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Abstract—Quaternion adaptive filters have been widely used for
the processing of three-dimensional (3-D) and 4-D phenomena,
but complete analysis of their performance is still lacking, partly
due to the cumbersomeness of multivariate quaternion analysis.
This causes difficulties in both understanding their behavior and
designing optimal filters. Based on a thorough exploration of the
augmented statistics of quaternion random vectors, this paper ex-
tends an analysis framework for real-valued adaptive filters to the
mean and mean square convergence analyses of general quater-
nion adaptive filters in nonstationary environments. The extension
is nontrivial, considering the noncommutative quaternion alge-
bra, only recently resolved issues with quaternion gradient, and
the multidimensional augmented quaternion statistics. Also, for
rigor, in order to model a nonstationary environment, the system
weights are assumed to vary according to a first-order random-
walk model. Transient and steady-state performance of a general
class of quaternion adaptive filters is provided by exploiting the
augmented quaternion statistics. An innovative quaternion decor-
relation technique allows us to develop intuitive closed-form ex-
pressions for the performance of quaternion least mean square
(QLMS) filters with Gaussian inputs, which provide new insights
into the relationship between the filter behavior and the complete
second-order statistics of the input signal, that is, quaternion non-
circularity. The closed-form expressions for the performance of
strictly linear, semiwidely linear, and widely linear QLMS filters
are investigated in detail, while numerical simulations for the three
classes of QLMS filters with correlated Gaussian inputs support
the theoretical analysis.

Index Terms—Quaternion adaptive filters, least mean square,
mean square analysis, stability, steady-state performance, im-
proper signals, noncircularity.

I. INTRODUCTION

QUATERNIONS have traditionally been used in aerospace
engineering and computer graphics in order to model

three-dimensional rotations and orientations as their algebra
avoids numerical problems associated with vector algebras [1].
The recently introduced augmented quaternion statistics [2],
[3] and HR calculus [4], [5] have triggered a resurgence of
research on quaternion-valued signal processing, owing to a
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compact model of mutual information between data channels
provided by quaternions, and the inherent physically meaning-
ful interpretation for three-dimensional and four-dimensional
problems. Recent research mainly focuses on adaptive filtering,
neural networks, independent component analysis, and spectral
estimation [6]–[11]. Quaternions have subsequently found new
applications in communications, motion tracking, and biomed-
ical engineering [12]–[15].

Recently, there have been recent extensive works on the-
ory and applications of quaternion filters [16]–[20]. Tradi-
tional strictly linear quaternion filters based on the strictly
linear model ŷ = ĥH x with the input vector x ∈ HM ×1 , the
weight vector ĥ ∈ HM ×1 , and the output ŷ ∈ H, utilise second-
order quaternion statistics based on the standard covariance
and are optimal only for estimating second-order circular
(proper) quaternion signals [16]. Advances in quaternion statis-
tics have established that widely linear quaternion filters based
on the widely liner model ŷ = ĥH x + ĝH xı + ûH xj + v̂H xκ ,
where ĝ, û, v̂ ∈ HM ×1 are complementary weight vectors, and
xı ,xj ,xκ are involutions of x, exploit the three complemen-
tary covariances in addition to the standard covariance, and
thus capture complete second-order statistical information in
quaternion signals [17], [21]. For quaternion signals with spe-
cial second-order statistical properties, the widely linear filters
reduce to semi-widely linear filters based on the semi-widely
linear model ŷn = ĥH

n xn + ĝH
n xı

n [22], [23]. Notice that, simi-
lar to the duality between complex filters and bivariate real filters
[24], [25], quadrivariate real filters are isomorphic to widely lin-
ear quaternion filters, but are totally different from strictly and
semi-widely linear quaternion filters.

Contrary to the research on real-valued adaptive filters [26]–
[29], the complete performance analysis of quaternion adaptive
filters is still an open problem, causing difficulties in under-
standing their behaviour and in the design of optimal filtering
strategies. Since the quadrivariate real filters are not isomor-
phic to the whole class of quaternion filters, it is impossible to
use the performance of the former to straightforwardly analyse
the latter, and thus the performance analysis of the latter must
be undertaken in the quaternion domain. The mean convergence
analysis for the quaternion least mean square (QLMS) filters
was proposed in [30], but the non-commutativity of quater-
nion products poses a challenge to the application of classi-
cal mean square convergence analysis methods for real-valued
and complex-valued adaptive filters to the quaternion domain.
For the mean square convergence analysis, the work in [31]
discussed a simple case, the univariate strictly linear QLMS
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algorithm, and derived the bounds of the step size. However,
considering the difficulty in multivariate quaternion analysis
due to the non-commutativity of quaternion products and the
lack of quaternion matrix factorisation methods, it is challeng-
ing to extend the analysis in [31] to general multivariate QLMS
algorithms.

Based on the analysis framework for real-valued adaptive fil-
ters developed in [27], [28], this paper analyses the mean and
mean square convergence of general quaternion adaptive filters
with general (proper or improper) quaternion inputs in non-
stationary environments, and thus quantifies their transient and
steady-state performance. The proposed analysis not only treats
different adaptation approaches uniformly, but also caters for
different linear models for quaternion signal estimation. In or-
der to model a non-stationary environment, the system weights
are assumed to vary according to a first-order random-walk
model. By decorrelating the quaternion regressor vectors, the
analysis of the QLMS filters with Gaussian inputs yields closed-
form solutions relating to the second-order statistics of input
data. The analytical results of the strictly linear QLMS (SL-
QLMS), widely linear QLMS (WL-QLMS), and semi-widely
linear QLMS (SWL-QLMS) filters are investigated in detail.
The key contributions of our work are as follows: (i) a unified
performance analysis for a general class of quaternion adap-
tive filters, encompassing various adaptation approaches and
quaternion linear estimation models; (ii) the mean square per-
formance of QLMS filters with Gaussian inputs is linked to the
second-order statistics of quaternion inputs by representing a
fourth-order quaternion moment matrix in terms of covariance
and complementary covariance matrices; (iii) the application of
a new decorrelation technique for random quaternion vectors to
the Gaussian regressors of QLMS filters leads to concise and
physically meaningful closed-form results. This work is there-
fore a non-trivial extension of the real-valued analysis [27],
[28] to the quaternion domain. Compared to [27], [28], careful
attention is paid to the non-commutative quaternion algebra,
and quaternion analysis techniques are exploited to deal with
augmented quaternion statistics. Compared to the mean square
analysis of univariate SL-QLMS in [31], a general class of mul-
tivariate quaternion adaptive filters are considered by using a
generic filter form and quaternion multivariate statistics. The
so established analytical results bring new insights into the be-
haviour of the quaternion adaptive filters.

The rest of this paper is organised as follows. Section II pro-
vides an overview of quaternions and quaternion adaptive filters.
Section III presents a convergence analysis framework for gen-
eral quaternion adaptive filters to obtain the bounds of stability
conditions and steady-state performances, from which the per-
formance of QLMS filters with Gaussian regressors is deduced.
In Section IV, a decorrelation technique for Gaussian regressor
vectors of QLMS filters is exploited to derive concise and intu-
itive closed-form analytical results, which are exemplified with
the SL-QLMS, SWL-QLMS and WL-QLMS. Simulations for
QLMS filters with correlated improper Gaussian input vectors
are presented in Section V, and Section VI concludes the paper.

Throughout the paper, we use boldface capital letters to de-
note matrices, A, boldface lowercase letters for vectors, a, and

italic letters for scalar quantities, a. Superscripts (·)T , (·)∗, and
(·)H denote the transpose, conjugate, and Hermitian (i.e., trans-
pose and conjugate) operators respectively, diag(A) creates a
column vector containing the diagonal entries of matrix A, and
Diag(a) creates a diagonal matrix with the elements of vector
a on the diagonal. The symbol IM denotes an M × M identity
matrix, 1M an M × 1 all-ones vector, [A]a,b the element on the
a-th row and and b-th column of matrix A, ‖a‖ the Euclidean
norm of vector a, E{·} the statistical expectation operator, while
λ(A), λmax(A), and λmin(A) denote the eigenvalue, maximum
eigenvalue, and minimum eigenvalue of matrix A.

II. BACKGROUND

A. Quaternion Algebra

The quaternion domain H is a four-dimensional vector space
over the real field R, spanned by the basis {1, ı, j, κ}. A random
quaternion variable x ∈ H consists of a real part R [·] and a
imaginary part I [·] which comprises three imaginary compo-
nents, so that

x = R [x] + I [x] = R [x] + Iı [x] ı + Ij [x] j + Iκ [x]κ (1)

where R[x],Iı [x],Ij [x],Iκ [x] are real variables and ı, j, κ are
imaginary units with the properties

ı2 = j2 = κ2 = ıjκ = −1, ıj = −jı = κ
jκ = −κj = ı, κı = −ıκ = j

The conjugate of x is defined as

x∗ = R [x] − I [x] = R [x] − Iı [x] ı − Ij [x] j − Iκ [x] κ (2)

The modulus of x is given by

|x| =
√

R2 [x] + I2
ı [x] + I2

j [x] + I2
κ [x]

and the product of two quaternions x, y ∈ H by

xy = R [x]R [y] − I [x] · I [y] + R [x]I [y] + R[y]I[x]

+ I[x] × I[y]

where “·” denotes the scalar product and “×” the vector product.
The presence of the vector product causes non-commutativity of
the quaternion product, that is, xy �= yx. The quaternion product
has the following properties:

|xy| = |x||y|, x−1 =
x∗

|x|2 , (xy)−1 = y−1x−1 , (xy)∗ = y∗x∗

A quaternion variable x is called a pure quaternion if R [x] = 0.
A quaternion variable x is called a unit quaternion if |x| = 1.
Similar to complex numbers, a quaternion x can be repre-
sented in the polar form as x = |x|eζ , where ζ is a pure
quaternion, and the exponential can be represented by the sum
eζ =

∑∞
n=0 ζn/(n!) and satisfies (eζ )∗ = e−ζ [32].

Another important notion is the quaternion involution [33],
which defines a self-inverse mapping, analogous to the complex
conjugate. The general involution of the quaternion variable x
is defined as xα = −αxα, which represents the rotation of the
vector part of x by π about a unit pure quaternion α. The quater-
nion involutions have the property: (xα )α = x. Accordingly,
xα∗ = (xα )∗ = (x∗)α . The three special cases of involutions
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about the ı, j and κ imaginary axes are given by

xı = −ıxı = R [x] + Iı [x] ı − Ij [x] j − Iκ [x] κ (3)

xj = −jxj = R [x] − Iı [x] ı + Ij [x] j − Iκ [x] κ (4)

xκ = −κxκ = R [x] − Iı [x] ı − Ij [x] j + Iκ [x]κ (5)

Due to the non-commutativity of quaternion products, quater-
nion matrices have different properties from real and complex
matrices. For example, a quaternion square matrix has two types
of eigenvalues [34].

Definition 1: Given A ∈ HM×M , if Ax = xλ for λ ∈ H
and some non-zero x ∈ HM×1 , then λ is called a right eigen-
value of A, and x is called a right eigenvector.

Definition 2: Given A ∈ HM×M , if Ax = λx for λ ∈ H
and some non-zero x ∈ HM×1 , then λ is called a left eigenvalue
of A, and x is called a left eigenvector.

Right eigenvalues have been well studied in literature, while
left eigenvalues are less known and are not computationally
well-posed [34]–[37]. Relevant to our analysis, a Hermitian
quaternion matrix H ∈ HM×M has exactly M right eigen-
values, which are also left eigenvalues, and are real-valued.
Note that H can also have non-real left eigenvalues. There ex-
ists a unitary quaternion matrix U ∈ HM ×M , which satisfies
UH U = UUH = IM , such that H = UΛUH is the eigen-
decomposition of H with the right eigenvalues of H on the
diagonal of a diagonal real matrix, Λ. A Hermitian quaternion
matrix is called positive definite, positive semi-definite, negative
definite, or negative semi-definite if xH Hx is respectively pos-
itive, non-negative, negative, or non-positive for any non-zero
quaternion vector x ∈ HM×1 . This is the case if and only if all
right eigenvalues of H are positive, non-negative, negative, or
non-positive.

In the subsequent analysis, without loss in generality, we
will apply the eigendecomposition of Hermitian quaternion ma-
trices, H = UΛUH , which only involves right eigenvalues.
For conciseness, we will use the terminology, eigenvalues and
eigenvectors, to denote right eigenvalues and right eigenvectors
of Hermitian quaternion matrices [38].

Notice that the Weyl’s inequality about the eigenvalues of
Hermitian complex matrices also applies to Hermitian quater-
nion matrices. If A and B are Hermitian quaternion matrices
with eigenvalues λ1(A) ≥ λ2(A) ≥ · · · ≥ λM (A), λ1(B) ≥
λ2(B) ≥ · · · ≥ λM (B), then C = A + B is also Hermitian
with eigenvalues λ1(C) ≥ λ2(C) ≥ · · · ≥ λM (C), satisfying

λi (A) + λj (B) ≤ λm (C) ≤ λk (A) + λl (B)
if k + l − 1 ≤ m ≤ i + j − 1 (6)

∀i, j, k, l ∈ {1, 2, . . . ,M} [39].
The singular value decomposition has also been recently ex-

tended to the quaternion domain [34]. For any A ∈ HM×N , of
rank d, there exist unitary quaternion matrices U ∈ HM ×M and
V ∈ HN ×N such that A = U(D

0
0
0 )V where D ∈ Rd×d is a

diagonal matrix with d positive singular values of A on the
diagonal.

B. Augmented Second-Order Quaternion Statistics

The set of involutions in (3)–(5), together with the origi-
nal quaternion random variable x, forms the most frequently
used basis for augmented quaternion statistics, which is at
the core of the recently proposed widely linear processing
methodology [2], [3]. Benefiting from the involution basis, aug-
mented second-order statistics of a zero-mean random quater-
nion variable1 x is exploited by ı-, j-, and κ- covariances,
Cxxα = E{xxα∗}, η = ı, j, κ, which are referred to as com-
plementary covariances, together with the standard covariance
Cxx = E{xx∗}. These covariances enable the characterisation
of the quaternion impropriety (second-order non-circularity)
which arises from the degree of correlation and/or power imbal-
ance between imaginary components relative to the real com-
ponent. The impropriety coefficients of a quaternion random
variable x are defined as [31], [40]

rα =
∣∣∣∣
Cxxα

Cxx

∣∣∣∣ , α = ı, j, κ (7)

which reflect the correlation between x and each of its involu-
tions, normalised by the signal power. Note that rα ∈ [0, 1]. The
four degrees of freedom in the quaternion domain allow for dif-
ferent levels of properness: H-properness, Rα -properness and
Cα -properness.

Definition 3 (Properness of a random quaternion variable):
A random quaternion variable x is H-proper if it is uncorrelated
with its involutions xı , xj and xκ , so that Cxxı = Cxxj =
Cxxκ = 0; x is Rα -proper if it is only uncorrelated with the in-
volution xα , so that only Cxxα among the three complementary
covariances vanishes; x is Cα -improper2 if it is only correlated
with the involution xα , so that all complementary covariances
except Cxxα vanish; x is maximally improper (rectilinear) if its
impropriety coefficients are maximal, so that rı = rj = rκ = 1.

Similarly, augmented second-order statistics of a zero-mean
random quaternion column vector x is exploited by ı-, j-, and κ-
covariance matrices, Cxxα = E{xxαH }, α = ı, j, κ, which are
referred to as complementary covariance matrices, together with
the standard Hermitian covariance matrix, Cxx = E{xxH }.
The α-complementary covariance matrix is α-Hermitian, which
means Cxxα = (Cxxα )αH . The knowledge on both the co-
variance and the three complementary covariance matrices is
necessary to ensure the utilisation of complete second-order
statistical information. Using such knowledge, the semi-widely
linear processing with the augmented signal vector ẋ �
[xT ,xηT ]T , where η ∈ {ı, j, κ}, and the widely linear process-
ing with the augmented signal vector ẍ � [xT ,xıT ,xjT ,xκT ]T

have been shown to achieve better performance for improper
quaternion signals, compared to the traditional strictly linear
processing, which is based on only x [42]. The covariance

1Throughout the paper, we assume zero-mean quaternion variables. This does
not affect the generality of our results.

2It is called Cα -proper in some literature [41], but we consider Cα -improper
to be more intuitive.
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matrices of ẋ and ẍ can be represented by

Cẋẋ = E
{
ẋẋH

}
=

[
Cxx Cxxη

Cη
xxη Cη

xx

]

Cẍẍ = E
{
ẍẍH

}
=

⎡
⎢⎢⎣

Cxx Cxx ı Cxxj Cxxκ

Cı
xx ı Cı

xx Cı
xxκ Cı

xxj

Cj
xxj Cj

xxκ Cj
xx Cj

xx ı

Cκ
xxκ Cκ

xxj Cκ
xx ı Cκ

xx

⎤
⎥⎥⎦

Likewise, the complementary covariance matrices of ẋ and ẍ
can also be represented by block matrices built from the covari-
ance and complementary covariance matrices of x.

Definition 4 (Properness of a random quaternion vector):
A random quaternion vector x is H-proper if it is uncorrelated
with its involutions xı , xj and xκ , so that Cxx ı = Cxxj =
Cxxκ = 0; x is Rα -proper if it is only uncorrelated with the
involution xα , so that only Cxxα among the three comple-
mentary covariances vanishes; x is Cα -improper if it is only
correlated with the involution xα , so that all complementary
covariances except Cxxα vanish; x is maximally improper
(rectilinear) if it is maximally correlated with its involutions,
so that the impropriety coefficients of the elements of x are all
units.

C. Quaternion Adaptive Filters

A fundamental problem in quaternion signal processing is to
obtain the estimate, ŷn , of a desired signal, yn ∈ H, from a set
of measurements, xn ∈ HL×1 , which carries information about
yn , at time n. The estimation model ŷn = f(xn ), which incor-
porates the knowledge on the relationship between yn and xn ,
is crucial for estimation performance. Three linear estimation
models for quaternion signals have been proposed and can be
represented in a unified form given by

ŷn = ŵH
n sn (8)

where sn ∈ HM×1 is the regressor vector and ŵn ∈ HM×1 the
weight vector. These three linear models arise from (8) as fol-
lows [2], [42]:

� Strictly linear model:

sn = xn , M = L (9)
� Semi-widely linear model:

sn = ẋn , M = 2L (10)
� Widely linear model:

sn = ẍn , M = 4L (11)

The estimation model in (8) is based on the assumption that the
desired signal arises from the following linear system:

yn = wH
n sn + υn (12)

where the system noise υn is i.i.d., zero-mean, independent of
sn , and with variance σ2

υ . For the signal in (12), the optimal
weight in minimum MSE estimation based on (8) can be calcu-
lated as

E
{
snsH

n

}−1
E {sny∗

n} = E {wn} (13)

To explore the filter behaviour in non-stationary environments,
we assume that the system weight vector wn ∈ HM×1 varies

according to a widely used first-order random-walk model given
by [26], [29], [43], [44]

wn = wn−1 + qn (14)

where qn ∈ HM×1 is a random quaternion vector that is i.i.d,
zero-mean and independent of sn . The expression in (14) is an
approximation of a Markov model given by [45]

wn = Awn−1 + qn (15)

where the coefficient matrix A is assumed to be close to IM in
a number of practical applications. For example, in modelling
Rayleigh fading channels in a wireless communications envi-
ronment, (15) is a first-order approximation of the variation of
fading coefficients, and A is usually close to IM [29]. In or-
der to simplify the derivation during the convergence analysis,
the real-valued adaptive filtering literature customarily assumes
A = IM to employ the first-order random-walk model in (14),
which can be straightforwardly extended to the quaternion do-
main. Despite the simplified non-stationary scenarios studied
here, the essence of the problem that is common to more com-
plicated situations is retained.

A number of quaternion adaptive filtering algorithms, based
on (8) and the stochastic gradient decent minimisation of MSE,
assume the following form:

ŷn = ŵH
n sn

en = yn − ŷn

ŵn+1 = ŵn + μf [sn ] sne∗n
(16)

where μ is the step size, f [sn ] a real-valued scalar function of
sn , f [sn ] : HM×1 → R. Specific values of f [sn ] correspond to
specific filtering algorithms. For example, f [sn ] = 1 results in
the QLMS, f [sn ] = ‖sn‖−2 results in the normalised QLMS,
and f [sn ] = (ε + ‖sn‖2)−1 results in the ε-normalised QLMS
[43].

III. PERFORMANCE ANALYSIS OF QUATERNION

ADAPTIVE FILTERS

To analyse the convergence performance of the filters in the
form of (16), define the weight-error vector as w̃n � wn −
ŵn , and express the filter error as en = w̃H

n sn + υn . Then the
weight-error vector recursion is expressed as

w̃n+1 = w̃n − μf [sn ] sne∗n + qn (17)

=
(
IM − μf [sn ] snsH

n

)
w̃n − μf [sn ] snυ∗

n + qn

A. Mean Analysis

Since υn and qn are i.i.d., zero-mean and independent of sn ,
the expectation of (17) is given by

E {w̃n+1} = E
{
IM − μf [sn ] snsH

n

}
E {w̃n} (18)

A convenient change of coordinates is enabled by the eigen-
decomposition, E{f [sn ]snsH

n } = UΛUH , where U is a uni-
tary quaternion matrix and Λ is a real diagonal matrix
containing eigenvalues of E{f [sn ]snsH

n } on the diagonal. De-
fine w′

n = UH w̃n , then (18) becomes

E
{
w′

n+1
}

= E {IM − μΛ}E {w′
n} (19)
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from which we obtain that lim
n→∞E{w′

n} = 0 if and only if the

eigenvalues of the matrix E{IM − μΛ} are all within (−1, 1),
or equivalently

0 < μ < 2λ−1
max

(
E

{
f [sn ] snsH

n

})
(20)

B. Mean Square Analysis

Define the a priori and a posteriori estimation errors as

ea,n � wH
n sn − ŵH

n sn = w̃H
n sn

ep,n � wH
n sn − ŵH

n+1sn = (w̃n+1 − qn )H sn

and the weighted a priori and a posteriori errors as eΣ
a,n �

w̃H
n Σsn and eΣ

p,n � (w̃n+1 − qn )H Σsn , where Σ is a quater-
nion Hermitian positive definite weighting matrix. For notation
conciseness, denote sH

n Σsn by ‖sn‖2
Σ . Because of (17) and

eΣ
p,n = eΣ

a,n − μf [sn ] ensH
n Σsn = eΣ

a,n − μf [sn ] en ‖sn‖2
Σ

(21)
we obtain

w̃n+1 + sn

eΣ∗
a,n

‖sn‖2
Σ

= w̃n + sn

eΣ∗
p,n

‖sn‖2
Σ

+ qn (22)

Evaluating energies of both sides of (22) yields

‖w̃n+1‖2
Σ +

∣∣eΣ
a,n

∣∣2
‖sn‖2

Σ

= ‖w̃n‖2
Σ +

∣∣eΣ
p,n

∣∣2
‖sn‖2

Σ

+ ‖qn‖2
Σ

+ 2R

[
qH

n Σ

(
w̃n + sn

eΣ∗
p,n

‖sn‖2
Σ

)]

which can be rewritten by combining (21) as

‖w̃n+1‖2
Σ = ‖w̃n‖2

Σ1
+ μ2 |υn |2 f 2 [sn ] ‖sn‖2

Σ + ‖qn‖2
Σ

+ 2R

[
qH

n Σ

(
w̃n + sn

eΣ∗
p,n

‖sn‖2
Σ

)]

− 2μR
[
f [sn ]

(
eΣ
a,n − μf [sn ] ‖sn‖2

Σ ea,n

)
υn

]

Σ1 � Σ − μ
(
f [sn ] snsH

n Σ + f [sn ]ΣsnsH
n

)

+ μ2f 2 [sn ] ‖sn‖2
Σ snsH

n

The application of the statistical expectation operator to the
above equation yields

E
{
‖w̃n+1‖2

Σ

}
= E

{
‖w̃n‖2

Σ1

}
+ E

{
‖qn‖2

Σ

}

+μ2σ2
υE

{
f 2 [sn ] ‖sn‖2

Σ

} (23)

For simplicity, we assume that the sequence of vectors sn is
i.i.d.. Thus (23) becomes

E
{
‖w̃n+1‖2

Σ

}
= E

{
‖w̃n‖2

Σ ′

}
+ E

{
‖qn‖2

Σ

}

+μ2σ2
υE

{
f 2 [sn ] ‖sn‖2

Σ

} (24)

Σ′ � E {Σ1} = Σ + μ2E
{

f 2 [sn ] ‖sn‖2
Σ snsH

n

}

− μ
(
E

{
f [sn ] snsH

n

}
Σ + ΣE

{
f [sn ] snsH

n

})

1) Transient Analysis: Consider now the transient behaviour
of E{‖w̃n‖2} by letting Σ = IM in (24). Following the analysis
framework proposed in [27], we vectorise matrix Σ′ into the
vector vec(Σ′) by stacking the columns of Σ on top of one
another, and refer to ‖ · ‖2

Σ ′ as ‖ · ‖2
vec(Σ ′) . In this way, (24) can

be rewritten as

E
{
‖w̃n+1‖2

}
= E

{
‖w̃n‖2

Fvec(IM )

}
+ E

{
‖qn‖2

}
(25)

+ μ2σ2
υE

{
f 2 [sn ] ‖sn‖2

}

F � IM 2 − μA + μ2B

A � IM ⊗ E
{
f [sn ] snsH

n

}
+

(
E

{
f [sn ] snsH

n

})T ⊗ IM

B � E
{

f 2 [sn ]
(
snsH

n

)T ⊗R
(
snsH

n

)}

where the symbol “⊗” denotes the left Kronecker product

A ⊗ B �

⎡
⎢⎣

[A]1,1 B . . . [A]1,M B
...

. . .
...

[A]M,1 B . . . [A]M,M B

⎤
⎥⎦

and “⊗R” the right Kronecker product [46]

A ⊗R B �

⎡
⎢⎣

B [A]1,1 . . . B [A]1,M
...

. . .
...

B [A]M,1 . . . B [A]M,M

⎤
⎥⎦

Notice that the eigenvalues of F are all real-valued as F is a
Hermitian quaternion matrix [38].

Based on the Cayley-Hamilton theorem, [27] has proved that
(25) is stable for real variables if and only if all eigenvalues of
F are within (−1, 1), which is equivalent to

0 < μ < min
{

λ−1
max

(
A−1B

)
,

max
{

λ

([
A/2 −B/2
IM 2 0

])
∈ R+

}−1 }
(26)

This conclusion also holds for quaternion variables since the
Cayley-Hamilton theorem applies to the quaternion domain
[34], implying that (26) is also the mean square stability condi-
tion of quaternion adaptive filters. In contrast to real and complex
analyses [25], [29], the steady-state performance of quaternion
adaptive filters is difficult to quantify in a closed form via the
above analysis approach, since the required vectorisation of
quaternion matrices is hindered by the non-commutativity of
quaternion products.

2) Performance Bounds: The sufficient and necessary stabil-
ity condition shown in (26) is difficult to interpret owing to the
complicated structure of matricesA andB. Next, we shall derive
simple sufficient and necessary conditions for the mean square
stability. Set Σ = IM , then the evolution of E{‖w̃n+1‖2} can
be deduced from (24) as

E
{
‖w̃n+1‖2

}
= E

{
‖w̃n‖2

Σ ′

}
+ E

{
‖qn‖2

}
(27)

+ μ2σ2
υE

{
f 2 [sn ] ‖sn‖2

}

Σ′ = IM − 2μE
{
f [sn ] snsH

n

}
+ μ2E

{
f 2 [sn ] ‖sn‖2 snsH

n

}
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Notice that the Cauchy–Schwarz inequality can be applied to
the Hermitian quaternion matrix E{f 2 [sn ]‖sn‖2snsH

n } [47],
yielding

Σ′  IM − 2μE
{
f [sn ] snsH

n

}
+ μ2 (

E
{
f [sn ] snsH

n

})2

=
(
IM − μE

{
f [sn ] snsH

n

})2
(28)

Observe that Σ′ is positive semi-definite, and its eigendecom-
position is given by Σ′ = TΛΣ ′TH , where T is a quaternion
unitary matrix, and ΛΣ ′ a real diagonal matrix with non-negative
eigenvalues of Σ′ on the diagonal. Thus, we have

E
{
‖w̃n‖2

Σ ′

}
= E

{
w̃H

n TΛΣ ′TH w̃n

}
(29)

From (29), we next obtain

E
{
‖w̃n‖2

Σ ′

}
≤ λmax (Σ′) E

{
‖w̃n‖2

}
(30)

where λmax (Σ′) is bounded by

λmax (Σ′) ≤ ξ1 � 1 − 2μλmin
(
E

{
f [sn ] snsH

n

})

+μ2λmax

(
E

{
f 2 [sn ] ‖sn‖2 snsH

n

})

which is based on (6). This inequality, together with (27) and
(30), yields

E
{
‖w̃n+1‖2

}
≤ ξ1E

{
‖w̃n‖2

}
+ E

{
‖qn‖2

}

+μ2σ2
υE

{
f 2 [sn ] ‖sn‖2

} (31)

which is stable if ξ1 < 1, thus implying the following sufficient
condition for the mean square stability

0 < μ <
2λmin

(
E

{
f [sn ] snsH

n

})

λmax

(
E

{
f 2 [sn ] ‖sn‖2 snsH

n

}) (32)

From (29), we also have

E
{
‖w̃n‖2

Σ ′

}
≥ λmin (Σ′) E

{
‖w̃n‖2

}
(33)

where λmin(Σ′) is bounded by

λmin (Σ′) ≥ ξ2 � 1 − 2μλmax
(
E

{
f [sn ] snsH

n

})

+μ2λmin

(
E

{
f 2 [sn ] ‖sn‖2 snsH

n

})

This inequality, together with (27) and (33), yields

E
{
‖w̃n+1‖2

}
≥ ξ2E

{
‖w̃n‖2

}
+ E

{
‖qn‖2

}

+μ2σ2
υE

{
f 2 [sn ] ‖sn‖2

} (34)

Thus, a necessary condition for the convergence of E{‖w̃n‖2}
is ξ2 < 1, or equivalently

0 < μ <
2λmax

(
E

{
f [sn ] snsH

n

})

λmin

(
E

{
f 2 [sn ] ‖sn‖2 snsH

n

}) (35)

From (28), another necessary condition for the conver-
gence of E{‖w̃n‖2} is that the eigenvalues of the matrix
(IM − μE{f [sn ]snsH

n })2 are all less than unit, which yields
the same step size bound as in (20).

Remark 1: Any value of μ that satisfies the mean square sta-
bility condition given in (26) also guarantees the mean stability.

Next, the steady-state performance of quaternion adaptive fil-
ters will be bounded through a similar approach. At the steady
state, we have limn→∞E {‖w̃n+1‖2} = limn→∞E {‖w̃n‖2},

and thus the bounds of MSD = limn→∞E {‖w̃n‖2} can be de-
rived from (31) and (34) as

MSD ≤ μ2 σ 2
υ Tr(Css )+Tr(Cqq )

2μλm in (E {f [sn ]sn sH
n })−μ2 λm a x (E{f 2 [sn ]‖sn ‖2 sn sH

n })
MSD ≥ μ2 σ 2

υ Tr(Css )+Tr(Cqq )
2μλm a x (E {f [sn ]sn sH

n })−μ2 λm in (E{f 2 [sn ]‖sn ‖2 sn sH
n })

(36)
Since

E
{
‖w̃n‖2

Css

}
= E

{
w̃H

n KΛssKH w̃n

}

where KΛssKH is the eigendecomposition of Css , we obtain

λmin (Css) E
{
‖w̃n‖2

}

≤ E
{
‖w̃n‖2

Css

}
≤ λmax (Css) E

{
‖w̃n‖2

}

so that EMSE = limn→∞E{‖w̃n‖2
Css

} is bounded by

λmin (Css) · MSD ≤ EMSE ≤ λmax (Css) · MSD (37)

C. Performance Analysis of QLMS

When f [sn ] = 1, the general quaternion adaptive filtering al-
gorithm in the form of (16) reduces to the QLMS. Therefore,
the performance of QLMS filters can be obtained by substituting
f [sn ] = 1 into the above analysis results for general quaternion
adaptive filters. Specifically, the mean weight-error vector re-
cursion in (18) becomes

E {w̃n+1} = (IM − μCss) E {w̃n} (38)

while the mean stability condition in (20) reduces to

0 < μ < 2λ−1
max (Css) (39)

which is the same as the mean stability condition obtained in
[30].

The mean square stability condition in (26), which is also the
overall stability condition, becomes

0 < μ < min
{

λ−1
max

(
Ā−1B̄

)
,

max
{

λ

([
Ā/2 −B̄/2
IM 2 0

])
∈ R+

}−1 }

Ā � IM ⊗ Css + CT
ss ⊗ IM

B̄ � E
{(

snsH
n

)T ⊗R
(
snsH

n

)}
(40)

Furthermore, if the regressor vector sn arises from a Gaus-
sian distribution, the analysis results shown in (32), (35)–(37)
can be simplified by expressing the fourth-order moment ma-
trix E{‖sn‖2snsH

n } in terms of covariance and complementary
covariance matrices of sn as

E
{
‖sn‖2 snsH

n

}

= Tr (Css)Css +
1
2

(
C2

ss +
∑

α= ı,j,κ

Cssα CH
ssα

)
(41)
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which is proved in the Appendix. Then, we have

λmax

(
E

{
‖sn‖2 snsH

n

})
≤ Tr (Css) λmax (Css)

+
1
2

[
λ2

max (Css) +
∑

α= ı,j,κ

p2
max (Cssα )

]

λmin

(
E

{
‖sn‖2 snsH

n

})
≥ Tr (Css) λmin (Css)

+
1
2

[
λ2

min (Css) +
∑

α= ı,j,κ

p2
min (Cssα )

]

where pmax(Cssα ) and pmin(Cssα ) are maximum and mini-
mum singular values of Cssα respectively. A sufficient stability
condition is deduced from (32) as

0 < μ <

4λmin (Css)
2Tr (Css) λmax (Css) + λ2

max (Css) +
∑

α= ı,j,κ p2
max (Cssα )

(42)

while a necessary stability condition is deduced from (35) as

0 < μ <

4λmax (Css)
2Tr (Css) λmin (Css) + λ2

min (Css) +
∑

α= ı,j,κ p2
min (Cssα )

(43)

The upper and lower bounds of MSD are then deduced from
(36), as in (44) shown at the bottom of this page. The upper and
lower bounds of EMSE can be calculated based on the MSD
bounds in (44), as in (37).

IV. MEAN SQUARE ANALYSIS OF QLMS WITH GAUSSIAN

REGRESSORS USING QUATERNION DATA DECORRELATION

As shown in Section III-B and Section III-C, unlike the anal-
ysis for real and complex adaptive filters [25], [29], the mean
square performance of quaternion adaptive filters is difficult to
evaluate exactly in a closed form, owing to the non-commutative
quaternion algebra and the lack of structural quaternion matrix
decomposition methods. In order to obtain a concise closed-
form solution to the mean square convergence equation (24) for
QLMS with Gaussian regressors, we next use a novel quaternion
data decorrelation technique to simplify the involved quater-
nion covariance matrices. The simplification is based on the
following assumption on the augmented second-order statistics
of quaternion Gaussian regressor vector sn .

Assumption 1: There exists a unitary transform s̄n = GH sn

such that

Cs̄s̄ = Λss , Cs̄s̄α = Λssα , α = ı, j, κ (45)

where Λss is a diagonal real matrix containing the eigenvalues of
Css on the diagonal, and Λssα are diagonal quaternion matrices.

It can be verified that Assumption 1 holds exactly when one
of the following conditions on sn is met:

1) The covariance and complementary covariance matrices
of sn are related by scalar multiplication. This condi-
tion holds for regressor vectors with specific second-order
statistics, such as an H-proper regressor vector (Cssα =
0Css) and a rectilinear regressor vector (Cssα = ραCss ,
where ρα is a unit quaternion).

2) sn can be expressed by applying a unitary transform to
a white Gaussian random quaternion vector vn , that is,
sn = Gvn , where G is a unitary quaternion matrix.

For quaternion inputs that do not meet the above two con-
ditions, Assumption 1 holds approximately as the result of the
recently proposed approximate uncorrelating transform [48]–
[50]. Under Assumption 1, we shall define w̄n = GH w̃n ,
q̄n = GH qn , Σ̄ = GH ΣG and convert (24) into

E
{
‖w̄n+1‖2

Σ̄

}
= E

{
‖w̄n‖2

Σ̄ ′
}

+ μ2σ2
υE

{
‖s̄n‖2

Σ̄

}

+ E
{
‖qn‖2

Σ

}

Σ̄′ = Σ̄ − μ
(
E

{
s̄n s̄H

n

}
Σ̄ + Σ̄E

{
s̄n s̄H

n

})

+ μ2E
{
‖s̄n‖2

Σ̄ s̄n s̄H
n

}
(46)

where

E
{
‖s̄n‖2

Σ̄ s̄n s̄H
n

}
= Tr

(
Σ̄Λss

)
Λss

+
1
2
Σ̄

(
Λ2

ss +
∑

α= ı,j,κ

Λssα Λ∗
ssα

)
(47)

is derived similarly to the derivation of (41). Let Σ̄ be a diagonal
real matrix, then Σ̄′ is also diagonal and real, and hence these two
matrices can be completely characterised by their diagonal en-
tries. Defining σ̄ � diag(Σ̄), σ̄′ � diag(Σ̄′), λs � diag(Λss),
λq � diag(E{q̄n q̄H

n }), and referring to ‖ · ‖2
Σ̄ and ‖ · ‖2

Σ̄ as
‖ · ‖2

σ̄ and ‖ · ‖2
σ̄′ , we obtain the compact forms of (46) and

(47) as

E
{
‖w̄n+1‖2

σ̄

}
= E

{
‖w̄n‖2

Fσ̄

}
+

(
μ2σ2

υλs + λq
)T

σ̄

F = IM − μA + μ2B

A = 2Λss

B =
1
2

(
Λ2

ss +
∑

α= ı,j,κ

Λssα Λ∗
ssα

)
+ λsλ

T
s (48)

Similar to the stability condition for (26), (48) is stable if
and only if all eigenvalues of F are within (−1, 1). Since these

MSD ≤ 2μ2σ2
υ Tr (Css) + 2Tr (Cqq)

4μλmin (Css) − μ2
[
2Tr (Css) λmax (Css) + λ2

max (Css) +
∑

α= ı,j,κ p2
max (Cssα )

]

MSD ≥ 2μ2σ2
υ Tr (Css) + 2Tr (Cqq)

4μλmax (Css) − μ2
[
2Tr (Css) λmin (Css) + λ2

min (Css) +
∑

α= ı,j,κ p2
min (Cssα )

] (44)
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eigenvalues are easily seen to be greater than −1, we only need
to investigate how to guarantee that they are less than unit. It
can be proved that they are upper bounded by unit if and only if
0 < μ < λ−1

max(A
−1B), which is verified to be equivalent to

0 <

M∑
m=1

2μλs,m

4 − μλs,m

(
1 +

∑
α= ı,j,κ r2

s̄α,m

) < 1 (49)

where λs,m is the m-th element of λs , and rs̄α,m is the α-
impropriety coefficient of the m-th element of s̄n . According
to Remark 1, the condition in (49) is sufficient and necessary
for the algorithm stability both in the mean and mean square
sense.

Remark 2: The stability condition in (49) indicates that the
upper bound of μ decreases with the increase in the length of the
regressor vector, M , the increase in the power of the regressor
reflected by λs,m , and the increase in the impropriety degree of
s̄n reflected by rs̄ı,m , rs̄j,m , rs̄κ,m .

MSD and EMSE analysis. Iterating (48) gives

E
{
‖w̄n‖2

σ̄

}
= E

{
‖w̄0‖2

Fn σ̄

}
+

(
μ2σ2

υλs + λq
)T

n−1∑
l=0

Flσ̄

(50)
The MSD and EMSE at iteration n can now be derived from
(50) by letting σ̄ = 1M and σ̄ = λs , respectively. Equation (50)
also yields the iteration

E
{
‖w̄n+1‖2

σ̄

}
= E

{
‖w̄n‖2

σ̄

}
+ E

{
‖w̄0‖2

Fn (F−IM )σ̄

}

+
(
μ2σ2

υλs + λq
)T Fn σ̄ (51)

which characterises the evolution of MSD when σ̄ = 1M , and
characterises the evolution of EMSE when σ̄ = λs .

At the steady state, limn→∞ E{‖w̄n+1‖2
σ̄} = limn→∞

E{‖w̄n‖2
σ̄}, so that (48) yields

lim
n→∞E

{
‖w̄n‖2

(μA−μ2 B)σ̄

}
=

(
μ2σ2

υλs + λq
)T

σ̄

Finally, the steady-state MSD and EMSE become

MSD = lim
n→∞E

{
‖w̄n‖2

1M

}

=
(
μ2σ2

υλs + λq
)T (

μA − μ2B
)−1 1M

EMSE = lim
n→∞E

{
‖w̄n‖2

λs

}

=
(
μ2σ2

υλs + λq
)T (

μA − μ2B
)−1

λs

which can be rewritten as

MSD =
2
∑M

m=1
μ2 σ 2

υ +λq , m λ−1
s , m

4−μλs , m (1+
∑

α = ı , j , κ r 2
s̄α , m )

μ − 2μ2
∑M

m=1
λs , m

4−μλs , m (1+
∑

α = ı , j , κ r 2
s̄α, m )

(52)

EMSE =
2
∑M

m=1
μ2 σ 2

υ λs , m +λq , m

4−μλs , m (1+
∑

α = ı , j , κ r 2
s̄α, m )

μ − 2μ2
∑M

m=1
λs , m

4−μλs , m (1+
∑

α = ı , j , κ r 2
s̄α, m )

(53)

Remark 3: Observe from (52) and (53) that the steady-state
EMSE and MSD increase with the length of the regressor vector,

TABLE I
SUMMARY OF ANALYSIS RESULTS

S: Sufficient; N: Necessary.

M , the power of the regressor reflected by λs,m , the impropriety
degree of s̄n reflected by rs̄ı,m , rs̄j,m , rs̄κ,m , and the variance
of the system weight variation reflected by λq,m .

Table I summarises the sufficient stability conditions, neces-
sary stability conditions, necessary and sufficient stability condi-
tions, MSDs, and EMSEs for general quaternion adaptive filters
and QLMS filters with Gaussian inputs. The closed-form repre-
sentations of the performance of SL-QLMS, SWL-QLMS, and
WL-QLMS with Gaussian regressors satisfying Assumption 1
can be obtained by replacing s with xn , ẋn , and ẍn respectively
in (49), (52) and (53). Exploring the second-order statistics of
input signal, the following three subsections further address the
performance of the three classes of QLMS algorithms.

A. SL-QLMS

1) Scalar Input: The stability condition of the SL-QLMS
with a scalar regressor xn is obtained from (49) as

0 < μ <
4

σ2
x

(
3 + r2

xı + r2
xj + r2

xκ

) (54)

where σ2
x is the variance of xn . This condition is the same as the

analysis result obtained in [31]. The steady-state performance
can be derived from (52) and (53) as

MSD =
2
(
μ2σ2

υσ2
x + σ2

q

)

μσ2
x

[
4 − μσ2

x

(
3 + r2

xı + r2
xj + r2

xκ

)] (55)

EMSE =
2
(
μ2σ2

υσ2
x + σ2

q

)

μ
[
4 − μσ2

x

(
3 + r2

xı + r2
xj + r2

xκ

)] (56)

where σ2
q is the variance of the weight variation qn .

2) H-Proper Input Vector: The diagonalisation ofCxx com-
pletely decorrelates an H-proper quaternion input vector xn . For
such inputs, rx̄α,m = 0,∀m,α, so that the stability condition in
(49) and the steady-state performance in (52) and (53) become

0 <

M∑
m=1

2μλx,m

4 − μλx,m
< 1 (57)
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MSD =
2
∑M

m=1
μ2 σ 2

υ +λq , m λ−1
x , m

4−μλx , m

μ
(
1 − μ

∑M
m=1

2λx , m

4−μλx , m

) (58)

EMSE =
2
∑M

m=1
μ2 σ 2

υ λx , m +λq , m

4−μλx , m

μ
(
1 − μ

∑M
m=1

2λx , m

4−μλx , m

) (59)

3) Rectilinear Input Vector: If the Gaussian input vector xn

is rectilinear, it can be expressed as xn = eζzn , where zn is a
random Gaussian real vector, and ζ a constant pure quaternion
scalar [51]. For such inputs, the covariance and complemen-
tary covariance matrices can be represented by Cxx = Czz ,
Cxxα = eζ (e−ζ )α Czz , α = ı, j, κ. Therefore, Cxx ,Cxxα can
be simultaneously diagonalised via the diagonalisation of the
real symmetric matrix Czz . Note rx̄α,m = 1,∀m,α, so that the
stability condition in (49) and the steady-state performance in
(52) and (53) become

0 <

M∑
m=1

μλx,m

2 − 2μλx,m
< 1 (60)

MSD =

∑M
m=1

μ2 σ 2
υ +λq , m λ−1

x , m

2−2μλx , m

μ
(
1 − μ

∑M
m=1

λx , m

2−2μλx , m

) (61)

EMSE =

∑M
m=1

μ2 σ 2
υ λx , m +λq , m

2−2μλx , m

μ
(
1 − μ

∑M
m=1

λx , m

2−2μλx , m

) (62)

B. SWL-QLMS

1) H-Proper Input Vector: If the random quaternion vector
xn is H-proper, Cẋẋ reduces to a block diagonal matrix. Denote
the eigendecomposition of Cxx by Cxx = QΛxxQH , where
Λxx is a diagonal real matrix containing all eigenvalues of Cxx

on the diagonal, and Q is a unitary quaternion matrix containing
eigenvectors of Cxx . We can find a unitary quaternion matrix

G =
1√
2

[
Q −Q
Qη Qη

]

so that s̄n = GH ẋn is a Cη -improper vector and satisfies

Cs̄s̄ = I2 ⊗ Λxx , Cs̄s̄η = Diag(1,−1) ⊗ Λxx

This reduces the stability condition in (49) and the steady-state
performance in (52) and (53) to

0 <

M/2∑
m=1

2μλx,m

2 − μλx,m
< 1 (63)

MSD =

∑M/2
m=1

2μ2 σ 2
υ λx , m +λq , m +λq , m + M / 2

λx , m (2−μλx , m )

μ
(
1 − 2μ

∑M/2
m=1

λx , m

2−μλx , m

) (64)

EMSE =

∑M/2
m=1

2μ2 σ 2
υ λx , m +λq , m +λq , m + M / 2

2−μλx , m

μ
(
1 − 2μ

∑M/2
m=1

λx , m

2−μλx , m

) (65)

2) Rectilinear Input Vector: As shown in Section IV-A3, the
covariance matrix of a rectilinear vector xn is real-valued, so its
eigendecomposition can be represented by Cxx = QΛxxQT ,

where Q is a real orthogonal matrix. We can find a quaternion
unitary matrix

G =
1√
2

[
Q −eζ

(
e−ζ

)η Q(
eζ

)η
e−ζQ Q

]

so that s̄n = GH ẋn satisfies

Cs̄s̄ = Diag(2, 0) ⊗ Λxx

Cs̄s̄η = Diag(2eζ
(
e−ζ

)α
, 0) ⊗ Λxx , α = ı, j, κ

which reduces the stability condition in (49) and the steady-state
EMSE in (53) to

0 <

M/2∑
m=1

μλx,m

1 − 2μλx,m
< 1 (66)

EMSE =

∑M/2
m=1

2μ2 σ 2
υ λx , m +λq , m

1−2μλx , m
+

∑M
m=1+M/2λq,m

2μ
(
1 − μ

∑M/2
m=1

λx , m

1−2μλx , m

) (67)

In this case, the steady-state MSD is uncertain as the weight
solution is not unique.

C. WL-QLMS

1) H-proper Input Vector: If xn is H-proper, Cẍẍ reduces to
a block diagonal matrix. Considering the eigendecomposition of
Cxx , Cxx = QΛxxQH , we can find such a quaternion unitary
matrix given by

G =
1
2

⎡
⎢⎢⎢⎣

Q −Q −Q −Q
Qı −Qı Qı Qı

Qj Qj −Qj Qj

Qκ Qκ Qκ −Qκ

⎤
⎥⎥⎥⎦

that s̄n = GH ẍn satisfies

Cs̄s̄ = I4 ⊗ Λxx

Cs̄s̄ı = Diag(1, 1,−1,−1) ⊗ Λxx

Cs̄s̄j = Diag(1,−1, 1,−1) ⊗ Λxx

Cs̄s̄κ = Diag(1,−1,−1, 1) ⊗ Λxx

The stability condition in (49) and the steady-state performance
in (52) and (53) become

0 <

M/4∑
m=1

2μλx,m

1 − μλx,m
< 1 (68)

MSD =
∑M/4

m=1
4μ2 σ 2

υ λx , m +λq , m +λq , m + M / 4 +λq , m + M / 2 +λq , m + 3 M / 4

2λx , m (1−μλx , m )

μ
(
1 − 2μ

∑M/4
m=1

λx , m

1−μλx , m

) (69)

EMSE =
∑M/4

m=1
4μ2 σ 2

υ λx , m +λq , m +λq , m + M / 4 +λq , m + M / 2 +λq , m + 3 M / 4

2(1−μλx , m )

μ
(
1 − 2μ

∑M/4
m=1

λx , m

1−μλx , m

) (70)
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2) Rectilinear input vector: If xn is rectilinear, the quater-
nion unitary matrix

G =

1
2

⎡
⎢⎢⎢⎣

Q −Q −Q −Q(
eζ

)ı
e−ζQ − (

eζ
)ı

e−ζQ
(
eζ

)ı
e−ζQ

(
eζ

)ı
e−ζQ(

eζ
)j

e−ζQ
(
eζ

)j
e−ζQ − (

eζ
)j

e−ζQ
(
eζ

)j
e−ζQ(

eζ
)κ

e−ζQ
(
eζ

)κ
e−ζQ

(
eζ

)κ
e−ζQ − (

eζ
)κ

e−ζQ

⎤
⎥⎥⎥⎦

allows the transformed vector s̄n = GH ẍn to satisfy

Cs̄s̄ = Diag(4, 0, 0, 0) ⊗ Λxx

Cs̄s̄α = Diag(4eζ
(
e−ζ

)α
, 0, 0, 0) ⊗ Λxx , α = ı, j, κ

which reduces the stability condition in (49) and the steady-state
EMSE in (53) to

0 <

M/4∑
m=1

2μλx,m

1 − 4μλx,m
< 1 (71)

EMSE =

∑M/4
m=1

4μ2 σ 2
υ λx , m +λq , m

1−4μλx , m
+

∑M
m=1+M/4λq,m

2μ
(
1 − 2μ

∑M/4
m=1

λx , m

1−4μλx , m

) (72)

In this case, the steady-state MSD is uncertain as the weight
solution is not unique.

V. SIMULATIONS

The performances of the three considered classes of QLMS
algorithms with Gaussian inputs were evaluated by averag-
ing results over 1000 independent numerical simulation tri-
als. Throughout the simulations, the length of the synthetic
correlated input vector xn was L = 4, and the eigenvalues
of Cxx were kept the same. For simplicity, the elements of
xn were set to have an equal impropriety coefficient, that is,
rm,ı = rm,j = rm,k = r.

A. SL-QLMS

In the simulations for the SL-QLMS, the desired signal was
generated from the strictly linear model in (9) and (12). The
variance of the additive Gaussian noise υn was σ2

υ = 0.01, and
the Euclidean norm of the Gaussian weight variation qn was
0.0016. Fig. 1 depicts the theoretical and simulated EMSE and
MSD learning curves of the SL-QLMS for an improper input
with r = 0.5 and μ = 0.02. These curves exhibit a good match
between the theory and simulation results. Figs. 2 and 3 illustrate
the theoretical and simulated steady-state EMSEs for different
values of the step size μ when xn is H-proper and when xn

is improper with r = 0.5, respectively. The theoretical bounds
of μ are also indicated. Both figures show that there was a
good match between theory and simulations and their difference
increased with μ, which is similar to the behaviour of real-
valued LMS filters [27]. Observe that the decrease in the stability
bound for the improper input conforms with Remark 2. Fig. 8
illustrates a match between the theoretical and simulated steady-
state EMSEs for inputs with various impropriety coefficients
r ∈ [0, 1] and μ = 0.2. The increase in the steady-state EMSEs
with r conforms with Remark 3. As Remark 2, Figs. 2 and 3
show, the upper bound of μ decreases with the increase in r.

Fig. 1. Theoretical and simulated learning curves of SL-QLMS for an im-
proper input with r = 0.5 and μ = 0.02.

Fig. 2. Theoretical and simulated EMSEs of SL-QLMS as a function of the
step size, for an H-proper input.

Fig. 3. Theoretical and simulated EMSEs of SL-QLMS as a function of the
step size, for an improper input with r = 0.5.

So, for a fixed μ, the theoretical EMSE for highly improper
inputs is less accurate, as μ is closer to the upper bound. This
explains the difference between the theoretical and simulated
steady-state EMSEs for a large r in Fig. 4 as well as in Figs. 8
and 12.
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Fig. 4. Theoretical and simulated EMSEs of SL-QLMS as a function of the
impropriety coefficient, for μ = 0.2.

Fig. 5. Theoretical and simulated learning curves of SWL-QLMS for an
improper input with r = 0.5 and μ = 0.02.

B. SWL-QLMS

In the simulations for the SWL-QLMS, the desired signal was
generated from the semi-widely linear model in (10) and (12).
The variance of the additive Gaussian noise υn was σ2

υ = 0.01,
and the Euclidean norm of the Gaussian weight variation qn

was 0.0008. Fig. 5 depicts theoretical and simulated EMSE and
MSD learning curves of the SL-QLMS for an improper input
with r = 0.5 and μ = 0.02. These curves exhibit a good match
between the theory and simulation results. Figs. 6 and 7 show
theoretical and simulated steady-state EMSEs for different val-
ues of the step size μ when xn is H-proper and when xn is
improper with r = 0.5. The theoretical bounds of μ are also
indicated. Both figures illustrate a good match between theory
and simulations and an increase in their difference with μ. The
decrease in the stability bound for the improper input conforms
with Remark 2. Fig. 8 illustrates a match between theoretical

Fig. 6. Theoretical and simulated EMSEs of SWL-QLMS as a function of the
step size, for an H-proper input.

Fig. 7. Theoretical and simulated EMSEs of SWL-QLMS as a function of the
step size, for an improper input with r = 0.5.

Fig. 8. Theoretical and simulated EMSEs of SWL-QLMS as a function of the
impropriety coefficient, for μ = 0.1.

and simulated steady-state EMSEs for inputs with various im-
propriety coefficients r ∈ [0, 1] and μ = 0.1. The increase in the
steady-state EMSEs with r conforms with Remark 3.

C. WL-QLMS

In the simulations for the WL-QLMS, the desired signal was
generated from the widely linear model in (11) and (12). The
variance of the additive Gaussian noise υn was σ2

υ = 0.01, and
the Euclidean norm of the Gaussian weight variation qn was
0.0004. Fig. 9 depicts theoretical and simulated EMSE and
MSD learning curves of the SL-QLMS for an improper in-
put with r = 0.5 and μ = 0.02. These curves exhibit a good
match between the theory and simulation results. Figs. 10 and
11 show theoretical and simulated steady-state EMSEs for dif-
ferent values of the step size μ when xn is H-proper and when
xn is improper with r = 0.5. The theoretical bounds of μ are
also indicated. From both figures, we can observe a good match
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Fig. 9. Theoretical and simulated learning curves of WL-QLMS for an im-
proper input with r = 0.5 and μ = 0.02.

Fig. 10. Theoretical and simulated EMSEs of WL-QLMS as a function of the
step size, for an H-proper input.

Fig. 11. Theoretical and simulated EMSEs of WL-QLMS as a function of the
step size, for an improper input with r = 0.5.

Fig. 12. Theoretical and simulated EMSEs of WL-QLMS as a function of the
impropriety coefficient, for μ = 0.05.

between theory and simulations and an increase in their differ-
ence with μ. The decrease in the stability bound for the improper
input conforms with Remark 2. Fig. 12 illustrates a match be-
tween theoretical and simulated steady-state EMSEs for inputs
with various impropriety coefficients r ∈ [0, 1] and μ = 0.05.
The increase in the steady-state EMSEs with r conforms with
Remark 3.

VI. CONCLUSION

Convergence of quaternion adaptive filtering algorithms in
non-stationary environments has been analysed by extending an
analysis framework for real-valued adaptive filters to the quater-
nion domain. For rigour, the first-order random-walk model
has been employed to model the variation of system weights
in a non-stationary environment. The bounds on transient and
steady-state performance of general quaternion adaptive filters
have been derived. For QLMS filters with Gaussian inputs, an
innovative quaternion decorrelation technique has simplified the
analysis and enabled the step size bounds, MSDs and EMSEs
to be expressed in closed forms. The analytical results, which
are shown to be influenced by the second-order statistics of in-
put signals, provide new insights into the statistical behaviour
of the considered filtering algorithms. Effectiveness of the pro-
posed analysis has been verified by numerical simulations for
SL-QLMS, SWL-QLMS and WL-QLMS filters with correlated
Gaussian inputs. The proposed analysis framework may be ex-
tended to other division algebras, such as the analysis of octo-
nion adaptive filters, a topic of future research.

APPENDIX

PROOF OF (41)

Based on Isserlis’ theorem [52], the fourth-order moments of
real and complex variables can be represented by their second-
order moments. However, Isserlis’ theorem does not apply to
quaternion variables because the quaternion products are non-
commutative. To circumvent this difficulty, we represent quater-
nion variables using the Cayley-Dickson construction, that is,
the m-th element of sn is written as sm = cm + dm j, where
cm and dm are complex variables defined on the basis {1, ı}
[18]. By applying Isserlis’ theorem to the constitutive complex
variables, the element on the a-th row and b-th column of the
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fourth-order moment matrix E{‖sn‖2snsH
n } can be represented

by the second-order statistics of sn as[
E

{
‖sn‖2 snsH

n

}]
a,b

= E

{
M∑

m=1

sm s∗m sas∗b

}

= E

{
M∑

m=1

(cm + dm j) (c∗m − dm j) (ca + daj) (c∗b − dbj)

}

=
M∑

m=1

(E{cm c∗m cac∗b + cm c∗m dad∗b + dm d∗m cac∗b

+ dm d∗m dad∗b} + E{cm c∗m dacb + dm d∗m dacb − cm c∗m cadb

− dm d∗m cadb}j)

=
M∑

m=1

E{cm c∗m + dm d∗m}E{cac∗b + dad∗b + (dacb − cadb) j}

+
M∑

m=1

(E {cm ca}E {c∗m c∗b} + E {cm c∗b}E {c∗m ca}

+ E {cm da}E {c∗m d∗b} + E {cm d∗b}E {c∗m da}
+ E {dm ca}E {d∗m c∗b} + E {dm c∗b}E {d∗m ca}
+ E {dm da}E {d∗m d∗b} + E {dm d∗b}E {d∗m da} )

+
M∑

m=1

(E {cm da}E {c∗m cb} + E {cm cb}E {c∗m da}

+ E {dm da}E {d∗m cb} + E {dm cb}E {d∗m da}
− E {cm ca}E {c∗m db} − E {cm db}E {c∗m da}
− E {dm ca}E {d∗m db} − E {dm db}E {d∗m ca} ) j

We also observe

[Css ]a,b = E {sas∗b} = E {(ca + daj) (c∗b − dbj)}
= E {cac∗b + dad∗b} + E {dacb − cadb} j

[Cssı ]a,b = E {sası∗
b } = E {(ca + daj) (c∗b + dbj)}

= E {cac∗b − dad∗b} + E {dacb + cadb} j

[Cssj ]a,b = E
{
sasj∗

b

}
= E {(ca + daj) (cb − d∗bj)}

= E {cacb + dadb} + E {dac∗b − cad∗b} j

[Cssκ ]a,b = E {sasκ∗
b } = E {(ca + daj) (cb + d∗bj)}

= E {cacb − dadb} + E {dac∗b + cad∗b} j

From the above equations, we can verify
[
E

{
‖sn‖2 snsH

n

}]
a,b

= Tr (Css) [Css ]a,b +
1
2
[
C2

ss

]
a,b

+
1
2

∑
α= ı,j,κ

[Cssα Cα
ssα ]a,b

Therefore, (41) holds.
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