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ABSTRACT

The quaternion kernel least squares algorithm (QKLS) is in-
troduced as a generic kernel framework for the estimation
of multivariate quaternion valued signals. This is achieved
based on the concepts of quaternion inner product and quater-
nion positive definiteness, allowing us to define quaternion
kernel regression. Next, the least squares solution is derived
using the recently introducedHR calculus. We also show that
QKLS is a generic extension of standard kernel least squares,
and their equivalence is established for real valued kernels.
The superiority of the quaternion-valued linear kernel with
respect to its real-valued counterpart is illustrated for both
synthetic and real-world prediction applications, in terms of
accuracy and robustness to overfitting.

Index Terms— Kernel least squares, quaternion estima-
tion, quaternion kernels, body motion tracking.

1. INTRODUCTION

Kernel algorithms for estimation paradigms have attracted
considerable attention over the last decade due to their en-
hanced function approximation ability [1–5]. The generic
nature of kernel algorithms has also allowed for complex-
valued extensions of real-valued kernels algorithms [6–8];
these inherit the advantages offered by the complex divi-
sion algebra in general bivariate estimation applications. On
the other hand, the recent progress in sensor technology
and data acquisition systems has brought to light three- and
four-dimensional sensor signals, in areas including wind pre-
diction, econometric signal estimation and spatial motion
tracking. These require appropriate learning strategies (in
particular kernel algorithms) to match the multidimensional
data natures. For three- and four-dimensional data, a natural
extension of the existing real- and complex-valued kernel
algorithms is a quaternion-valued kernel approach, in which
the algorithm operates in a (left) vector space built upon the
scalar input-output domain.

The quaternion set H is a four-dimensional vector space
over the real field R. A quaternion q ∈ H has one real and
three imaginary parts, respectively denoted by qa, qb, qc, qd ∈
R, and can therefore be expressed as q = qa+iqb+jqc+kqd,
where i, j, k are the imaginary units. The properties of the

quaternion normed division algebra provide physically mean-
ingful representation and more accurate rotation and orienta-
tion modelling of 3D objects than real vectors. Thus, quater-
nion valued algorithms exhibit more degrees of freedom than
their real-valued counterparts, and are particularly suited for
rotation and orientation applications as well as unified 3D
and 4D modelling [9, 10]. Our aim is to show that kernel
regression also benefits from the enhanced dimensionality of
quaternion valued kernels, and their inherent ability to both
represent inter-dependence between signal components and
to model highly coupled multidimensional data features.

Existing research on the development of kernels for
quaternion signals only considers real-valued kernels [11,12].
The design of quaternion-valued kernel will have to address:
(i) the existence of quaternion valued reproducing kernel
Hilbert spaces (QRKHS) and (ii) quaternion analyticity. We
focus on the existence of QRKHS and its relationship with
positive definite kernels based on extensions of both the
Riesz representation theorem [13] and the Moore-Aronaszajn
theorem [14] for quaternion left Hilbert spaces, as these (to-
gether with the Mercer’s theorem for quaternion kernels [15])
guarantee theoretical consistency, physical meaning of pa-
rameters, and ease of implementation of quaternion kernel
algorithms. The issue of quaternion analyticity arises in the
usual formulation of quaternion estimation algorithms, which
is based on a real-valued cost function of quaternion variable
that is dependent of both the error and its Hermitian (·)H ,
J = eHe. However, the derivative of a real function of
quaternion variable is not defined in the standard Cauchy-
Riemann-Fueter sense [16], and we need to resort to the HR

calculus [17].

In this work, we first revisit the kernel least squares (KLS)
[18–20] with a regularised cost function. We then gener-
alise the real- and complex-valued RKHS framework by in-
troducing the conditions for the existence and uniqueness of
quaternion-valued RKHS and positive definite kernels. These
represent the basis for the development of the optimal least
squares solution for both real- and quaternion-valued kernels.
Finally, we validate the proposed QKLS by comparing real-
and quaternion-valued kernels, on the prediction of synthetic
autoregressive processes and real-world 3D inertial body sen-
sor signals.
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2. THE KERNEL LEAST SQUARES ALGORITHM

Consider the sets X ⊆ R
n, D ⊆ R and the mapping:

f : x ∈ X 7−→ y = f(x) ∈ D. (1)

Kernel regression algorithms [3–8,19–21] aim to approximate
y = f(x) by mapping the input x onto a reproducing kernel
Hilbert space (RKHS) H according to x 7−→ φ(x), in or-
der to yield the estimate of the function f(·) through a linear
transformation in the feature space, that is

ŷ = 〈φ(x), ω〉 , (2)

where ω ∈ H is a weighting factor and the RKHS H is re-
ferred to as the feature space.

According to the signal subspace principle (SSP) [2], the
weighting factor can be projected onto the sample feature
space HS = span{φ(xi)}, where {xi}i=1,...,N are referred
to as support vectors. Therefore, if φ is chosen to be an
expansion function of the reproducing kernel of H, that is
K(xa,xb) = φT (xa)φ(xb), the kernel estimate can be ex-
pressed via the kernel trick [4] as

ŷ =

N
∑

i=1

αiK(xi,x). (3)

Using the set of observations {yj}j=1,...,N corresponding
to the support vectors, the set of optimal least squares param-
eters a = [α1, ..., αN ]T can be found via the minimisation of
the regularised cost function

J =
1

2

N
∑

j=1

(

yj −
N
∑

i=1

αiK(xi,xj)

)2

+
ρ

2

N
∑

i=1

α2
i , (4)

where ρ is the regularisation parameter. This concept is also
known as kernel ridge regression [20].

Setting ∂J
∂a

= 0 and solving for a, we obtain the Wiener
solution

a = (KKT + ρI)−1Ky, (5)

where y = [y1, ..., yN ]T , I is the identity matrix, and K is the
kernel matrix evaluated over the set of support vectors given
by Kij = K(xi,xj).

The estimate (3), where a is optimally obtained from (5),
is the kernel extension of least squares regression and has
been discussed in [18–21]. We will refer to this algorithm
as the kernel least squares (KLS) algorithm.

3. QUATERNION KERNEL LEAST SQUARES

Recent results show clear advantage of kernel regression algo-
rithms for complex-valued signals [6–8], in which the kernels
themselves are also complex-valued. We next show that the

quaternion-valued kernel will inherit this property by conti-
nuity, since both the real, complex and quaternion domain
are normed division algebras. Our approach is introduced
through rigorously addressing: 1) the existence of quater-
nion reproducing kernel Hilbert spaces, and 2) quaternion cal-
culus, in which derivatives of conjugate quantities must be
treated carefully. These issues are closely related to the non-
commutative multiplication of the quaternion ring, the defini-
tion of left vector spaces and the properties of quaternion left
Hilbert spaces.

Recall that for the real and complex valued kernels:

• The Riesz representation theorem [13] implies that for
an evaluation functional Lx, x ∈ X, defined over an
RKHS H, there exists a unique element Kx such that
Lx(f) = 〈f,Kx〉, whereK(x,y) = Kx(y) is referred
to as the reproducing kernel of H.

• Conversely, the Moore-Aronszajn theorem [14] states
that for any given positive definite kernel K , there is a
unique RKHS H having K as reproducing kernel.

These results provide the existence of a unique RKHS for
any designed positive definite kernel, simplifying the require-
ments for a suitable RKHS into the design of a positive defi-
nite kernel.

3.1. Quaternion reproducing kernel Hilbert spaces

We now introduce a theoretical basis for some key concepts
in quaternion kernel learning. As the quaternion division ring
H is non-commutative, in this work we only consider the left
vector spaces [22] to define both the quaternion Hilbert space
and quaternion RKHS.

Definition 1 (Quaternion left Hilbert space). A complete left
vector space H is called a quaternion left Hilbert space if
there exists a quaternion-valued function 〈·, ·〉 : H×H −→ H

with the following properties:

1. 〈x,y〉 = 〈y,x〉∗

2. 〈px+ qy, z〉 = p 〈x, z〉 + q 〈y, z〉

3. 〈x, py + qz〉 = 〈x,y〉 p∗ + 〈x, z〉 q∗

4. 〈x,x〉 ≥ 0 and 〈x,x〉 = 0 ⇐⇒ x = 0.

We refer to the function 〈·, ·〉 as the inner product, for
which the induced norm is ‖x‖ =

√

〈x,x〉, while the con-
jugate operator is defined as (·)∗.

Definition 2 (Quaternion reproducing kernel Hilbert space).
A quaternion left Hilbert space H = {ψ : X → H} is a
quaternion reproducing kernel Hilbert space (QRKHS) if the
linear functionalLx(ψ) = ψ(x) is bounded ∀ψ ∈ H,x ∈ X.
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We next define positive definiteness for quaternion valued
kernels, a necessary requirement to establish the relationship
between quaternion kernels and QRKHSs.

Definition 3 (Positive definite kernel). A Hermitian kernelK ,
i.e. K(x,y) = K∗(y,x), is positive definite on X iff for any
square-integrable function θ : X → H, θ 6= 0, we have

∫

X

∫

X

θ∗(x)K(x,y)θ(y)dxdy > 0.

The QRKHS (Definition 2) based on a positive definite
kernel inherits the inner product, completeness, and bound-
edness properties of real and complex valued QRKHSs.

Remark 1. By continuity, the Riesz representation and
Moore-Aronszajn theorems also hold for the above definitions
of QRKHS and positive definiteness. Therefore, similarly to
the real and complex cases, the theoretical requirement for
the construction of a QRKHS can be simplified into that of
the design of a positive definite quaternion-valued kernel.

3.2. Quaternion least squares estimation

We propose a least squares estimator for the unknown scalar
mapping y = f(x) in (1) to be in the form ŷ = 〈φ(x), ω〉.
Projecting the weights ω onto the QRKHS spanned by the
training samples {(xj , yj)}j=1,...,N and a positive definite
quaternion kernelK , we can use the quaternion inner product
properties in Definition 1 to write

ŷ =

N
∑

j=1

K(x,xj)αj . (6)

Denoting the training samples error vector by e = y −
Ka, the real valued cost function (4) can be expressed as

J = eHe+ ρaHa. (7)

Furthermore, using the HR calculus in [17] to set the quater-
nion derivative ∂J

∂αj
= ∇αj

J = 0, ∀αj , we obtain the follow-
ing relationship for the quaternion least squares solution
(

∇αj
eH
)

e+ eH
(

∇αj
e
)

+ ρ
(

∇αj
aH
)

a+ ρaH
(

∇αj
a
)

= 0.

The Wiener solution is obtained through evaluating these
gradients according to [17]. In this way, ∇αj

αj = 1,
∇αj

α∗
j = −1/2, and ∇αj

αi = ∇αj
α∗
i = 0, i 6= j to

arrive at
1

2
KHe− (KHe)∗ =

1

2
ρa− (ρa)∗, (8)

finally giving the coefficient vector for the Wiener solution in
the form

a = (KHK+ ρI)−1KHy. (9)

Remark 2. The optimal least squares solution of the kernel
regression problem in (9) has the same form as its real-valued
counterpart in (5). These two forms are equivalent for real-
valued kernels of quaternion variable.

3.3. Kernel choice

The linear kernel is a standard in practical kernel estimation
due to its robustness and ease of implementation. For quater-
nion valued signals, the quaternion linear kernel KQ and its
real-valued counterpartKR are respectively given by

KQ(x,y) = 1 + 〈x,y〉 = 1 + xHy (10)

KR(x,y) = 1 + 〈x,y〉
ℜ
= 1 + ℜ{xHy}, (11)

where 〈x,y〉
ℜ

is the inner product of the real-valued isomor-
phisms of x and y, and ℜ{q} denotes the real part of the
quaternion q. To show that the quaternion linear kernel is
positive semidefinite, combine (10) and Definition 3, and use
Fubini’s Theorem to give
∫

X2

θ∗(x)(1 + xHy)θ(y)dxdy =

∥

∥

∥

∥

∫

X

θ(x)dx

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∫

X

xθ(x)dx

∥

∥

∥

∥

2

.

Remark 3. The quaternion linear kernel admits the mod-
elling of statistical inter-dependence in its imaginary parts.
Therefore, the proposed kernel in (10) has the ability to learn
the relationship between the quadrivariate input variables,
while preserving the mathematical simplicity of univariate
kernel regression algorithms.

4. SIMULATION RESULTS

The quaternion-valued linear kernel proposed in (10) was
validated against its real-valued counterpart in (11) which is
equivalent to the standard KLS (see Remark 2). The simu-
lations were conducted in the least squares kernel regression
setting for the prediction of autoregressive processes and
multivariate real-world 3D inertial body sensor data.

We first considered the AR(1) process xt+1 = Axt +
Bet, where xt ∈ H, and et is a quaternion random vari-
able whose components are uncorrelated and uniformly dis-
tributed in [0, 1]. Correlated and uncorrelated realisations of
the process xt were obtained by respectively setting ℑ{A} =
ℑ{B} = 0 and by letting A,B to be full quaternions. Note
from Fig. 1 that the difference in MSEs of kernel algorithms
for the uncorrelated case remained fairly constant for differ-
ent support vectors, whereas for the correlated case this dif-
ference increased with the number of support vectors, hence
highlighting the ability of the QKLS to model coupled pro-
cesses.

We next applied the proposed QKLS to multivariate pre-
diction of inertial body sensors. Four accelerometers (placed
at wrists and ankles) recorded the three Euler angles (Fig. 2),
giving a total of 12 signals {θs}s=1,..,12 taking values in the
range [−π, π]. For a more accurate representation, and to
avoid discontinuities close to the limits of the signals range,
each θs was mapped onto the pair (sin θs, cos θs); this gave a
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24-dimensional real signal, or equivalently, a 6-dimensional
quaternion signal. In this way, the input (two delayed signal
samples) and output pairs were respectively elements of H12

and H
6, while the training and validation sets were different

Tai Chi sequences.

0 5 10 15 20 25 30

10
−2

Uncorrelated autoregressive process

M
S
E

Quaternion Kernel

Real Kernel

0 5 10 15 20 25 30

10
−2

Correlated autoregressive process

M
S
E

Number of support vectors

Fig. 1: MSE ± 0.5 standard deviations for kernel algorithms as
a function of the number of support vectors in the estimation of
both uncorrelated (top, A = 0.6808, B = 0.1157) and correlated
(bottom, A = 0.6808 + i0.07321 + j0.6222 − k0.2157, B =

0.1157 + i0.1208 + j0.8425 − k0.5121) AR(1) processes.

Fig. 3 shows the averaged prediction MSE ± 0.5 standard
deviations, over 10 independent realisations, as a function of
the number of support vectors for different values of the reg-
ularisation parameter ρ ∈ {10−1, 10−2, 10−3}. The support
vectors and the validation set (50 samples) were randomly
chosen, without repetition, for all realisations.

Y

Z

X

Y
Z

N

�

Fig. 2: Inertial body sensor setting. [Left] Fixed coordinate sys-
tem (red), sensor coordinate system (blue) and Euler angles (green).
[Right] A 3D inertial body sensor placed at the right wrist.

Observe that although the performances of both the
quaternion and real kernel least squares were similar for
training sets with fewer than 60 support vectors, the proposed
QKLS with quaternion-valued linear kernel outperformed its
real-valued counterpart as the number of support vectors (and
therefore training samples) increased. Furthermore, although
a lower regularization factor ρ provided improved estimation,
the real-valued KLS algorithm suffered from overfitting and
diverged due to the linear dependence of the feature samples.
The quaternion kernel, on the contrary, proved more robust

to the random choice of support vectors and exhibited vir-
tually no overfitting and non-increasing MSE even for small
regularisation factors. The better performance of QKLS for
a larger number of support vectors can be explained by the
inability of the real-valued kernel to model cross-coupling
between data components (Remark 3). The inclusion of
more support vectors allowed the quaternion kernel to span a
space of higher dimensionality (compared to the real kernel)
without leading to overfitting.

The superior performance of the quaternion kernel ap-
proach also suggests that the kernels for multivariate signal
estimation should be of the same dimensionality as the data.
This is in line with the background theory, as quaternions have
advantage over real quadrivariate vectors in rotation and ori-
entation modelling (needed to model body movement) and
have thus become a standard in computer graphics.

40 60 80 100 120 140 160 180 200 220 240

10
0.2

10
0.5

Regularisation factor ρ = 10−1

M
S
E

Quaternion Kernel

Real Kernel

40 60 80 100 120 140 160 180 200 220 240

10
0

Regularisation factor ρ = 10−2

M
S
E

40 60 80 100 120 140 160 180 200 220 240

10
0

Regularisation factor ρ = 10−3

Number of support vectors

M
S
E

Fig. 3: MSE ± 0.5 standard deviations for kernel algorithms as a
function of the number of support vectors for three different regular-
isation factors. Standard deviation bars which had negative values
were omitted.

5. CONCLUSIONS

The quaternion kernel least squares (QKLS) algorithm has
been introduced for the estimation of multidimensional real
world processes. Necessary and sufficient conditions for the
existence and uniqueness of quaternion RKHS, the backbone
of quaternion kernel algorithms, have been illuminated by
characterising a quaternion Hilbert space and its relationship
with the standard real (and complex) RKHS theory. The least
squares quaternion regression has been derived using the HR

calculus, and it has been shown that, for real-valued kernel,
its Wiener solution simplifies into the standard KLS solu-
tion. The enhanced performance of the QKLS algorithm,
compared to the standard KLS, has been illustrated in terms
of both the prediction MSE and robustness to overfitting, for
prediction applications based on both synthetic autoregressive
processes and real world multivariate body motion signals.
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