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Multiple-Model Adaptive Estimation for 3-D and
4-D Signals: A Widely Linear Quaternion Approach

Min Xiang , Member, IEEE, Bruno Scalzo Dees, and Danilo P. Mandic, Fellow, IEEE

Abstract— Quaternion state estimation techniques have been
used in various applications, yet they are only suitable for
dynamical systems represented by a single known model. In order
to deal with model uncertainty, this paper proposes a class
of widely linear quaternion multiple-model adaptive estimation
(WL-QMMAE) algorithms based on widely linear quaternion
Kalman filters and Bayesian inference. The augmented second-
order quaternion statistics is employed to capture complete
second-order statistical information in improper quaternion
signals. Within the WL-QMMAE framework, a widely linear
quaternion interacting multiple-model algorithm is proposed to
track time-variant model uncertainty, while a widely linear
quaternion static multiple-model algorithm is proposed for time-
invariant model uncertainty. A performance analysis of the
proposed algorithms shows that, as expected, the WL-QMMAE
reduces to semiwidely linear QMMAE for Cη-improper signals
and further reduces to strictly linear QMMAE for proper
signals. Simulation results indicate that for improper signals,
the proposed WL-QMMAE algorithms exhibit an enhanced per-
formance over their strictly linear counterparts. The effectiveness
of the proposed recursive performance analysis algorithm is also
validated.

Index Terms— Interacting multiple-model (IMM) algorithm,
multiple-model adaptive estimation (MMAE), static multiple-
model (SMM) algorithm, quaternion Kalman filters, quaternion
noncircularity, widely linear processing.

I. INTRODUCTION

QUATERNIONS have been traditionally used in aerospace
engineering and computer graphics in order to model

3-D rotations and orientations, as their division algebra rec-
tifies numerical problems (accumulation of error and gimbal
lock) associated with vector algebras [1]. The recently intro-
duced HR and generalised HR calculi [2], [3] and augmented
quaternion statistics [4], [5] have triggered a resurgence
of research on quaternion-valued signal processing, such as
quaternion filters and quaternion neural networks [6]–[12].
This owes to a compact model of mutual information between
data channels provided by quaternions and the inherent phys-
ically meaningful interpretation for a number of 3-D and 4-
D phenomena. These developments have enabled quaternions
to find applications in communications, motion tracking, and
biomedical signal processing [13]–[16].
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The second-order statistical properties of quaternion-valued
signals are conventionally characterized by their covariance.
However, signal processing techniques that utilize the stan-
dard covariance are optimal only for estimating second-order
circular (proper) quaternion signals. Advances in quaternion
statistics have established that both of the covariance and the
three complementary covariances are necessary to characterize
the complete augmented second-order statistics of second-
order noncircular (improper) quaternion signals [4], [5].
Subsequently, widely linear processing algorithms exploiting
the complementary covariances, in addition to the standard
covariance, have been proposed, owing to their generic nature.
For C

η-improper quaternion signals, the widely linear process-
ing reduces to semiwidely linear processing. For example,
widely linear state estimation has been used for widely linear
quaternion dynamical systems with improper noise [17]–[19],
and it reduces to semiwidely linear estimation for semiwidely
linear systems with Cη-improper noise [20].

The existing quaternion state estimation methods are suit-
able for dynamical systems represented by a single known
model. In reality, there is often considerable uncertainty
about the system model. An effective method for cir-
cumventing the system uncertainty in the real domain is
through multiple-model adaptive estimation (MMAE), which
can be seen as an application of the mixture of experts’
methodology [21], [22] to the state estimation problem. A real-
valued MMAE algorithm typically consists of a bank of
filters based on multiple models that represent possible system
behavior patterns, referred to as modes, and a fusion algorithm
that fuses the state estimates of different filters to form
the overall estimate. The fusion algorithm may be based
on Bayesian inference [23] or neural network training [24].
The existing MMAE algorithms are divided into two cate-
gories: static multiple-model (SMM) algorithms and interact-
ing multiple-model (IMM) algorithms. The former are valid
for time-invariant system uncertainty and the latter are effec-
tive for time-variant system uncertainty. Both have been exten-
sively studied and used in practical applications, such as target
tracking, fault diagnosis, and intelligent control [25]–[28].
The theoretical performance analysis of the MMAE algo-
rithms, especially the IMM, however, is challenging. Recent
research on this issue has been focused on recursive
approaches, including the hybrid conditional averaging tech-
nique for predicting the mean square error (MSE) [29]–[31]
and the posterior Cramer–Rao lower bound technique for com-
puting the lower performance bound [32]. These approaches
have been shown to be more computationally efficient than
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the traditionally used Monte Carlo (MC) simulation method.
For a number of practical engineering problems for which

MMAE of 3-D and 4-D signals can be used, such as maneu-
vering target tracking in the 3-D space, quaternion-valued
MMAE (QMMAE) is a compact way to account for mutual
information between the dimensions while preserving the
inherent physical meaning of the signals. However, QMMAE
algorithms for hybrid systems have not yet been investi-
gated in the literature, although real-valued MMAE algorithms
have been recently extended to the complex domain [33].
The QMMAE is a nontrivial extension of the real-valued
MMAE, since the augmented second-order quaternion statis-
tics must be incorporated to deal with improper quaternion
signals. This paper proposes a class of widely linear QMMAE
(WL-QMMAE) algorithms based on the widely linear quater-
nion Kalman filter (WL-QKF). This approach exploits com-
plete second-order statistics of improper quaternion signals.
For time-variant system uncertainty, we propose a widely
linear quaternion IMM (WL-QIMM) algorithm and a recur-
sive algorithm for the analysis of its performance. For time-
invariant system uncertainty, we show that the WL-QIMM can
simplify to a widely linear quaternion SMM (WL-QSMM)
algorithm. In a similar spirit, we show that for semiwidely
linear systems with C

η-improper noise, the WL-QMMAE
reduces to the semiwidely linear QMMAE (SWL-QMMAE),
while for strictly linear systems with H-proper noise, the
WL-QMMAE reduces to the strictly linear QMMAE
(SL-QMMAE). For rigor, we have also proved the convergence
of WL-QSMM.

The rest of this paper is organized as follows. Section II
provides an overview of quaternions and quaternion state
estimation. Section III presents the WL-QMMAE framework,
which yields the WL-QIMM and WL-QSMM algorithms.
The performance analysis of these algorithms is provided in
Section III. Numerical simulations for the proposed algorithms
are presented in Section IV. Section V concludes this paper.

Throughout this paper, we use boldface capital letters to
denote matrices, A, boldface lowercase letters for vectors,
a, and italic letters for scalar quantities, a. Superscripts (·)T ,
(·)∗, and (·)H denote the transpose, conjugate, and Hermitian
(i.e., transpose and conjugate) operators, respectively. The
symbol E{·} denotes the statistical expectation operator.

II. BACKGROUND

A. Quaternion Algebra

The quaternion domain H is a 4-D vector space over the real
field R, spanned by the basis {1, ı, j, κ}. A random quaternion
variable x ∈ H consists of a real part R[·] and an imaginary
part I[·], which comprises three imaginary components, so that

x = R[x] + I[x] = R[x] + Iı [x]ı + Ij [x]j + Iκ [x]κ (1)

where R[x],Iı [x],Ij [x], and Iκ [x] are real variables and ı, j ,
and κ are imaginary units with the properties

ı2 = j2 = κ2 = −1, ıj = −j ı = κ

jκ = −κj = ı, κı = −ıκ = j.

The conjugate of x is defined as

x∗ = R[x] − I[x] = R[x] − Iı [x]ı − Ij [x]j − Iκ [x]κ.

The modulus of x is then

|x | =
�

R[x]2 + Iı [x]2 + Ij [x]2 + Iκ [x]2

and the product of two quaternions x, y ∈ H is given by

xy = R[x]R[y] − I[x] · I[y] + R[x]I[y]
+ R[y]I[x] + I[x] × I[y]

where “·” denotes the scalar product and “×” denotes the
vector product. The presence of the vector product causes
noncommutativity of the quaternion product, that is, xy �= yx .
The quaternion product has the following properties:

|xy| = |x ||y|, x−1 = x∗

|x |2
(xy)−1 = y−1x−1, (xy)∗ = y∗x∗.

A quaternion variable x is called a pure quaternion if
R[x] = 0. A quaternion variable x is called a unit quaternion
if |x | = 1.

Another important notion is the quaternion involution [34],
which defines a self-inverse mapping, analogous to the com-
plex conjugate [35]. The general involution of the quaternion
variable x is defined as xα � −αxα, which represents the
rotation of the vector part of x by π about a unit pure
quaternion α. The quaternion involutions have the property:
(xα)α = x . Accordingly, define xα∗ � (xα)∗ = (x∗)α.
The three special cases of involutions about the ı , j , and κ
imaginary axes are given by

xı = −ı xı = R[x] + Iı [x]ı − Ij [x]j − Iκ [x]κ
xj = −j xj = R[x] − Iı [x]ı + Ij [x]j − Iκ [x]κ
xκ = −κxκ = R[x] − Iı [x]ı − Ij [x]j + Iκ [x]κ. (2)

B. Statistics and Estimation of Quaternion Signals

The set of involutions in (2), together with the orig-
inal quaternion, forms the most frequently used basis
for augmented quaternion statistics, which is at the
core of the recently proposed widely linear processing
methodology [4], [5]. The augmented second-order statistics
of a zero-mean random quaternion column vector x is
exploited by the ı -, j -, and κ- covariance matrices, Cxxη �
E{(x − E{x})(x − E{x})ηH }, η ∈ {ı, j, κ}, which are referred
to as complementary covariance matrices, together with the
standard Hermitian covariance matrix, Cxx � E{(x − E{x})
(x − E{x})H }. These covariances, taken together, enable the
characterization of the quaternion impropriety (second-order
noncircularity) which arises from the degree of correlation
and/or power imbalance between the imaginary components
relative to the real component. For the nth variable in x, xn ,
the impropriety coefficients defined as ρη � |Cxn xη

n
/Cxn xn |,

η = ı, j, κ , measure the degree of correlation between xn

and each of its involutions [36], [37]. Note ρη ∈ [0, 1].
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Benefiting from the information contained in the complemen-
tary covariances, widely linear processing with the augmented
signal vector

xa � [xT , xıT , xjT , xκT ]T (3)

and semiwidely linear processing with the semiaugmented
signal vector xb � [xT , xηT ]T , where η ∈ {ı, j, κ}, achieve
a better performance for improper quaternion signals com-
pared to traditional strictly linear processing with x [38]. The
covariance matrices of xa and xb can be represented by

Cxaxa � E{(xa − E{xa})(xa − E{xa})H }

=

⎡
⎢⎢⎣

Cxx Cxxı Cxxj Cxxκ

Cı
xxı Cı

xx Cı
xxκ Cı

xxj

Cj
xxj Cj

xxκ Cj
xx Cj

xxı

Cκ
xxκ Cκ

xxj Cκ
xxı Cκ

xx

⎤
⎥⎥⎦

Cxbxb � E{(xb − E{xb})(xb − E{xb})H }
=

	
Cxx Cxxη

Cη
xxη Cη

xx.




The four degrees of freedom in the quaternion domain
allow for different notions of properness: H-properness,
Rη-properness, and Cη-properness.

Definition 1 (Properness of a Random Quaternion Vector):
A random quaternion vector x is H-proper if it is uncorrelated
with its involutions xı , xj and xκ , so that Cxxı = Cxxj =
Cxxκ = 0; x is Rη-proper if it is only uncorrelated with the
involution xη, so that only Cxxη among the three comple-
mentary covariances vanishes; x is Cη-improper if it is only
correlated with the involution xη, so that all complementary
covariances except Cxxη vanish; otherwise, x is generally
improper.

Based on the above augmented second-order statis-
tics, a generic quaternion multivariate Gaussian distribu-
tion (QMGD) for improper random vectors can be expressed
as xa ∼ N (μa, Cxaxa ), where μa � E{xa}, with a probability
density function given by [5]

f (xa|μa, Ca) =
4N exp

�
− 1

2 (xa − μa)H C−1
xaxa(xa − μa)

�

π2N
√|Cxaxa |

(4)

where |Cxaxa | is the determinant of Cxaxa .
The augmented form of a quaternion random vector x

can be written as xa = [xT , xηT , xβT , xζT ]T for distinct
η, β, ζ ∈ {ı, j, κ}. Note that the ordering does not change the
probability density in (4). If x is Cη-improper, then Cxaxa =
bdiag(Cxbxb , Cβ

xbxb), and (4) becomes

f (xb|μb, Cb) = 4N exp

 − (xb − μb)H C−1

xbxb(x
b − μb)

�

π2N |Cxbxb |
(5)

where μb � E{xb} and the distribution can be expressed as
xb ∼ N (μb, Cxbxb).

If x is H-proper, then Cxaxa = bdiag(Cxx, Cı
xx, Cj

xx, Cκ
xx),

and (4) becomes

f (x|μ, C) = 4N exp{−2(x − μ)H C−1
xx (x − μ)}

π2N |Cxx|2 (6)

where μ � E{x} and the distribution can be expressed as
x ∼ N (μ, Cxx).

To deal with improper quaternion signals, the WL-QKF
based on the widely linear state-space model

xa
n = Fa

nxa
n−1 + wa

n

za
n = Ha

nxa
n + va

n (7)

has been proposed [17]. It is optimal for widely linear quater-
nion dynamical systems with general (proper or improper)
noise [17]. In (7), n denotes the time instant, and xa

n , za
n , wa

n ,
and va

n are the augmented forms of the state variable vector xn ,
the observation vector zn , the state noise vector wn , and the
observation noise vector vn , as in (3), while the state transition
and observation matrices, Fa

n and Ha
n , have the following

structure:

Fa
n =

⎡
⎢⎢⎣

Fn Fı,n Fj,n Fκ,n

Fı
ı,n Fı

n Fı
κ,n Fı

j,n
Fj

j,n Fj
κ,n Fj

n Fj
ı,n

Fκ
κ,n Fκ

j,n Fκ
ı,n Fκ

n

⎤
⎥⎥⎦

Ha
n =

⎡
⎢⎢⎣

Hn Hı,n Hj,n Hκ,n

Hı
ı,n Hı

n Hı
κ,n Hı

j,n
Hj

j,n Hj
κ,n Hj

n Hj
ı,n

Hκ
κ,n Hκ

j,n Hκ
ı,n Hκ

n

⎤
⎥⎥⎦

where Fn, Fı,n , Fj,n, Fκ,n, Hn, Hı,n , Hj,n , and Hκ,n are quater-
nion matrices.

Observe that under the condition of C
η-improperness, the

widely linear model in (7) reduces to the semiwidely linear
one given by

xb
n = Fb

nxb
n−1 + wb

n

zb
n = Hb

nxb
n + vb

n (8)

where the state transition and observation matrices, Fb
n and Hb

n ,
have the following structure:

Fb
n =

	
Fn Fη,n

Fη
η,n Fη

n



, Hb

n =
	

Hn Hη,n

Hη
η,n Hη

n .




The semiwidely linear quaternion state estimation based on
the semiwidely linear model in (8) is therefore optimal when
the true system model is semiwidely linear with Cη-improper
wn and vn [39].

Furthermore, under the condition of H-properness,
the widely linear model in (7) reduces to the strictly linear
one given by

xn = Fnxn−1 + wn

zn = Hnxn + vn. (9)

The strictly linear quaternion state estimation based on the
strictly linear model in (9) is optimal only when the true sys-
tem model is strictly linear and wn and vn are H-proper [40].
This conclusion is an extension of the analysis result for
complex Kalman filters [41] to the quaternion domain.
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III. QUATERNION MMAE

If a quaternion dynamical system is represented by the
widely linear model in (7), but the state transition matrix, the
observation matrix, and the properties of the noises are uncer-
tain over time, a quaternion Kalman filter based on a single
assumed model will suffer a great performance loss. In such
cases, we may employ L potential models as candidates for
the unknown system model. We can assume that the system
model is always included in the L candidate models, each of
which is represented by

xa
n = Fa[l]

n xa
n−1 + wa[l]

n

za
n = Ha[l]

n xa
n + va[l]

n (10)

where l ∈ {1, 2, . . . , L} is the model index, wa[l]
n and va[l]

n

are zero-mean improper state and observation noise, and
Fa[l]

n and Ha[l]
n are state transition and observation matrices

corresponding to model l. We refer to the system behavior
pattern as a mode. For example, if the system can be rep-
resented by model l at time n, we say that the system is in
mode l at time n. Upon implementing L WL-QKFs, we can
obtain their augmented state estimates and error covariances
given by

x̂a[l]
n|n = E



xa

n

��Za
n, τ [l]

n

�

Pa[l]
n|n = E


�
xa

n − x̂a[l]
n|n

��
xa

n − x̂a[l]
n|n

�H ��Za
n, τ [l]

n

�
.

By fusing the L estimates, the overall augmented estimate can
be obtained as

E


xa

n

��Za
n

� =
L�

l=1

p
�
τ [l]

n

��Za
n

�
x̂a[l]

n|n (11)

while the overall augmented error covariance becomes

E

�

xa
n − E



xa

n

��Za
n

���
xa

n − E


xa

n

��Za
n

��H ��Za
n, τ [l]

n

�

=
L�

l=1

p
�
τ [l]

n

��Za
n

��
Pa[l]

n|n + �
x̂a[l]

n|n − x̂a
n|n

��
x̂a[l]

n|n − x̂a
n|n

�H �

=
L�

l=1

p
�
τ [l]

n

��Za
n

��
Pa[l]

n|n + x̂a[l]
n|n

�
x̂a[l]

n|n
�H � − x̂a

n|n
�
x̂a

n|n
�H (12)

where Za
n � [zaT

1 , . . . , zaT
n ]T = [ZaT

n−1, zaT
n ]T is the set of

measurements and τ [l]
n is the event that the system is in mode l

at time instant n. Using Bayes’ law, we next obtain

p
�
τ [l]

n |Za
n

�

= p
�
za

n

��Za
n−1, τ

[l]
n

�
p
�
τ

[l]
n

��Za
n−1

�
�L

i=1 p
�
za

n

��Za
n−1, τ

[i]
n

�
p
�
τ

[i]
n

��Za
n−1

�

= p
�
za

n

��Za
n−1, τ

[l]
n

��L
i=1 p

�
τ [i]

n−1

��Za
n−1

�
p
�
τ [l]

n
��τ [i]

n−1

�
�L

i=1 p
�
za

n

��Za
n−1, τ

[i]
n

��L
j=1 p

�
τ

[ j ]
n−1

��Za
n−1

�
p
�
τ [i]

n
��τ [ j ]

n−1

�

(13)

where p(za
n |Za

n−1, τ
[l]
n ) is the likelihood function of τ

[l]
n . Note

that p(za
n|Za

n−1, τ
[l]
n ) = p(ra[l]

n |τ [l]
n ), where

ra[l]
n � za

n − H[l]
n x̂a[l]

n|n−1 (14)

is referred to as the augmented residual vector. Following
the principle commonly used for real-valued and complex-
valued MMAE, we assume the augmented residual vector

to be normally distributed, with ra[l]
n ∼ N (0, Sa[l]

n ), where

Sa[l]
n is the augmented covariance matrix of ra[l]

n . Denote

the likelihood function p(za
n |Za

n−1, τ
[l]
n ) by L[l]

n . L[l]
n can be

computed as

L[l]
n = f

�
ra[l]

n

��0, Sa[l]
n

�
. (15)

Note that Sa[l]
n is an intermediate result in the WL-QKF

algorithm corresponding to model l. The estimated mode at
time n is therefore given by arg max

l
p(τ

[l]
n |Za

n). The above

constitutes the main framework of the proposed WL-QMMAE.
This framework is flexible and therefore can incorporate other
approaches for nonlinear estimation. For example, the para-
meters within the selected models may be a function of the
order of the signal subspace or the number of noncircular
signals in the subspace [42]. The fusion in (11) and (12) is
a data-driven approach and can be viewed as a more direct
and adaptive way of implementing the multistep generalized
likelihood ratio test with the threshold being unit [42]. The
conditional probabilities of the various hypotheses modeled
in the filters can be based on criteria other than the like-
lihood. For instance, in order to select the model that best
fits the observation data while avoiding overfitting, the like-
lihood function can be replaced with exp(−ITCl), where

ITCl = − ln[ f (ra[l]
n |0, Sa[l]

n )] + αO[l] is the information-
theoretic criterion of model l, with αO[l] a penalty term
that penalizes complicated models to avoid overfitting, α the
penalty factor dependent on the chosen criterion, and O[l] the
order of model l [43].

A. WL-QIMM

To understand the WL-QMMAE, the probability
p(τ [l]

n |Za
n−1) in (13) needs to be explained further. For

systems with a time-varying mode, we make the standard
assumption that the mode transition is governed by a
first-order Markov chain, that is

p
�
τ [l]

n

��τ [i]
n−1

� = π [il] ∀i, l ∈ {1, 2, . . . , L} (16)

where π [il] is the Markov transition probability from mode i
to mode l. Upon incorporating this assumption and imposing
a reinitialization step at the beginning of the estimation to
couple the L WL-QKFs, the WL-MMAE framework reduces
to a practical WL-QIMM algorithm, an extension of the real-
valued IMM [44]. An iteration of this recursive algorithm at
time n can be described as follows and can be shown in the
schematic in Fig. 1.

Step 1 (Reinitialization): For l = 1, . . . , L, i = 1, . . . , L,
the probability of the system is in mode i at time (n−1) given
that the system is in mode l at time n, which is computed as

γ [li]
n � p

�
τ [i]

n−1

��τ [l]
n , Za

n−1

� = π [il]μ[i]
n−1�L

j=1 π [ j l]μ[ j ]
n−1

where μ[i]
n−1 termed mode probability is the estimate of

p(τ
[l]
n−1|Za

n−1) in the previous iteration. For l = 1, . . . , L,
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Fig. 1. Block diagram of the WL-QIMM algorithm.

compute the augmented initial state of filter l based on Bayes’
law as

xa[l]
0n = E



xa

n−1

��τ [l]
n , Za

n−1

� =
L�

i=1

x̂a[i]
n−1|n−1γ

[li]
n (17)

and the augmented initial error covariance of filter l as

Pa[l]
0n

=
L�

i=1

γ [li]
n

�
Pa[i]

n−1|n−1 + �
x[l]

0n − x̂a[i]
n−1|n−1

��
x[l]

0n − x̂a[i]
n−1|n−1

�H �

=
L�

i=1

γ [li]
n

�
Pa[i]

n−1|n−1 + x̂a[i]
n−1|n−1

�
x̂a[i]

n−1|n−1

�H � − xa[l]
0n

�
xa[l]

0n

�H
.

(18)

Step 2 (Mode-Conditioned Kalman Filtering): Implement L

WL-QKFs with the initial conditions xa[l]
0n and Pa[l]

0n . Specifi-
cally, for l = 1, . . . , L, compute the predicted augmented state

x̂a[l]
n|n−1 = Fa[l]

n xa[l]
0n

predicted augmented error covariance

Pa[l]
n|n−1 = Fa[l]

n Pa[l]
0n

�
Fa[l]

n

�H + Qa[l]
n

augmented residual

ra[l]
n = za

n − H[l]
n x̂a[l]

n|n−1

augmented residual covariance

Sa[l]
n = Ha[l]

n Pa[l]
n|n−1

�
Ha[l]

n

�H + Ra[l]
n

filter gain

Ka[l]
n = Pa[l]

n|n−1

�
Ha[l]

n

�H �
Sa[l]

n

�−1

updated augmented state

x̂a[l]
n|n = x̂a[l]

n|n−1 + Ka[l]
n ra[l]

n

updated augmented error covariance

Pa[l]
n|n = Pa[l]

n|n−1 − Ka[l]
n Ha[l]

n Pa[l]
n|n−1

likelihood for mode l as in (15).
Step 3 (Combination): For l = 1, . . . , L, compute the

estimate of p(τ [l]
n |Za

n), denoted by μ[l]
n , as

μ[l]
n = L[l]

n
�L

i=1 π [il]μ[i]
n−1�L

i=1 L[i]
n

�L
j=1 π [ j i]μ[ j ]

n−1

(19)

according to (13) and (16). Based on (11), compute the
overall augmented state estimate as a weighted sum of the
L augmented state estimates from the L WL-QKFs, that is

x̂a
n|n =

L�

l=1

μ[l]
n x̂a[l]

n|n . (20)

Based on (12), compute the overall augmented error covari-
ance as

Pa
n|n =

L�

l=1

μ[l]
n

�
Pa[l]

n|n + �
x̂a[l]

n|n − x̂a
n|n

��
x̂a[l]

n|n − x̂a
n|n

�H �

=
L�

l=1

μ[l]
n

�
Pa[l]

n|n + x̂a[l]
n|n

�
x̂a[l]

n|n
�H � − x̂a

n|n
�
x̂a

n|n
�H

. (21)

B. Performance Analysis of WL-QIMM

The stability condition of the real-valued IMM algo-
rithm proved in [45] is readily extended to the WL-QIMM,
that is, if the system is uniformly controllable and uni-
formly observable, the covariances of the mode-conditioned
WL-QKFs are uniformly bounded from above and below.
Furthermore, to efficiently evaluate the estimation performance
of WL-QIMM, this section extends the hybrid conditional
averaging algorithms for the performance analysis of real-
valued IMM [29], [30] to the quaternion domain. The resulting
recursive algorithm, without recourse to multiple trials, is more
computationally efficient than the commonly used MC simu-
lation method. Note that owing to the widely linear nature of
the WL-QIMM algorithm, the performance analysis algorithm
must also be in a widely linear form, since the augmented
second-order quaternion statistics must be incorporated.

The performance of WL-QIMM depends on the operating
scenario, so that we must analyze the average performance of
WL-QIMM in a definite operating scenario S in which the
system can be represented by a widely linear quaternion state
model in the form of (7). Compared with (10), the model in (7)
is general in the sense that Fa

n , Ha
n , wa

n , and va
n may or may not

belong to the candidate model sets used by the L WL-QKFs.
We define x̄ � E{x|S} to denote the mean of the quater-
nion random vector x in a scenario S, while Cov(x, y) �
E{(x − x̄)(y − ȳ)H |S} denotes the cross covariance of two
quaternion random vectors x and y in S. Based on these
definitions, we can derive a recursive algorithm that estimates
the MSE of WL-QIMM without generating observation data in
multiple trials. This is achieved by the conditional expectation
operation mentioned earlier, through which the randomness
of the error covariance due to the noise is averaged out. This
recursive algorithm is similar to the performance analysis algo-
rithm for real-valued IMM [30], which originated from [29],
but is different in two respects: 1) the augmented forms of the
quaternion variables are employed and 2) the generic QMGD
with the probability density function in (4) is incorporated
into the evaluation of the average likelihood functions and the
average mode probabilities. Next, we describe an iteration of
the proposed performance analysis algorithm at time n, which
is shown in Fig. 2, but for space concerns, omit the derivation,
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Fig. 2. Block diagram of the performance analysis algorithm for WL-QIMM.

owing to its generic extension from the real-valued algorithm.
For more details, we refer the reader to [29] and [30].

Step 1 (Reinitialization): Compute the means of the
initial conditions of the mode-conditioned WL-QKFs. For
l = 1, . . . , L, i = 1, . . . , L, compute the mean of the mixing
probability as

γ̄ [li]
n ≈ π [il]μ̄[i]

n−1�L
j=1 π [ j l]μ̄[ j ]

n−1

. (22)

For l = 1, . . . , L, compute the mean of the initial condition
of filter l as

x̄[l]
0n =

L�

i=1

γ̄ [li]
n x̄[i]

n−1|n−1

P̄a[l]
0n =

L�

i=1

γ̄ [li]
n

�
P̄a[i]

n−1|n−1+�
x̄a[l]

0n −x̄a[i]
n−1|n−1

�

× �
x̄a[l]

0n − x̄a[i]
n−1|n−1

�H �

=
L�

i=1

γ̄ [li]
n

�
P̄a[i]

n−1|n−1 + x̄a[i]
n−1|n−1

�
x̄a[i]

n−1|n−1

�H �

− x̄a[l]
0n

�
x̄a[l]

0n

�H
.

Step 2 (Mode-Conditioned Kalman Filtering): Compute the
means of residuals and estimates of the mode-conditioned
WL-QKFs. For l = 1, . . . , L, define the estimation error of

filter l as e[l]
n � xn − x̂[l]

n|n , and the error of the initial state of

filter l as e[l]
0n � xn−1 − x[l]

0n . Their means are related by

ē[l]
0n ≈

L�

i=1

γ̄ [li]
n ē[i]

n−1.

For l = 1, . . . , L, define the model error as

�a[l] � Ha
nFa

n − Ha[l]
n Fa[l]

n

and compute

r̄a[l]
n = Ha[l]

n Fa[l]
n ēa[l]

0n + �a[l]x̄a
n−1

P̄a[l]
n|n−1 = Fa[l]

n P̄a[l]
0n

�
Fa[l]

n

�H + Qa[l]
n

S̄a[l]
n = Ha[l]

n P̄a[l]
n|n−1

�
Ha[l]

n

�H + Ra[l]
n

K̄a[l]
n = P̄a[l]

n|n−1

�
Ha[l]

n

�H �
S̄a[l]

n

�−1

x̄[l]
n|n = Fa[l]

n xa[l]
0n + K̄a[l]

n r̄a[l]
n

P̄a[l]
n|n = P̄a[l]

n|n−1 − K̄a[l]
n Ha[l]

n P̄a[l]
n|n−1

ēa[l]
n = �

I − K̄a[l]
n Ha[l]

n

�
Fa[l]

n ēa[l]
0n

+ �
Fa

n − Fa[l]
n − K̄a[l]

n �a[l]�x̄a
n−1

where I is the identity matrix. Update x̄a
n = Fa

n x̄a
n−1.

Step 3 (Cross-Covariance Analysis): Compute the cross
covariances of augmented residuals and augmented estimation
errors of the mode-conditioned WL-QKFs. For l = 1, . . . , L,
i = 1, . . . , L, compute the cross covariances of augmented
residuals as

Cov
�
ra[l]

n , ra[i]
n

�

= Ha
nQa

nHa H
n + �a[l]Cov

�
xa

n−1, xa
n−1

�
(�a[l])H

+ Ha[l]
n Fa[l]

n Cov
�
ea[l]

0n , ea[i]
0n

��
Ha[i]

n Fa[i]
n

�H

+ Ha[l]
n Fa[l]

n Cov
�
ea[l]

0n , xa
n−1

�
(�a[i])H

+ �a[l]Cov
�
ea[i]

0n , xa
n−1

�H �
Ha[i]

n Fa[i]
n

�H + Ra
n

and the cross covariances of augmented estimation errors as

Cov
�
ea[l]

n , ea[i]
n

�

= �
I − K̄a[l]

n Ha[l]
n

�
Fa[l]Cov

�
ea[l]

0n , ea[i]
0n

�

× �
Fa[i] − K̄a[i]

n Ha[i]Fa[i]�H

+ �
Fa − Fa[l] − K̄a[l]

n �a[l]�Cov
�
xa

n−1, xa
n−1

�

× �
Fa − Fa[i] − K̄a[i]

n �a[i]�H

+ �
Fa[l] − K̄a[l]

n Ha[l]Fa[l]�Cov
�
ea[l]

0n , xa
n−1

�

× �
Fa − Fa[i] − K̄a[i]

n �a[i]�H

+ �
Fa − Fa[l] − K̄a[l]

n �a[l]�Cov
�
ea[i]

0n , xa
n−1

�H

× �
Fa[i] − K̄a[i]

n Ha[i]Fa[i]�H

+ �
I − K̄a[l]

n Ha�Qa
n

�
I − K̄a[i]

n Ha�H + K̄a[l]
n Ra

n

�
K̄a[i]

n

�H

where

Cov
�
ea[l]

0n , xa
n−1

� ≈
L�

i=1

γ̄ [li]
n Cov

�
ea[i]

n−1, xa
n−1

�
(23)

Cov
�
ea[l]

0n , ea[i]
0n

� ≈
L�

k=1

L�

j=1

γ̄ [lk]
n γ̄

[i j ]
n Cov

�
ea[k]

n−1, ea[ j ]
n−1

�
. (24)

For l = 1, . . . , L, update

Cov
�
ea[l]

n , xa
n

� = �
I − K̄a[l]

n Ha[l]
n

�
Fa[l]

n Cov
�
ea[l]

0n , xa
n−1

�
Fa H

n

+ �
Fa

n − Fa[l]
n − K̄a[l]

n �a[l]�Cov
�
xa

n−1, xa
n−1

�

× Fa H
n + �

I − K̄a[l]
n Ha

n

�
Qa

n

Cov
�
xa

n, xa
n

� = Fa
nCov

�
xa

n−1, xa
n−1

�
Fa H

n + Qa
n.
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Step 4 (Combination): For l = 1, . . . , L, employing the fact

that ra[l]
n ∼ N (r̄a[l]

n , Va[l]
n ), where Va[l]

n = Cov(ra[l]
n , ra[l]

n ), we
can compute the mean of likelihood function as

L̄[l]
n =

�

HN
L[l]

n f
�
ra[l]

n

��r̄a[l]
n , Va[l]

n

�
dr[l]

n

=
�

HN
f
�
ra[l]

n

��0, S̄a[l]
n

�
f
�
ra[l]

n

��r̄a[l]
n , Va[l]

n

�
dr[l]

n

=
�

2

π

�2N
����S̄a[l]

n
�−1 + �

Va[l]
n

�−1�−1��0.5

��S̄a[l]
n

��0.5��Va[l]
n

��0.5

× exp

 − 0.5

�
r̄a[l]

n

�H �
Va[l]

n + S̄a[l]
n

�−1r̄a[l]
n

�
(25)

and the mean of the mode probability as

μ̄[l]
n =

�

HN
μ[l]

n f
�
ra[l]

n

��r̄a[l]
n , Va[l]

n

�
dr[l]

n

=
�

HN

�L
i=1 π [il]μ[i]

n−1 f
�
ra

n

��0, S̄a[l]
n

�
f
�
ra

n

��r̄a[l]
n , Va[l]

n
�

�L
i=1

�L
j=1 π [ j i]μ[ j ]

n−1 f
�
ra

n

��0, S̄a[i]
n

� drn

= L̄[l]
n

L�

i=1

π [il]μ̄[i]
n−1 ×

�

HN

× f
�
ra

n

���Va[l]
n

�
S̄a[l]

n
�−1+I

�−1r̄a[l]
n ,

��
S̄a[l]

n
�−1+�

Va[l]
n

�−1�−1�
�L

i=1
�L

j=1 π [ j i]μ̄[ j ]
n−1 f

�
ra

n

��0, S̄a[i]
n

� drn

(26)

Then, compute the covariance of the overall augmented esti-
mation error as

E

�

xa
n − x̂a

n|n
��

xa
n − x̂a

n|n
�H ��S�

≈
L�

l=1

L�

i=1

μ̄[l]
n μ̄[i]

n

�
Cov

�
ea[l]

n , ea[i]
n

� + ēa[l]
n

�
ēa[i]

n

�H �
(27)

and the MSE of the overall estimate is given by

E{(xn − x̂n|n)H (xn − x̂n|n)|S}
= 1

4
Tr

�
E


�
xa

n − x̂a
n|n

��
xa

n − x̂a
n|n

�H ��S��
. (28)

Remark 1: In order to derive a closed-form solution, we have
applied the approximations in (22)–(24) and (27) based on the
zero correlation assumption between the involved variables.

C. WL-QSMM

If the system mode is time invariant, then

π [il] =
�

1 l = i

0 l �= i

so that (19) simplifies to

μ[l]
n = L[l]

n μ[l]
n−1�L

i=1 L[i]
n μ[i]

n−1

(29)

and the reinitialization step can be proven to be unneces-
sary. In this case, the WL-QIMM algorithm reduces to the
WL-QSMM algorithm, for which each iteration includes the
following two steps.

Step 1 (Mode-Conditioned Kalman Filtering): Implement
L WL-QKFs with the initial states and covariances being the

estimates obtained in the previous iteration. This step is the
same as Step 2 of the WL-QIMM except that x[l]

0n and Pa[l]
0n

in (17) and (18) are replaced with x̂a[l]
n−1|n−1 and Pa[l]

n−1|n−1 for
l = 1, . . . , L.

Step 2 (Combination): Compute the mode probabilities
according to (15) and (29). The overall augmented esti-
mate and overall augmented error covariance are given
by (20) and (21), respectively.

The performance analysis algorithm proposed
in Section III-B can also be applied to the WL-QSMM

algorithm by replacing ēa[l]
0n , x̄[l]

0n , and P̄a[l]
0n with ēa[l]

n−1,

x̄a[l]
n−1|n−1, and P̄a[l]

n−1|n−1, for l = 1, . . . , L.
We next prove that the WL-QSMM algorithm con-

verges to the candidate model closest to the true system
model in the sense of the Kullback–Leibler divergence.
The Kullback–Leibler divergence between N (E{ra

n}, Sa
n) and

N (E{ra[l]
n }, Sa[l]

n ), where ra
n is the augmented residual cor-

responding to the filter that exactly matches the true system
model and Sa

n is its covariance matrix, is defined by

Kl � 1

2
ln

��Sa[l]
n

��
��Sa

n

�� + 1

2
Tr

�
R[�Sa[l]

n

�−1Sa
n] − I4N

�

+ 1

2

�
E
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n

� − E


ra

n

��H �
Sa[l]

n

�−1�
E



ra[l]

n

� − E
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n

��

= 1

2
ln

��Sa[l]
n

��
��Sa

n

�� + 1

2
Tr

�
R

��
Sa[l]

n

�−1
E



ra[l]

n

�
ra[l]

n

�H�� − I
�
.

(30)

The second equality in (30) is based on E{ra
n} = 0 and

E


ra[l]

n

�
ra[l]

n

�H� − E


ra[l]

n

��
E



ra[l]

n

��H = Sa
n

which is a straightforward extension of the analysis result for
real-valued mismatched Kalman filters [46] to the quaternion
domain. Let t = arg minl∈{1,2,...,L} Kl , which is the index of
the candidate model closest to the true system model. For
l �= t , define 
[l]

n � μ[l]
n /μ[t ]

n to obtain


[l]
n



[l]
n−1

= L[l]
n

L[t ]
n

=
����

��Sa[t ]
n

��
��Sa[l]

n
��

× exp
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1
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��
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n
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n
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× exp

�
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2
Tr
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n

�
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n

�H −Sa[l]
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�−1ra[l]
n

�
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n

�H ���

(31)

Applying the statistical expectation operator and the natural
logarithm to (31) yields

ln
�
E




[l]

n

�

[l]

n−1

�� = Kt − Kl < 0

whereby E{
[l]
n /
[l]

n−1} < 1, which indicates that μ[l]
n

decreases to 0 and hence μ
[t ]
n increases to 1 when n → ∞.

This proves the convergence of the WL-QSMM algorithm to
model t .
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Remark 2: Since the Kullback–Leibler divergence in (30)
is nonnegative and is vanishing only when the filter model
exactly matches the true system, the algorithm will converge
to the true system model if the true model belongs to the
candidate model set.

D. SWL-QMMAE and SL-QMMAE

For semiwidely linear quaternion systems with Cη-improper
quaternion Gaussian noise, the above WL-QMMAE algo-
rithms reduce to corresponding SWL-QMMAE algorithms by
replacing the augmented forms of variables with the semiaug-
mented forms. Based on the probability density function in (5),
the likelihood functions in the SWL-QIMM and SWL-QSMM
algorithms are given by

L[l]
n = f

�
rb[l]

n

��0, Sb[l]
n

�
.

For strictly linear quaternion systems with H-proper quater-
nion Gaussian noise, the WL-QMMAE algorithms reduce
to corresponding SL-QMMAE algorithms by replacing the
augmented forms of variables with the original forms. Since
the QMGD is associated with the probability density function
in (6) under this condition, the likelihood functions in the
SL-QIMM and SL-QSMM algorithms become

L[l]
n = f

�
r[l]

n

��0, S[l]
n

�
.

The SL-QMMAE and SWL-QMMAE algorithms can be
seen as reduced-order WL-QMMAE algorithms [47]. There-
fore, they are suboptimal for widely linear quaternion systems
and general improper quaternion noise, and their performance
disadvantages increase with the degree of widely linear nature
of the system and/or the degree of noise impropriety.

IV. SIMULATIONS

A. QIMM Algorithms for Filtering Quaternion Signals

This section presents simulation results for evaluating the
SL-QIMM, SWL-QIMM, and WL-QIMM algorithms and
the corresponding performance analysis algorithms. Since the
linear nature (strictly, semiwidely, or widely linear) of the
involved quaternion system essentially affects the estimation
performance, we employed a strictly linear quaternion hybrid
system, with noise at different levels of impropriety, to study
the impact of impropriety on the estimation performance. The
considered system, which was used in [33], can be represented
by the following 1-D state-space model:

xn = b[l]xn−1 + w[l]
n

zn = c[l]xn + v[l]
n

where l ∈ {1, 2}, b[1] = 0.95, b[2] = 0.85, c[1] = 1,
c[2] = 0.4, and w

[1]
n , w

[2]
n , v

[1]
n , v

[2]
n are proper or improper

quaternion Gaussian noise sequences with the power of 2,
0, 0, and 0 dB. The system mode was 1 from n = 1 to
100 and from n = 200 to 300, and was 2 from n = 100
to 200. In each experiment, 500 MC simulation runs of
the three considered QIMM algorithms were implemented
and the estimation performance was evaluated through the
averaged MSE. The initial mode probabilities were set to

Fig. 3. Learning curves of the three QIMM algorithms when the state and
observation noise are improper. (a) Probability of the time-varying mode 1.
(b) MSE of the algorithms considered.

μ[1]
0 = 0.1 and μ[2]

0 = 0.9. The proposed performance analysis
algorithms were also implemented for comparison with the
MC results.

Fig. 3 shows the simulation results of the three QIMM
algorithms for improper state noise with impropriety coeffi-
cients ρı = ρj = ρκ = 0.2 and improper observation noise
with ρı = ρj = ρκ = 0.9. Fig. 3(a) shows the average
probabilities of the hypothesizing mode 1 over 500 MC runs.
Observe that the WL-QIMM has converged faster to the true
mode than the other two algorithms, while the SL-QIMM has
exhibited the slowest convergence. As shown in Fig. 3(b),
the WL-QIMM has achieved the smallest MSE, while the
SL-QSMM has attained the largest MSE; the MSE com-
puted from the proposed performance analysis algorithm for
WL-QIMM has matched the MSE averaged over the MC runs
with 12% difference on average. The error arose from the
approximations in (22)–(24), (27), and the integral calculation
in (26). The 500 MC runs of WL-QIMM took 79 min, while
the proposed performance analysis algorithm took only 2 min
on a standard PC. Obviously, this computation efficiency
advantage of the performance analysis algorithm will increase
with the data size.

Fig. 4 shows the simulation results of the three QIMM
algorithms for C

ı -improper state and observation noise.
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Fig. 4. Learning curves of the three QIMM algorithms when the state and
observation noise are C

ı -improper. (a) Probability of the time-varying mode 1.
(b) MSE of the algorithms considered.

Fig. 4(a) shows the average probabilities of the hypothesiz-
ing mode 1 over 500 MC runs, and Fig. 4(b) shows the
MSEs of the three QIMM algorithms. As shown in Fig. 4,
the WL-QIMM and SWL-QIMM have exhibited the same
performance, achieving a lower MSE than the SL-QIMM, and
the MSE computed from the performance analysis algorithm
for WL-QIMM has matched the MSE averaged over the MC
runs with 16% difference on average.

Fig. 5 shows the simulation results of the three QIMM
algorithms for H-proper state and observation noise. Fig. 5(a)
shows the average probabilities of the hypothesizing mode 1
over the 500 MC simulation runs, and Fig. 5(b) shows the
MSEs of the three QIMM algorithms. As shown in Fig. 5,
the three QIMM algorithms had the same performance for H-
proper noise, and the MSE computed from the performance
analysis algorithm for WL-QIMM has matched the MSE
averaged over the MC runs with 14% difference on average.

Fig. 6 shows the average MSEs of the three QIMM algo-
rithms over the whole simulation period. Fig. 6(a) shows the
results for H-proper observation noise and improper state noise
with varying impropriety coefficients. For simplicity, the three
impropriety coefficients of the state noise were set to be equal,
that is, ρı = ρj = ρκ = ρ. Fig. 6(b) shows the results for
H-proper state noise and improper observation noise with

Fig. 5. Learning curves of the three QIMM algorithms when the state and
observation noise are H-proper. (a) Probability of the time-varying mode 1.
(b) MSE of the algorithms considered.

various impropriety coefficients. The three impropriety coeffi-
cients of the observation noise were also equal. Fig. 6 shows
that for the H-proper noise, the three QIMM algorithms have
exhibited the same MSE, while for the improper noise, the
WL-QIMM has achieved the smallest MSE and the SL-QIMM
has attained the largest MSE. As the impropriety degree
of the noise is increased, the MSE difference between the
three algorithms is also increased. Interestingly, the MSE of
SL-QIMM was increased with the impropriety coefficient of
state noise but it was unaffected by the impropriety coefficient
of observation noise, while the MSEs of SWL-QIMM and
WL-QIMM were decreased with the impropriety coefficients
of state and observation noise. The MSE estimated from the
performance analysis algorithm for WL-QIMM shows the
same trend as the MC simulation result with about 10%
difference in value.

B. QSMM Algorithms for Filtering Quaternion Signals

This section presents the simulation results for evaluating
the SL-QSMM, SWL-QSMM, and WL-QSMM algorithms
and the performance analysis algorithm for WL-QSMM. The
simulation settings were the same as that for the QIMM
algorithms in Section IV-A, except that the system mode
was constantly 1. Fig. 7 shows the simulation results of
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Fig. 6. MC simulated MSEs of the three QIMM algorithms and the MSE
computed from the proposed performance analysis algorithm (analysis) for
WL-QIMM, as a function of the impropriety coefficient of noise. (a) Improper
state noise and H-proper observation noise. (b) H-proper state noise and
improper observation noise.

the three QSMM algorithms for improper state noise with
ρı = ρj = ρκ = 0.2 and improper observation noise
with ρı = ρj = ρκ = 0.9. Fig. 7(a) shows the average
probabilities of the hypothesizing mode 1 over 500 MC runs.
Observe that the WL-QSMM has converged faster to the true
mode than the other two algorithms, and the SL-QSMM has
exhibited the slowest convergence. As shown in Fig. 7(b), the
WL-QSMM has achieved the smallest MSE, while the
SL-QSMM has attained the largest MSE; the MSE computed
from the performance analysis algorithm for WL-QSMM
has matched the MSE averaged over the MC runs with
5% difference. The performance analysis algorithm for the
WL-QSMM was more accurate than the analysis algorithm
for WL-QIMM simulated in Section IV-A because of the less
complicated mechanism of the QSMM algorithm compared
with the QIMM algorithm.

Fig. 8 shows the average MSEs of the three QSMM
algorithms over the whole simulation period. Fig. 8(a) shows
the results for H-proper observation noise and improper state
noise over a range of impropriety coefficients. For simplicity,
the three impropriety coefficients of the state noise were set to
be equal. Fig. 8(b) shows the results for H-proper state noise

Fig. 7. Learning curves of the three QSMM algorithms when the state and
observation noise are improper. (a) Probability of the time-varying mode 1.
(b) MSE of the algorithms considered.

and improper observation noise with various impropriety coef-
ficients. The three impropriety coefficients of the observation
noise were also equal. Fig. 8 shows that for H-proper noise,
the three QSMM algorithms have exhibited the same MSE,
while for the improper noise, the WL-QSMM has achieved
the smallest MSE and the SL-QSMM has attained the largest
MSE. As the impropriety degree of the noise is increased,
the MSE difference between the three algorithms is increased.
It is also noticeable that the MSEs of WL-QSMM and
SWL-QSMM was decreased with the impropriety coefficients
of state and observation noise, and the MSE of SL-QSMM was
unaffected by the impropriety coefficients. The MSE estimated
from the performance analysis algorithm for WL-QSMM has
matched the MC simulation result.

C. QIMM Algorithms for 3-D Target Tracking

The effectiveness of the proposed WL-QIMM algorithm is
next illustrated in the context of target tracking in a 3-D space.
The task is to track the position and velocity of a moving target
using the measurements of its position. Denote the position
by (Xn, Yn, Zn), velocity by (Ẋn, Ẏn, Żn), and acceleration
by (Ẍn, Ÿn, Z̈n). Consider two quaternion-valued kinematic
models. The first one is the constant velocity model given
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Fig. 8. MC simulated MSEs of the three QSMM algorithms and the MSE
computed from the proposed performance analysis algorithm (analysis) for
WL-QSMM, as a function of the impropriety coefficient of noise. (a) Improper
state noise and H-proper observation noise. (b) H-proper state noise and
improper observation noise.

by [25]

xn =
	

1 �t
0 1



xn−1 + wn

with the measurement given by

zn = [ 1 0 ]xn + vn

where xn = [ı Xn + jYn + κ Zn; ı Ẋn + j Ẏn + κ Żn], �t is the
sampling interval, wn is a zero-mean pure quaternion Gaussian
noise vector, and vn is zero-mean pure quaternion Gaussian
noise. The covariance matrices of state noise are

Cww =
⎡
⎢⎣

1

3
�t3 1

2
�t2

1

2
�t2 �t

⎤
⎥⎦ σ 2

w

Cwwı = ρwı Cww, Cwwj = ρwj Cww, Cwwκ = ρwκCww

where σ 2
w indicates the power of state noise, and

ρwı , ρwj , ρwk ∈ R are the impropriety coefficients satisfying
ρwı + ρwj + ρwk = −1. The covariances of observation
noise are Cvv = σ 2

v , Cvv ı = ρv ı Cvv , Cvvj = ρvjCvv , and
Cvvκ = ρvκCvv , where σ 2

v indicates the power of observation
noise, and ρv ı , ρvj , ρvk ∈ R are the impropriety coefficients
satisfying ρv ı + ρvj + ρvk = −1.

Fig. 9. Learning curves of the three QIMM algorithms for target tracking
in a 3-D space. (a) Probability of the time-varying mode 1. (b) MSE of the
position and velocity estimation.

The second model is the constant acceleration model given
by [25]

xn =
⎡
⎢⎣

1 �t
1

2
�t2

0 1 �t
0 0 1

⎤
⎥⎦ xn−1 + wn

with the measurement given by

zn = [ 1 0 0 ]xn + vn

where

xn =
⎡
⎣

ı Xn + jYn + κ Zn

ı Ẋn + j Ẏn + κ Żn

ı Ẍn + j Ÿn + κ Z̈n

⎤
⎦ .

The pure quaternion Gaussian noises wn and vn in this model
have the same properties as those in the constant velocity
model, except for

Cww =

⎡
⎢⎢⎢⎢⎢⎣

1

20
�t5 1

8
�t4 1

6
�t3

1

8
�t4 1

3
�t3 1

2
�t2

1

6
�t3 1

2
�t2 dt

⎤
⎥⎥⎥⎥⎥⎦

σ 2
w.
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In our simulation, �t = 0.1 s, and the target initially had
a position of (0, 0, 0), velocity of (1, 2, 0.5), and vanishing
acceleration. The target has followed the constant velocity
model with σ 2

w = 0.01 (mode 1) for 150 s before following
the constant acceleration model with σ 2

w = 1 (mode 2) for
another 150 s. During the whole 300 s, ρwı = ρwj = ρwk =
−1/3, ρv ı = ρvj = −25/27, ρvk = 23/27, and σ 2

v = 1. In the
estimation algorithms, the initial estimate of the state vector
was set to [2ı +2.1j +2.2κ, 0.1ı +0.2j+0.3κ, 0.05ı +0.05j+
0.05κ], and the initial mode probabilities were μ

[1]
0 = 0.1 and

μ
[2]
0 = 0.9. Fig. 9 shows the MC simulated performance of

the three considered QIMM algorithms. As shown in Fig. 9(a),
the probability of mode 1 is increased to 0.9 in the first 150 s
and decreased toward 0.2 in the second 150 s. Fig. 9(b) shows
that the WL-QIMM has achieved a lower MSE of the position
and velocity estimation compared with the SL-QIMM and
SWL-QIMM.

V. CONCLUSION

We have proposed a class of WL-QMMAE algorithms
which employ the augmented second-order quaternion statis-
tics to cater for both proper and improper quaternion Gaussian
signals. The WL-QIMM algorithm for tracking time-variant
system mode uncertainty and the WL-QSMM algorithm for
tracking time-invariant system mode uncertainty have been
proposed based on the Bayesian inference. A recursive algo-
rithm has been derived to efficiently assess the performance
of WL-QIMM, and a convergence proof of WL-QSMM
has been provided. We have shown that, as expected, the
WL-QMMAE reduces to the semiwidely linear form for
C

η-improper signals and further reduces to the strictly linear
form for H-proper signals. The effectiveness of the proposed
algorithms has been verified by numerical simulations over
3-D and 4-D signal processing case studies. Although the
presented algorithms in this paper use Kalman filters for linear
state estimation, the proposed WL-QMMAE framework is
flexible and therefore can incorporate other types of filters and
neural networks for nonlinear estimation [48]. The proposed
algorithms can also be modified to the widely linear quaternion
counterpart of the Gaussian sum filtering algorithms for non-
Gaussian signals [49], [50].
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