
Contents lists available at ScienceDirect

Signal Processing

journal homepage: www.elsevier.com/locate/sigpro

Cost-effective quaternion minimum mean square error estimation:
From widely linear to four-channel processing

Min Xianga,⁎, Clive Cheong Tookb, Danilo P. Mandica

a Department of Electrical and Electronic Engineering, Imperial College London, United Kingdom
b Department of Computer Science, The University of Surrey, United Kingdom

A R T I C L E I N F O

Keywords:
Quaternion filter
Mean square error
Widely linear estimation
Four-channel model
Computational complexity

A B S T R A C T

Widely linear estimation plays an important role in quaternion signal processing, as it caters for both proper
and improper quaternion signals. However, widely linear algorithms are computationally expensive owing to the
use of augmented variables and statistics. To reduce the computation cost while maintaining the performance
level, we propose a four-channel estimation framework as an efficient alternative to quaternion widely linear
estimation. This is achieved by using four linear models to estimate the four components of quaternion signals.
We also show that any of the four channels is able to replace a strictly linear quaternion estimator when
estimating strictly linear systems. The proposed method is shown to reduce computational complexity and
provide more flexible algorithms, while preserving the physical meaning inherent in the quaternion domain.
The proposed framework is next applied to quaternion minimum mean square error estimation to yield the
reduced-complexity versions of the quaternion least mean square (QLMS), quaternion recursive least squares
(QRLS), and quaternion nonlinear gradient decent (QNGD) algorithms. For the proposed QLMS algorithm, an
adaptive step-size strategy is also explored. The effectiveness of the so introduced estimation techniques is
validated by simulations on synthetic and real-world signals.

1. Introduction

Recent advances in sensing technology have enabled ubiquitous
recording from 3-D and 4-D data sources, such as measurements from
seismometers [1], ultrasonic anemometers [2], and inertial body
sensors [3]. Traditionally, these measurements have been considered
as vectors in the 3 and 4

fields of reals, however, the vector algebra is
not a division algebra and is inadequate when modelling orientation
and rotation [4]. Owing to their division algebra, quaternions have
inherent advantages in representing 3-D and 4-D data, and quaternion-
valued algorithms are a generic extension of their real- and complex-
valued counterparts. Quaternions also naturally account for mutual
information between multiple data channels, provide a compact
representation, and have proven to offer a physically meaningful
interpretation to real-world applications, such as in navigation, com-
munications, and image processing [5,6]. Recent resurgence in re-
search on quaternion signal processing spans the areas of adaptive
filtering [7], neural networks [8], independent component analysis [9],
and spectral estimation [10].

When it comes to adaptive filtering, estimation of a set of signals
based on information obtained from measurements of other signals,

which is widely used in signal enhancement and system identification,
has been recently extended from the real and complex domains to the
quaternion domain  [7]. Traditional strictly linear quaternion esti-
mators utilise the second-order statistics based on the standard
covariance and are optimal only for estimating second-order circular
(proper) signals. Advances in quaternion statistics have established
that in order to capture complete second-order statistics of quaternion
signals, widely linear estimators which use the complementary covar-
iances, in addition to the standard covariance, are needed [11,12].
However, the widely linear approach requires four times the number of
parameters to update, inducing higher computational complexity. To
reduce the computation cost, efficient algorithms casting the computa-
tions from  to  have been proposed, for example, the reduced-
complexity widely linear quaternion least mean square (RC-WL-
QLMS) algorithm employs a quaternion-valued weight vector and a
real-valued input vector [13], while the multi-channel LMS (MLMS)
algorithm exploits the duality between 4 and  [14]. Despite
computational efficiency, these algorithms have no means of exploring
the physical meaning inherent in , as the input and weight vectors no
longer reside in .

In order to obtain physically meaningful estimates of quaternion
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signals at low computation cost, we here extend the recently proposed
complex dual channel estimation [15] to a four-channel quaternion
estimation framework, which comprises four sub-estimators for the
four components of the quaternion. In this way, four degrees of
freedom are provided to capture complete second-order statistical
information; the so introduced estimation model and weight update
rule reduce the computational cost compared with the conventional
widely linear estimation, while achieving equivalent estimation perfor-
mance. In this way, the physical meaning inherent to the quaternion
domain is also preserved, together with enhanced flexibility as the
convergence of the four sub-estimators can be controlled individually.
When estimating strictly linear quaternion systems, the proposed four-
channel estimation simplifies to a single-channel problem, which can
also be used as an efficient alternative to conventional strictly linear
estimation. For rigour, we derive a class of four-channel quaternion
minimummean square error (MMSE) estimation algorithms, including
the four-channel quaternion least mean square (FC-QLMS), the four-
channel quaternion recursive least squares (FC-QRLS), and the four-
channel quaternion nonlinear gradient decent (FC-QNGD). The tran-
sient and steady-state behaviour and computational complexity of the
FC-QLMS algorithm are established, and an adaptive step-size strategy
based on the Barzilai–Borwein method is introduced. Simulations on
synthetic and real-world multi-dimensional signals support the analy-
sis.

The rest of this paper is organised as follows. Section 2 provides a
background of quaternions and quaternion-valued signal estimation.
The novel four-channel quaternion estimation framework is introduced
in Section 3. Section 4 applies the four-channel estimation framework
to quaternion MMSE estimation and introduces the corresponding
algorithms. Section 5 analyses the performance of the FC-QLMS
algorithm and introduces an adaptive step-size strategy. Simulation
results are given in Section 6, and Section 7 concludes the paper.
Throughout the paper, we use boldface capital letters to denote
matrices, A, boldface lowercase letters for vectors, a, and italic letters
for scalar quantities, a. Superscripts (·)T , (·)* and (·)H denote the
transpose, conjugate, and Hermitian (i.e. transpose and conjugate),
respectively, I the identity matrix, and E{·} the statistical expectation
operator.

2. Background

2.1. Quaternion algebra

The quaternion domain  is a four-dimensional vector space over
the real field , spanned by the basis ȷ κ{1, ı, , }. A random quaternion
vector, x ∈ L×1, comprises a real part R[·] and an imaginary part I[·]
which consists of three imaginary components, Iı ı, Iȷ ȷ, Iκ κ , so that

R I R I I Iȷ κx x x x x x x= [ ] + [ ] = [ ] + ı [ ] + [ ] + [ ]ȷ κı

whereR I I I x x x x[ ], [ ], [ ], [ ] ∈ȷ κ
L

ı
×1, and ȷ κı, , are the roots of -1 which

satisfy

ȷ κ ȷκ ȷ ȷ κ ȷκ κȷ κ κ ȷɩ = = = ɩ = − 1 ɩ = − ɩ = = − = ɩ ɩ = − ɩ =2 2 2

The conjugate of a random quaternion vector x is defined as

R I R I I Iι ȷ κx x x x x x x* = [ ] − [ ] = [ ] − [ ] − [ ] − [ ]ι ȷ κ

The modulus of a quaternion variable x ∈ is defined as

R I I Ix x x x x| | = [ ] + [ ] + [ ] + [ ]ι ȷ κ
2 2 2 2

and the product of two quaternions x y, ∈ by

R R I I R I R I I Ixy x y x y x y y x x y= [ ] [ ] − [ ]· [ ] + [ ] [ ] + [ ] [ ] + [ ] × [ ]

where the symbol ‘·’ denotes the scalar product and ‘×’ the vector
product. The presence of the vector product causes the non-commu-
tativity of the quaternion product, that is, xy yx≠ . The quaternion

product has the following properties [16]:

xy x y x x
x

xy y x xy y x| | = | ∥ |, =
*

| |
, ( ) = , ( )* = * *−1

2
−1 −1 −1

(1)

A quaternion variable x is called a unit quaternion if it satisfies x| | = 1. A
quaternion variable x is called a pure quaternion if it satisfiesR x[ ] = 0.

Another important notion is that of the quaternion involution [17],
which defines a self-inverse mapping analogous to the complex
conjugate. The general involution of the quaternion vector x is defined
as η ηx x= −η , and represents the rotation of the vector part of x by π
about a unit pure quaternion η. The involutions obey x x( ) =η η , and the
conjugate involutions are defined as x x x* = ( )* = ( *)η η η

. The special
cases of involutions about the ı, ȷ and κ imaginary axes are given by

R I I I

R I I I

R I I I

ι ι ι ȷ κ
ȷ ȷ ι ȷ κ
κ κ ι ȷ κ

x x x x x x
x x x x x x
x x x x x x

= − = [ ] + [ ] − [ ] − [ ]
= − = [ ] − [ ] + [ ] − [ ]
= − = [ ] − [ ] − [ ] + [ ]

ι
ι ȷ κ

ȷ
ι ȷ κ

κ
ι ȷ κ (2)

Through the above quaternion involutions, the four real-valued com-
ponents of x can be expressed as

R

I

I

I

x x x x x

x x x x x

x x x x x

x x x x x

[ ] = ( + + + )

[ ] = ( + − − )

[ ] = ( − + − )

[ ] = ( − − + )

ι ȷ κ

ι ι
ι ȷ κ

ȷ ȷ
ι ȷ κ

κ κ
ι ȷ κ

1
4
1
4
1
4
1
4 (3)

2.2. Second-order statistics

The set of quaternion involutions in (2) and the original quaternion
vector x form the most frequently used basis for augmented quaternion
statistics, which is at the core of the recently proposed widely linear
processing methodology [18,19]. Benefiting from this involution basis,
complete second-order quaternion statistics is described by the ı−, ȷ−,
and κ− complementary covariance matrices, together with the standard
Hermitian covariance matrix, EC xx= { }H

x . The complementary covar-
iance matrices can be represented in a unified form as

E η ȷ κC xx= { }, ∈ {ı, , }ηH
xxη , and every η-complementary covariance

matrix is η− Hermitian, that is, C C= ( )ηH
xx xxη η . The knowledge of both

the covariance matrix and the complementary covariance matrices is
necessary to ensure the utilisation of complete second-order statistical
information in .

The notion of non-circularity (improperness) is unique to division
algebras. For quaternion data, non-circularity refers to probability
distributions which are not rotation-invariant, while improperness is
characterised by the degree of correlation and/or power imbalance
between the real and imaginary components. The additional degrees of
freedom in the quaternion domain allow for types of properness:
η-properness, η-properness, and -properness [18,19], defined
below.

Definition 1 (-properness). A random quaternion vector x is
-proper if it is uncorrelated with the involutions xı, x ȷ and xκ, so
that C C C 0= = =xx xx xxȷ κı .

Definition 2 (η-properness). A random quaternion vector x is
η-proper with respect to an imaginary unit η ȷ κ∈ {ı, , } if it is
uncorrelated only with the involutions xη, so that C 0=xxη .

Definition 3 (η-properness). A random quaternion vector x is
η-improper with respect to an imaginary unit η ȷ κ∈ {ı, , } if it is
correlated with only one of the involutions, xη, so that all
complementary covariances except for Cxxη vanish.
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2.3. Quaternion estimation

A fundamental problem in quaternion signal processing is to obtain
the estimate, y , of a desired signal, y ∈ , from a set of measurements,

x ∈ L×1, which carry information about y. The estimation model,
y f x= ( ), incorporates knowledge about the relationship between y and
x, is crucial for estimation performance. Traditionally, the strictly
linear model has been used for this purpose and is given by [7]

y h x=
H

(4)

where h is the weight vector. This model achieves optimal estimation
for proper quaternion signals but is suboptimal for general improper
quaternion signals. To address this issue, the incorporation of the
involution basis for x yields the widely linear model [11]

y h x g x u x v x w x= + + + =̂H H H ȷ H κ aH aı (5)

where h g u v, , , ∈̂ L×1 are the estimated weight vectors which can be

compactly represented in the augmented form as w h g u v= [ , , , ]̂a T T T T T
,

and x x x x x= [ , , , ]a T T ȷT κT Tı is the corresponding augmented input
vector. The widely linear estimation has proven to outperform the
strictly linear estimation for general quaternion signals [20].

3. Four-channel quaternion estimation model

Consider a quaternion-valued desired signal, y, given by a widely
linear system corrupted by independent noise, υ, in the form:

y υh x g x u x v x= + + + +H H H ȷ H κı (6)

where h g u v, , , ∈ L×1 are the true weight vectors. According to the
relationship (3), the four real-valued components of y can be repre-
sented by four linear models, as

R R

I I

I I

I I

y υ
y υ
y υ

y υ

h g u v x
h g u v x
h g u v x

h g u v x

[ ] = [( + + + ) + ]
[ ] = [( + − − ) + ]
[ ] = [( − + − ) + ]

[ ] = [( − − + ) + ]

ι ȷ κ H

ι ι
ι ȷ κ H

ȷ ȷ
ι ȷ κ H

κ κ
ι ȷ κ H

(7)

Therefore, the desired signal (6) can be expressed as

R I I Iy ȷ κ υw x w x w x w x= [ ] + ı [ ] + [ ] + [ ] +H H
ȷ ȷ

H
κ κ

H
1 ı ı (8)

where w w w w, , ,ȷ κ1 ı are quaternion-valued weight vectors. This moti-
vates us to separately estimate the four real-valued components, R y[ ]1 ,
I y[ ]ı ı , I y[ ]ȷ ȷ , I y[ ]κ κ , of y, in the form:

y y y yw x w x w x w x= , = , = , =H H
ȷ ȷ

H
κ κ

H
1 1 ı ı (9)

which are respectively referred to as channel 1, ı, ȷ and κ. Then these
components can be combined into a quaternion-valued estimate

R I I Iy y y ȷ y κ y= [ ] + ı [ ] + [ ] + [ ]ȷ ȷ κ κ1 ı ı (10)

for which the estimation error is given by

e y y e e ȷe κe= − = + ı + +ȷ κ1 ı

where

R R I I I I

I I

e y y e y y e y y

e y y

= [ ] − [ ], = [ ] − [ ], = [ ] − [ ],

= [ ] − [ ]

ȷ ȷ ȷ ȷ

κ κ κ κ

1 1 ı ı ı ı

are the respective estimation errors in the four channels (components).
We refer to Eqs. (9) and (10) as the four-channel linear estimation
model, which avoids the summation of the four quaternion quantities
in the widely linear estimation model (5) and consequently reduces the
computation cost.

4. Four-channel quaternion MMSE estimation

The MMSE estimation is a widely used estimation technique which
aims to minimise the mean square error (MSE), E e{ }2 . On the basis of
the four-channel linear model in (9) and (10), we shall now obtain the
optimal estimate by analysing individual channels. For example, let w1,o
denote the optimal estimate of the system weight w1. Then the optimal
estimate of R y[ ] is given by

R w x w x w x w x w x[ ] = 1
4

[ + + + ]H H H ȷH ȷ κH κ
1,o 1,o 1,o

ı ı
1,o 1,o

which is the projection of R y[ ] onto a Hilbert subspace spanned by the
basis in (2), and obeys the orthogonality principle

e e e ex x x x⊥ ⊥ ⊥ ⊥ȷ κ
1 1

ı
1 1

where the symbol ‘⊥’ designates that the error e1 is orthogonal to x, xı,
x ȷ and xκ . This orthogonality condition is equivalent to

E e E e E e E ex x x x 0{ *} = { *} = { *} = { *} =ȷ κ
1

ı
1 1 1 (11)

Substituting R Re υw w x= [( − ) ] + [ ]H
1 1 1,o into (11) yields

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
E Exx

w
w
w
w

xx

w
w
w
w

{ } = { }aH
ȷ

κ

aH
ȷ

κ

1,o

1,o
ı

1,o

1,o

1

1
ı

1

1

which implies w w=1,o 1. Similarly, the remaining three optimal esti-
mated weights can be derived as w w=ı,o ı, w w=ȷ ȷ,o , w w=κ κ,o .

For w w w w= = =ȷ κ1 ı , the desired signal (8) is expressed as a strictly

linear model y υw x= +H
1 , and the optimal estimated weight vectors of

the four-channel estimator are w w w w w= = = =ȷ κ1,o ı,o ,o ,o 1. Therefore,
we can use a single sub-channel to estimate the weight vector w1, and
hence obtain

R I I Iy ȷ κw x w x w x w x w x= [ ] + ı [ ] + [ ] + [ ] =H H
ȷ

H
κ

H H
1 ı 1 1 1 1

This reduced form of the four-channel estimation is referred to as
single-channel estimation.

We next introduce three adaptive algorithms for quaternion MMSE
estimation within the proposed four-channel framework.

4.1. FC-QLMS algorithm

Based on the four-channel linear estimation model in (9) and (10), a
FC-QLMS algorithm is next derived for quaternion estimation. As shown
in Fig. 1, the desired signal at the n-th iteration, yn, is estimated as

R I I Iy ȷ κw x w x w x w x= [ ] + ı [ ] + [ ] + [ ]n n
H

n n
H

n ȷ ȷ n
H

n κ κ n
H

n1, ı ı, , ,

and the weights are updated to minimise the cost function

J y y e e e e= − = + + +n n n n ι n ȷ n κ n
LMS 2

1,
2

,
2

,
2

,
2

Fig. 1. Architecture of the FC-QLMS algorithm.
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where

R R

I I

I I

I I

e y

e y

e y

e y

w x

w x

w x

w x

= [ ] − [ ]

= [ ] − [ ]

= [ ] − [ ]

= [ ] − [ ]

n n n
H

n

ι n ι n ι ι n
H

n

ȷ n ȷ n ȷ ȷ n
H

n

κ n κ n κ κ n
H

n

1, 1,

, ,

, ,

, ,

As the maximum change of Jn
LMS occurs when the weight update is

collinear with the conjugate derivative of Jn
LMS [21], the weight at the

n( + 1)-th iteration can be derived from the n-th iteration as

μ Jw w= − ∇η n η n nw, +1 , fc *
LMS

η (12)

where η ȷ κ∈ {1, ı, , }, and μfc is a positive step-size. The derivative in (12)
is calculated based on the generalised HR calculus [22] as

J e ηx∇ = − 1
2n η n nw*

LMS
,

−1
η (13)

Therefore, the component-wise weight updates are given by

μ e ηw w x= +η n η n η n n, +1 , fc ,
−1

(14)

where the constant 1
2
in (13) is absorbed into the step-size μfc.

If the desired signal obeys the strictly linear model, the four-
channel estimation can be replaced with single-channel estimation, so
that the FC-QLMS simplifies to a single-channel QLMS (SC-QLMS)
algorithm. The SC-QLMS using channel 1 is therefore given by

R R

y

μ y y

w x

w w x

=

= + ( [ ] − [ ])
n n

H
n

n n n n n

1,

1, +1 1, fc (15)

The proposed model is also scalable, for example, when the
quaternion input signal reduces to a complex one, that is,
R Ix x x= [ ] + ı [ ]ı , the FC-QLMS algorithm reduces to a complex algo-

rithm, as

R I

R

I

y ι

μ y

μ y ι

w x w x

w w w x x

w w w x x

= [ ] + [ ]

= + [ − ]

= − [ − ]

n n
H

n ι ι n
H

n

n n n
H

n n

ι n ι n ι ι n
H

n n

1, ,

1, +1 1, fc 1,

, +1 , fc ,

which is equivalent to the dual channel complex LMS algorithm in [15].
In addition to the reduction of computational cost owing to the

four-channel estimation model, the FC-QLMS has a more efficient
weight update rule than existing QLMS algorithms [22,23]. Another
advantage of FC-QLMS is that the step-sizes of the four channels can be
different, and thus the convergence rate of each channel can be
controlled individually, which provides the algorithm with more
flexibility in practical applications.

4.2. FC-QRLS algorithm

The class of quaternion recursive least squares (QRLS) algorithms
include the strictly linear QRLS (SL-QRLS) algorithm given by [24]

e y

ρ

e

ρ

h x

p P x x P x

h h p

P P p x P

= −

= ( + )

= + *

= [ − ]

n
p

n n
H

n

n n n n
H

n n

n n n n
p

n n n n
H

n

−1

−1 −1
−1

−1
−1

−1 −1

and the widely linear QRLS (WL-QRLS) algorithm given by [24]

e y

ρ

e

ρ

w x

p P x x P x

w w p

P P p x P

= −

= ( + )

= + *

= [ − ]

n
p

n n
aH

n
a

n
a

n
a

n
a

n
aH

n n
a

n
a

n
a

n
a

n
p

n
a

n
a

n
a

n
aH

n
a

−1

−1 −1
−1

−1
−1

−1 −1 (16)

where P ∈n
L L× and P ∈n

a L L4 ×4 are the estimated inverses of the
covariance and augmented covariance matrices. We next introduce an
FC-QRLS version of the WL-QRLS algorithm, which aims to minimise
the cost function

R I I I

∑J ρ e

e y ι ȷ κw x w x w x w x

=

= − [ ] − [ ] − [ ] − [ ]

n
m

n
n m

m

m m n
H

m ι ι n
H

m ȷ ι n
H

m κ κ n
H

m

RLS

=0

− 2

1, , , ,

where the weight update is derived from the WL-QRLS weight in (16)
according to the isomorphism in (7), to yield

Ψ e η η ȷ κw w r= + 4 [ *] ∈ {1, ı, , }η n η n n
p

n, , −1 (17)

In (17), r ∈n
L×1 contains the first L entries of pn

a, RΨ[·] = [·] when
η = 1, IΨ[·] = [·]ı when η = ı, IΨ[·] = [·]ȷ when η ȷ= , IΨ[·] = [·]κ when
η κ= . The weight calculation in (17) is more efficient than the weight
update of WL-QRLS in (16). If the desired signal obeys the strictly
linear model, a single sub-channel is sufficient for optimal estimation,
leading to a more efficient single-channel QRLS (SC-QRLS) algorithm.

4.3. FC-QNGD algorithm

The class of quaternion nonlinear gradient decent (QNGD) algo-
rithms include the strictly linear QNGD (SL-QNGD) algorithm, given
by [23,25]

∑

q

y q

μ
Φ q

q
y y

h x

h h x

=

= Φ( )

= +
∂ ( )

∂
( − )*

n n
H

n

n n

n n
ν ι ȷ κ

n

ν
n

n
n n+1

∈{1, , , }

and the widely linear QNGD (WL-QNGD) algorithm, given by [25]

∑

q

y q

μ
Φ q

q
y y

w x

w w x

=

= Φ( )

= +
∂ ( )

∂
( − )*

n n
aH

n
a

n n

n
a

n
a

ν ι ȷ κ
n
a

ν
n

n
n n+1

∈{1, , , }

where Φ q( )n is a nonlinear function of qn, μ is a positive step-size.
The FC-QNGD algorithm can also be derived on the basis of the four-

channel estimation model. Consider the minimisation of the cost function

J e y Φ q= = − ( )n n n n
NGD 2 2

where

R I I Iq ȷ κw x w x w x w x= [ ] + ı [ ] + [ ] + [ ]n n
H

n n
H

n ȷ ȷ n
H

n κ κ n
H

n1, ı ı, , ,

The maximum change of Jn
NGD occurs when the weight update is collinear

with the conjugate derivative of Jn
NGD [21], so the weights can be updated as

μ Jw w= − ∇η n η n nw, +1 , fc *
NGD

η

where η ȷ κ∈ {1, ı, , } and the derivative is calculated based on the general-
ised HR calculus [22] as

∑ ∑J
e
e

e
e

Φ q
Ψ q

η
w

x∇ =
∂
∂

∂
∂ * = − 1

8
*∂ ( )

∂ [ ]n
ν ι ȷ κ

n

n
ν

n
ν

η n ν ι ȷ κ
n
ν

ν
n

n
nw*

NGD

∈{1, , , }

2

, ∈{1, , , }

−1
η

(18)

Therefore, the weight update is given by

∑μ e
Φ q
Ψ q

ηw w x= + *∂ ( )
∂ [ ]η n η n

ν ȷ κ
n
ν

ν
n

n
n, +1 , fc

∈{1,ı, , }

−1

(19)

where the constant 1
8
in (18) is absorbed into the step-size μfc.

If Φ q( ) is a split quaternion nonlinear function
Φ q Φ q Φ q ȷΦ q κΦ q( ) = ( ) + ı ( ) + ( ) + ( )ȷ κ1 ı , where Φ q( )1 is a real-valued
nonlinear function applied to R q[ ], Φ q( )ı to I q[ ]ı , Φ q( )ȷ to I q[ ]ȷ , and
Φ q( )κ to I q[ ]κ , then the cost function can be written as
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J e= ∑n η ȷ κ η n
NGD

∈{1,ı, , } ,
2 , where e Ψ y Φ q= [ ] − ( )η n n η n, are split errors. The

conjugate derivative of Jn
NGD is derived as

J
J
e

e
e

Φ q
Ψ q

η
w

x∇ =
∂
∂

∂
∂ * = − 1

2
∂ ( )
∂ [ ]n

n

η n

η n

η n
η n

η n

n
nw*

NGD
NGD

,

,

,
,

−1
η

(20)

and the weights are updated as

μ J μ e
Φ q
Ψ q

ηw w w x= − ∇ = +
∂ ( )
∂ [ ]η n η n n η n η n

η n

n
nw, +1 , fc *

NGD
, fc ,

−1
η (21)

where the constant 1
2
in (20) is absorbed into the step-size μfc.

The FC-QNGD weight update is obviously less complicated than the
WL-QNGD weight update. When the desired signal obeys the strictly
linear model, a single sub-channel is sufficient for optimal estimation,
yielding a more efficient single-channel QNGD (SC-QNGD) algorithm.

5. Performance of FC-QLMS

The performance of the four-channel estimation with the FC-QLMS
algorithm is next compared with existing QLMS algorithms.

5.1. Equivalence of the FC-QLMS and WL-QLMS

Recently proposed QLMS algorithms include the strictly linear
quaternion least mean square (SL-QLMS) algorithm [23]

y

μ y y

h x

h h x

=

= + ( − )*
n n

H
n

n n n n n+1 (22)

and the widely linear quaternion least mean square (WL-QLMS)
algorithm [22]

y

μ y y

w x

w w x

=

= + ( − )*
n n

aH
n
a

n
a

n
a

n
a

n n+1 (23)

where μ is a positive step-size.
Let R I I IΨ[·] ∈ { [·], [·], [·], [·]}ȷ κı , then the four components of the

FC-QLMS estimate have a unified form given by

R R

Ψ y Ψ Ψ μ e η μ e η

Ψ μ e e

w x w x x x

w x x x x x

[ ] = [ ] = [( + + ⋯ + ) ]

= [ ] + ( [ ] + ⋯ + [ ] )
n η k

H
n η

H
η

H
η n n

H
n

η
H

n
H

n η n
H

n η n

, ,0 fc ,0 0 fc , −1 −1

,0 fc 0 ,0 −1 , −1

where η = 1 when RΨ[·] = [·], η = ı when IΨ[·] = [·]ı , η ȷ= when
IΨ[·] = [·]ȷ , η κ= when IΨ[·] = [·]κ . Similarly, the components of the

WL-QLMS estimate are represented as

R R

Ψ y Ψ Ψ Ψ Ψ

Ψ μe μe

Ψ μe μe

Ψ μe μe

Ψ μe μe

Ψ

μ Ψ e Ψ e

h x g x u x v x

h x x x

g x x x

u x x x
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x x x x

[ ] = [ ] + [ ] + [ ] + [ ]

= [( + + ⋯ + ) ]
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+ [( + + ⋯ + ) ]
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+ 4 ( [ ] [ ] + ⋯ + [ ] [ ])
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n
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H
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H
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0 0 0 −1 −1

0 0 0
ı

−1 −1
ı ı

0 0 0 −1 −1

0 0 0 −1 −1

0 0
ı

0 0

0 0 −1 −1

Remark 1. From the above two formulas, the estimates of FC-QLMS
and WL-QLMS are identical if μ μ= 4fc , and the initial values of

estimated weights satisfy h g u v= = =̂0 0 0 0, Rw h= 4 [ ]1,0 0 ,

Iw h= 4ı [ ]ı,0 ı 0 , Iȷw h= 4 [ ]ȷ ȷ,0 0 , Iκw h= 4 [ ]κ κ,0 0 . This indicates that the
WL-QLMS can be replaced with the FC-QLMS without performance
degradation.

5.2. Transient performance

For the FC-QLMS algorithm, the weight error vector in channel η at

the n-th iteration is defined as w w w≜ −͠ η n η η n, , , so that the estimation

error in channel η becomes e Ψ υw x= [ + ]͠η n η n
H

n n, , , and the weight error
vector at the next iteration can be expressed as

μ e ηw w x= −͠ ͠η n η n η n n, +1 , fc ,
−1

(24)

which yields
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Upon applying the statistical expectation operator, we obtain
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, +1
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,
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, ,
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, +1
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, ,

,

, +1
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ι ȷ

κ

ι ȷ

κ

ι ȷ

κ

ι ȷ

κ (25)

the solution to which is dependent on second-order statistics of x. It is
useful to discuss the following three special cases prior to considering
the general case.

5.2.1. -proper signal
If x is -proper, the three complementary covariances vanish, and

the four weight error vectors obey the same recursion form:

⎛
⎝⎜

⎞
⎠⎟E μ Ew I C w{ } = − 1

4
{ }͠ ͠η n η nxx, +1 fc ,

(26)

The equivalence between the evolution of the four weight vectors is a
consequence of the four components of x being uncorrelated and with
the same variance. The weight error vectors converge if all the
eigenvalues of the matrix μI C( − )xx

1
4 fc are within (−1, 1), that is,

μ
λ

0 < < 8
fc

max

where λmax is the maximum eigenvalue of Cxx.
According to the expression for the SL-QLMS algorithm in (22), the

weight error vector recursion of SL-QLMS is given by

E μ Eh I C h{ } = ( − ) { }∼ ∼
n xx n+1 (27)

Remark 2. For an -proper quaternion signal x, the ratio between the
convergence rate of the FC-QLMS and the SL-QLMS is

μ
μ4
fc . If μ μ= 4fc ,

these two algorithms exhibit identical weight error evolution, which is
illustrated in Fig. 2 showing the averaged weight trajectories along the
error surfaces while estimating a moving average (MA) process.

5.2.2. η-improper signal
For a η-improper quaternion signal x, we shall use η′ and η″ to

denote any other two imaginary units among ȷ κı, , . Then the weight
error vector recursions in (25) reduce to
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Observe that the evolutions of w͠1 and w͠η are the same, while w ′
͠ η and w ″

͠ η
also exhibit identical evolution, and the paths of the four weight errors
are symmetric about the weight error path of SL-QLMS in (27). This is
illustrated in Fig. 3 showing the averaged weight trajectories in the
estimation of an MA process. Fig. 3 can also be interpreted by the
Cayley–Dickson construction of ı-improper quaternion vectors. A
ı-improper x can be expressed as ȷx z z= +1 2 where z1 and z2 are
proper complex vectors defined in the plane spanned by {1, ı} [26], that
is, the real and imaginary parts of each of z1 and z2 are uncorrelated and
with the same variance, so that channel 1 and i or channel j and k follow
the same path, similarly to the -proper case in (26). On the other hand,
if the two complex vectors z1 and z2 are related or with different powers,
this results in the opposite directions of the two pairs of paths.

5.2.3. General signal with uncorrelated components
If the four components of x are uncorrelated, the covariance and

complementary covariance matrices of x can be expressed as

C C C C C
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where R REC x x= { [ ] [ ] }T
1 , I IEC x x= { [ ] [ ] }T

ı ı ı , I IEC x x= { [ ] [ ] }ȷ ȷ ȷ
T , and

I IEC x x= { [ ] [ ] }κ κ κ
T . The corresponding weight error vectors are given by
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and converge if all the eigenvalues of the matrices μI C( − )fc 1 , μI C( − )fc ı ,
μI C( − )ȷfc , and μI C( − )κfc are within (−1, 1), that is,

μ
σ

0 < < 2
fc

max

where σmax is the maximum eigenvalue of C1, Cı, Cȷ and Cκ .

5.2.4. General improper signal
Eq. (25) indicates that for a general improper quaternion signal, x,

the four weight error vectors obey different recursions which are
symmetric about the weight error path of SL-QLMS, as shown in Fig. 4.

5.3. Steady-state performance

To quantify the steady-state performance of the FC-QLMS algo-
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Fig. 2. Averaged weight trajectories for the estimation of a strictly linear MA(1) process
driven by -proper white Gaussian noise.
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Fig. 3. Averaged weight trajectories for the estimation of a strictly linear MA(1) process
driven by ı-improper white Gaussian noise.
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rithm, we next analyse the MSE in the estimation of a desired signal in
(6). The estimation error of FC-QLMS is given by

e e e ȷe κe e υ= + ı + + = +n n n ȷ n κ n n
a

n1, ı, , ,

where en
a is the a priori error defined as

R I I Ie ȷ κw x w x w x w x= [ ] + ı [ ] + [ ] + [ ]͠ ͠ ͠ ͠n
a

n
H

n ȷ n
H

n ȷ ȷ n
H

n κ κ n
H

n1, ı , , ,

The steady-state MSE is therefore

E e E e σMSE = lim {| | } = lim {| | } +
n

n
n

n
a

υ
→∞

2

→∞

2 2

where E elim [| | ]
n

n
a

→∞

2 is the excess MSE (EMSE) resulting from a mismatch

between the estimated value and true value of the system weight vector.
The MSEs in the four channels shall be analysed separately. The a
priori and a posteriori errors in channel η are defined as
e Ψ w x= [ ]͠η n

a
η n
H

n, , and e Ψ w x= [ ]͠η n
p

η n
H

n, , +1 , which are related as

e e μ ex= −η n
p

η n
a

n η n, , fc
2

, (28)

Combining (24) and (28) yields

e
η

e
ηw

x
x w

x
x+ = +͠ ͠η n

η n
a

n
n η n

η n
p

n
n, +1

,
2

−1
,

,
2

−1

(29)

Upon evaluating the energies on both sides of (29) and applying the
statistical expectation operator, we arrive at [27]
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2 at the steady state (as n → ∞), we obtain

the steady-state condition
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As the noise υ is independent of the input signal x, expression (30)
simplifies into

E e μ E e μ E Ψ υx C2 {( ) } = {( ) } + Tr[ ] { [ ] }η n
a

η n
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n nxx,
2
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2 2
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Considering e e= ∑ ( )n
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η ȷ κ η n
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=1,ı, , ,
2, we next obtain
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n υxx
2
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2 2
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For a small step-size μfc, the term μ E e x{ }n
a

nfc
2 2 is negligible

compared to μ σCTr[ ] υxxfc
2, and thus the EMSE and MSE are given by
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However, for a large step-size μfc, the term μ E e x{ }n
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2 2 is not

negligible. Assuming that xn
2 is independent of en

a 2, the EMSE and
MSE in this case are given by
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As shown in the Appendix, the steady-state MSE of the WL-QLMS is
given by

μ σ μ

σ
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MSE = (2 Tr[ ] + 1) (for a small )
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υ
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Remark 3. The FC-QLMS and WL-QLMS algorithms have the same
steady-state MSE if μ μ= 4fc .

5.4. Computational complexity

Compared with existing widely linear and strictly quaternion
estimation approaches, the proposed four-channel estimation techni-
que requires less computation cost. This is because the proposed
estimation algorithm avoids the quaternion-quaternion addition in
(9) and (10) while the proposed weight update rule in (14) replaces
quaternion-quaternion multiplications, which cost 8 real multiplica-
tions and 28 real additions per multiplication [28], with real-quater-
nion multiplications costing only 4 real multiplications per multi-
plication. Table 1 and Fig. 5 compare the FC-QLMS and SC-QLMS
algorithms with the existing QLMS algorithms in terms of the number
of real-valued operations required per iteration. Observe that the
FC-QLMS and SC-QLMS require only about half the number of
multiplications and an eighth of the number of additions, as compared
to the WL-QLMS and the SL-QLMS. Therefore, the four-channel
estimation framework allows for an efficient formulation of WL-
QLMS and SL-QLMS in the form of FC-QLMS and SC-QLMS.
Although the RC-WL-QLMS [13] and the MLMS [14] also have such
low computational complexity, they result in a loss of physical meaning
inherent in the quaternion domain.
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Fig. 4. Averaged weight trajectories for the estimation of a strictly linear MA(1) process
driven by general improper white Gaussian noise.
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5.5. Adaptive step-size

Standard adaptive algorithms might experience degraded conver-
gence when processing non-stationary signals with large dynamical
ranges. This degradation can be circumvented by algorithms that
adaptively optimise the step-sizes. For the FC-QLMS algorithm, the
four step-sizes in the four channels can be optimised separately as μ1,
μı, μȷ and μκ . We shall use the Barzilai–Borwein method [29] to obtain
the optimal step-sizes at the n-th iteration, as



μ μ η ȷ κs Γ= arg min‖ − ‖ ∈ {1, ı, , }η n
μ

η n η n,
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By setting μs Γ 0∇ ‖ − ‖ =μ η n η n η n, , , 2
2

η n,
, we obtain the optimal step-size
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2
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(31)

which is equivalent to a unit step-size after data normalisation [30].

6. Simulations

All estimation algorithms discussed were evaluated by simulations
over synthetic and real-world signals. The performance index in the
form of normalised MSE (NMSE) was calculated at each iteration
through averaging the error power normalised by the signal power
from 100 independent trials, to yield

∑ y y

y
NMSE = 1

100
−

n
l

n
l

n
l

n
l

=1

100 ( ) ( ) 2

( ) 2

where yn
l( ) is the desired signal and yn

l( ) the estimate at the l-th trial. For
a fair comparison, according to the theoretical analysis in Section 5, the
values of step-sizes of the four-channel and single-channel algorithms
proposed in the paper were set to four times those of their widely linear
and strictly linear counterparts, and the weight vectors in the algo-
rithms were initialised to zero vectors.

6.1. QLMS

The QLMS algorithms were implemented to identify a strictly linear
MA system, given by

y b x b x b x b x υ= + + + +n n n n n n0 1 −1 2 −2 3 −3 (32)

and the widely linear MA system

y b x b x b x b x υ= + + + +n n n n
ȷ

n
κ

n0 1 −1
ı

2 −2 3 −3 (33)

where b b b b, , , ∈0 1 2 3 , the signal x and noise υ were -proper
quaternion-valued white Gaussian data, and the signal-to-noise ratio
(SNR) was 10 dB. Fig. 6a illustrates that when estimating the strictly
linear MA system in (32), FC-QLMS, WL-QLMS, SC-QLMS, and SL-
QLMS behaved identically, while the FC-QLMS and SC-QLMS with an
adaptive step-size (31), which are referred to as the adaptive FC-QLMS
and adaptive SC-QLMS, exhibited faster convergence. Fig. 6b shows
that when estimating the widely linear MA system in (33), the FC-
QLMS and the WL-QLMS behaved identically, and had a much smaller
steady-state NMSE than the SL-QLMS, while the adaptive FC-QLMS
converged fastest. Table 2 compares the steady-state EMSE and MSE of
the FC-QLMS and WL-QLMS when estimating the strictly linear MA
process in (32). The match between the theoretical and experimental
values, and the equivalence between the results of the two algorithms,
support the quantitative analysis in Section 5.3.

These QLMS algorithms were also used to forecast quaternion-
valued wind data, the four components of which contain the wind
speed in the north-south, east-west, and vertical directions, and the
temperature. As shown in Fig. 7, the FC-QLMS and the WL-QLMS
behaved identically, while the adaptive FC-QLMS had the fastest
convergence.

6.2. QRLS

Figs. 8 and 9 illustrate the performance of QRLS algorithms in the
identification of the MA systems in (32) and (33), and in the forecasting
of quaternion-valued wind data. The FC-QRLS behaved identically to

Table 1
The number of real-valued operations per iteration for the QLMS algorithms, for an
adaptive filter of length L. The number of real-valued operations for quaternion-
quaternion multiplications is based on [28].

Algorithm Real multiplications Real additions

Estimation of widely linear systems
Proposed: FC-QLMS L32 + 4 L32
WL-QLMS [22] L64 + 4 L256
RC-WL-QLMS [13] L32 + 4 L32
MLMS [14] L32 + 4 L32

Estimation of strictly linear systems
Proposed: SC-QLMS L8 + 1 L8
SL-QLMS [23] L16 + 4 L64

Fig. 5. The number of real-valued operations per iteration for the QLMS algorithms, for
an adaptive filter of length L. The number of real-valued operations for quaternion-
quaternion multiplications is based on [28].
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the WL-QRLS for both synthetic and wind data, while when identifying
the strictly linear MA system, the SC-QRLS achieved equivalent
performance.

6.3. QNGD

The QNGD algorithms were employed in a one-step ahead predic-
tion of the 4-D Saito's chaotic circuit data, which is governed by four
state variables x y x y, , ,1 1 2 2 and five parameters, as [31]
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where τ is the time constant of the chaotic circuit. The parameter values
were chosen as γ α α β β= 1.3, = 7.5, = 15, = 0.16, = 0.0971 2 1 2 . Fig. 10
shows that the FC-QNGD and WL-QNGD behaved identically and
outperformed the SL-QNGD.

7. Conclusion

We have introduced a four-channel linear model for quaternion

signal estimation and have proposed the corresponding adaptive
MMSE estimation algorithms, referred to as the FC-QLMS, FC-QRLS
and FC-QNGD. These have been shown to be cost-effective alternatives
to existing widely linear algorithms, while exhibiting identical perfor-
mances. The proposed individual estimation of real and imaginary
quaternion components has maintained the four degrees of freedom
necessary for widely linear estimation, together with providing physical
insight into quaternion estimation and enhanced flexibility through the
estimation in each channel being controlled independently. In this way,
the computational complexity has been dramatically reduced, while
maintaining the performance of the original algorithms. Simulation
studies on synthetic and real-world signals support the analysis. The
proposed four-channel linear model is suitable for a wide range of
applications in widely linear processing of quaternion signals, such as
for widely linear series expansions [32].

Fig. 6. NMSE curves of the QLMS algorithms for the estimation of MA systems.

Table 2
The MSE and EMSE of the FC-QLMS and WL-QLMS for the identification of a strictly
linear MA system.

Index συ
2 MSEfc EMSEfc MSEwl EMSEwl

Simulations 0.1 0.140 0.040 0.140 0.040
Theory 0.1 0.132 0.032 0.132 0.032

Fig. 8. NMSE curves of the QRLS algorithms for the estimation of MA systems.

Fig. 9. NMSE curves of the QRLS algorithms for the wind forecasting.

Fig. 7. NMSE curves of the QLMS algorithms for the wind forecasting.
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Appendix A. Steady-state performance of WL-QLMS

For the desired signal model (6), the system weight vector can be expressed in the augmented form as w h g u v= [ , , , ]a T T T T T
, and represents the

optimal Wiener solution. The estimation error is then given by

e y e υw x= − = +n n n
aH

n
a

n
a

n

where en
a is the a priori error defined as e w x= ͠n

a
n
aH

n
a where w w w= −͠ n

a a
n
a is the weight error vector. The steady-state MSE is then given by

E e E e σMSE = lim [| ] = lim [| | ] +
n

n
n

n
a

υwl
→∞

2

→∞

2 2

where E elim [ ]n n
a

→∞
2 is the EMSE. The weight error vectors at the n-th and the n( + 1)-th iteration are related by

μ ew w x= − *͠ ͠n
a

n
a

n
a

n+1 (A.1)

from which we obtain

e e μe x= − 4n
p

n
a

n n
2 (A.2)

where e w x= ͠n
p

n
aH

n+1 is the a posteriori error. Combining (A.1) and (A.2) yields

Fig. 10. Performance of the QNGD algorithms for the one-step ahead prediction of Saito's chaotic circuit data.
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Evaluating the energies on both sides of (A.3) and applying the statistical expectation operator yields [27]
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2 2 at the steady state (as n → ∞), we obtain the steady-state condition as
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As the noise υ is independent of x, Eq. (A.4) simplifies into

E e μE e μ σx C[ ] = 2 [ ] + 2 Tr[ ]n
a

n n
a

υxx
2 2 2 2

For a small step-size μ, the term μE ex2 { }n n
a2 2 is negligible compared to μ σC2 Tr[ ] υxx

2, so that the EMSE is given by

E e μ σCEMSE = lim {| | } = 2 Tr[ ]
n

n
a
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2 2

and the steady-state MSE becomes
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However, for a large step-size μ, the term μE ex2 { }n n
a2 2 is not negligible. Assuming that xn

2 is independent of en
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