
observe that the best prediction performance was
obtained using a QWL processing.

Additionally, the advantage of the quaternion DL
algorithm over the complex-valued version is shown in
Table 1, where the mean-square values (MSVs) of the one-
stage predictors ẑ

C
ðnþ1=nÞ, ẑ

SL
ðnþ1=nÞ and ẑ

WL
ðnþ1=nÞ

derived from the complex-valued, QSL and QWL DL
algorithms, respectively, were calculated on the basis of
two-dimensional speed directions at a time through the
expression

1

100

X100

n ¼ 1

ðznþ1�ẑðnþ1=nÞÞðznþ1�ẑðnþ1=nÞÞn

where ẑðnþ1=nÞ is replaced by the corresponding pre-
dictor ẑ

C
ðnþ1=nÞ, ẑ

SL
ðnþ1=nÞ or ẑ

WL
ðnþ1=nÞ, in each

case. As expected, in all cases, the results derived from a
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quaternion-valued DL algorithm outperforms complex-
valued estimators, with QWL approach outperforming
QSL solution.
2

4

6

8

10

12

(d
B

)

5.3. Example 3. Aircraft trajectory tracking

In this example, we simulated the movement of an
aircraft in a closed form orbit. Thus, the three-dimensional
position was made quaternion valued (the real part was set
to zero) and each experiment was conducted in the presence
of both circular and non-circular additive quaternion quad-
ruply white Gaussian noise (QWGN). Specifically, the
observed signals were noisy measurements of the target
position xt obtained from the equation

qt ¼ xtþwt

where the QWGN wt is of the form [7]

wt ¼wa
t þ iwb

t þ jwc
t þkwd

t ð18Þ
Table 1
MSVs of prediction using complex and quaternion-valued DL algorithms.

Two-dimensional speed directions

East-north East-vertical North-vertical

MSV for ẑ
C
ðnþ1=nÞ 0.0285 0.0281 0.0221

MSV for ẑ
SL
ðnþ1=nÞ 0.0283 0.0279 0.0216

MSV for ẑ
WL
ðnþ1=nÞ 0.0266 0.0258 0.0201

10 20 30 40 50
−10

0

10
north−south 

10 20 30 40 50
−10

0

10
east−west d

10 20 30 40 50
−10

0

10
vertical di

velocity SL predictio

Fig. 3. Waveforms for the m¼5 steps ahead predictions of the
with wa
t , wb

t , wc
t and wd

t realizations of real-valued white
Gaussian noises (WGN). As H-circular noise, the four com-
ponents of the QWGN (18) were considered to be indepen-
dent real-valued WGN with a variance of 5. Moreover, a
Ci-circular QWGN was considered by taking wa

t ¼ za,
wb

t ¼ zb, wc
t ¼ 0:4wa

t þ0:8wb
t þzc and wd

t ¼ 0:8wa
t�0:4wb

t þ

zd, where za, zb, zc and zd are mutually independent real-
valued WGN with variance of 5. Finally, as non-circular
noise, the following noises were used in (18): wa

t ¼ za,
60 70 80 90 100

direction

60 70 80 90 100

irection

60 70 80 90 100

rection

n WL prediction

velocity of the aircraft using QSL and QWL processing.

0 20 40 60 80 100
−4

−2
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Times (samples)

Fig. 4. Difference in performance (in dB) between SL-QMSE and

WL-QMSE for the m¼5 steps ahead predictor of the velocity of the

aircraft in the presence of H-circular (solid line), Ci-circular (dotted line)

and non-circular (dashed line) noises.
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wb
t ¼�0:6wa

t þzb, wc
t ¼ 0:8wb

t þzc and wd
t ¼ 0:8wa

t�0:4wb
t

þzd, where za, zb, zc and zd are independent real-valued
WGN with variance of 5. In all cases, the signal-to-noise ratio
SNR was at 15 dB.

The aim of the experiment was to predict the velocity of a
moving target based on noisy observations of the target
location with respect to a static sensor. Thus, the signal of
interest was the mean-square derivative of the signal zt ¼ _xt .

For the purpose of illustration, the m¼5 steps ahead
QWL predictor ẑ

WL
ðnþm=nÞ was computed for n¼ 1, . . . ,

100. Fig. 3 displays a velocity trajectory (solid line) as well
as the QWL (dotted line) and QSL (dashed line) prediction
results, in the case of observations with non-circular
QWGN. Observe that quaternion QWL predictor matches
the target trajectory better than QSL predictor. Moreover,
the faster convergence of the QWL predictor is noted.
Observed that similar results were obtained with the H-
circular and Ci-circular noises.

Next, in order to analyze the advantage of the QWL
estimator in terms of the improperty of the QWGN, we
computed the difference between the SL-QMSE and the WL-
QMSE for the different classes of QWGN considered here.
Thus, Fig. 4 compares these error differences (dB) for the
H-circular, Ci-circular and non-circular QWGN. Notice that
the superiority of the QWL predictor is even higher in the
case of nonlinear noises. Further, Cj-circular and Ck-circular
QWGN have been also used in our simulations and similar
results with Ci-circular QWGN have been obtained.

5.4. Example 4. Proposed algorithm vs. Kalman filter

Let xt be a WSS quaternion signal whose augmented
quaternion vector xt ¼ ½xt ,xn

t ,xi
t ,x

j
t�
T is given by the state-

space model

xn ¼ Fxn�1þun

qn ¼ xnþvn ð19Þ

where F ¼ diagð0:5,0:5,0:5,0:5Þ, the variance of the aug-
mented quaternion signal at the initial state P0 ¼/x0,
xH0SQ is
P0 ¼

8 �4þ2iþ jþ0:4k 0:6jþ1:2k

�4�2i�j�0:4k 8 4�2iþ0:4j�0:

�0:6j�1:2k 4þ2i�0:4jþ0:8k 8

�2:2iþ0:4k 4þ0:2iþ j�0:8k �1:8iþ1:4j

2
66664

Moreover, un and vn are white noises uncorrelated with the s
R¼/vn,vHnSQ are

Q ¼

6 �3þ1:5iþ0:75jþ0:9k

�3�1:5i�0:75j�0:3k 6 3�1

�0:45j�0:9k 3þ1:5i�0:3jþ0:6k

�1:65iþ0:3k 3þ0:15iþ0:75j�0:6k �

2
66664

R¼

40 �20þ0:04iþ0:08jþ0:02

�20�0:04i�0:08j�0:02k 40

�0:04j�0:08k 20þ0:04i�0:04jþ0:06k

�0:06iþ0:04k 20þ0:02iþ0:08j�0:06k

2
66664

with a SNR around �7 dB.
In this example, we aim to compare our prediction
algorithm for WSS quaternion signals with solutions pro-
vided by other standard methods such as the Kalman filter.
Specifically, the one-stage prediction of the signal x̂

WL
ðnþ

1=nÞ, for n¼ 1, . . . ,20, was performed on the basis of the
augmented quaternion observations q1,q2, . . . ,q20, by means
of Algorithm 2 as well as the Kalman filter applied on the
state-space model (19), called WL-QKF [12]. Additionally, we
have also applied the classical complex Kalman filter [10] on
the set of augmented observations fqc

n ¼ ½qn,qn
n�
T, n¼ 1, . . . ,

20g, that we name AQKF by similitude with Example 1, and
the traditional Kalman filter (SL-QKF) on the quaternion
observations q1,q2, . . . ,q20. The obtained results are shown
in Fig. 5, showing that when a signal can be modeled in state-
space, the proposed algorithm coincides with the WL-QKF
and outperforms both AQKF and SL-QKF. Therefore, the
proposed solution is a viable alternative prediction approach,
useful when the quaternion signal of interest is WSS and its
state-space model is not readily accessible.
2:2i�0:4k

8k 4�0:2i�jþ0:8k

1:8i�1:4j

8

3
77775

ignal and whose respective variances Q ¼/un,uH
nSQ and

0:45jþ0:9k 1:65i�0:3k

:5iþ0:3j�0:6k 3�0:15i�0:75jþ0:6k

6 1:35i�1:05j

1:35iþ1:05j 6

3
77775

k 0:04jþ0:08k 0:06i�0:04k

20�0:04iþ0:04j�0:06k 20�0:02i�0:08jþ0:06k

40 0:02i�0:12j

�0:02iþ0:12j 40

3
77775
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