
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 27, NO. 2, FEBRUARY 2016 249

Optimization in Quaternion Dynamic Systems:
Gradient, Hessian, and Learning Algorithms

Dongpo Xu, Yili Xia, Member, IEEE, and Danilo P. Mandic, Fellow, IEEE

Abstract— The optimization of real scalar functions of
quaternion variables, such as the mean square error or array
output power, underpins many practical applications. Solutions
typically require the calculation of the gradient and Hessian.
However, real functions of quaternion variables are essen-
tially nonanalytic, which are prohibitive to the development of
quaternion-valued learning systems. To address this issue, we
propose new definitions of quaternion gradient and Hessian,
based on the novel generalized Hamilton-real (GHR) calculus,
thus making a possible efficient derivation of general optimization
algorithms directly in the quaternion field, rather than using
the isomorphism with the real domain, as is current practice.
In addition, unlike the existing quaternion gradients, the
GHR calculus allows for the product and chain rule, and for a
one-to-one correspondence of the novel quaternion gradient and
Hessian with their real counterparts. Properties of the quaternion
gradient and Hessian relevant to numerical applications are also
introduced, opening a new avenue of research in quaternion
optimization and greatly simplified the derivations of learning
algorithms. The proposed GHR calculus is shown to yield the
same generic algorithm forms as the corresponding real- and
complex-valued algorithms. Advantages of the proposed frame-
work are illuminated over illustrative simulations in quaternion
signal processing and neural networks.

Index Terms— Backpropagation, generalized Hamilton-
real (GHR) calculus, nonlinear adaptive filtering, quaternion
gradient, quaternion least mean square (QLMS), quaternion
optimization, real-time recurrent learning.

I. INTRODUCTION

QUATERNION algebra has recently attracted
a considerable research interest in areas including

color image processing [1], [2], automatic control [3],
aerospace and satellite tracking [4], bearings-only tracking [5],

Manuscript received August 14, 2014; revised March 3, 2015 and
May 12, 2015; accepted May 31, 2015. Date of publication June 16, 2015; date
of current version January 18, 2016. This work was supported in part by the
Natural Science Foundation of Jiangsu Province under Grant BK20140645,
in part by the Research Fund for the Doctoral Program of Higher Education
of China under Grant 20122304120028, and in part by the National Natural
Science Foundation of China under Grant 61301202 and Grant 61401094.

D. Xu is with the School of Mathematics and Statistics, Northeast Normal
University, Changchun 130024, China, also with the College of Science,
Harbin Engineering University, Harbin 150001, China, and also with the
Department of Electrical and Electronic Engineering, Imperial College
London, London SW7 2AZ, U.K. (e-mail: dongpoxu@gmail.com).

Y. Xia is with the School of Information Science and Engineering, Southeast
University, Nanjing 210096, China, and also with the Department of Electrical
and Electronic Engineering, Imperial College London, London SW7 2AZ,
U.K. (e-mail: yili.xia06@gmail.com).

D. P. Mandic is with the Department of Electrical and Electronic
Engineering, Imperial College London, London SW7 2AZ, U.K. (e-mail:
d.mandic@imperial.ac.uk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2015.2440473

body motion tracking [6]–[8], land classification [9], modeling
of wind profile [10], [11], and the processing of polarized
waves [12], [13]. In these areas, quaternions have allowed
for a reduction in the number of parameters and operations
involved compared with vector algebra, and for physically
meaningful representation. Despite the obvious advantages,
reflected in the fact that quaternions have become a standard
in computer graphics [14], the main obstacle for their more
widespread use in dynamic systems has been the nonanalytic
nature of the real-valued cost (objective) functions of
quaternion variables, which naturally arise in optimization
procedures [15]–[17]. Currently used pseudoderivatives do
circumvent this issue for small-scale problems by rewriting a
real cost function J (q) in terms of the four real components
of the quaternion variable, and then taking separately the real
derivatives with respect to these independent real parts. In this
way, J (q) is treated as a real analytic mapping between
R

4 and R. However, since the original framework is
quaternion valued, it is often awkward to reformulate the
problem in the real domain and very tedious to calculate
gradients for the optimization in even moderately complex
quaternion dynamic systems.

To this end, the recent Hamilton-real (HR) calculus [18] has
made it possible to take the formal derivatives of the real J (q)
with respect to the quaternion variable and its involutions.
This approach saves on computational burden and greatly
simplifies gradient expressions, it can also be considered as
a generalization of the complex-real (CR) calculus [19]–[21]
to the quaternion field, as the basis for the HR calculus is the
use of involutions (generalized conjugate) [22]. However, the
traditional product rule does not apply within the HR calculus
because of the noncommutativity of quaternion algebra. To this
end, we introduced the generalized HR (GHR) calculus in
order to equip quaternion analysis with both the product
and chain rules [23], leading to the integral form of the
mean value theorem and Taylor’s theorem. This makes it
possible, for the first time, to directly apply the optimization
techniques and learning algorithms in the quaternion field,
rather than transforming the problem to the real domain. This
also yields concise and elegant algorithm forms and opens new
opportunities in neural and dynamic systems.

We here further extend the concept of GHR calculus to
rigorously define quaternion gradient and Hessian. This
promises similar advantages to those enabled by the
CR calculus in the complex domain [21], [24], [29]—the
complex gradient and Hessian derived by the CR calculus
were instrumental for the developments in complex-domain

2162-237X © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

250 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 27, NO. 2, FEBRUARY 2016

optimization [25] and signal processing [26]–[29]. Next,
the basic relationships between the quaternion gradient and
Hessian and their real counterparts are established by invertible
linear transforms, these are shown to be very convenient for
the derivation of algorithms based on first- and second-order
Taylor series expansion (TSE) in the quaternion field.
We also illuminate that the quadrivariate versus quaternion
relations involve redundancy, since they operate in the
augmented quaternion space H

4N×1, which motivates us
to propose an efficient way to obtain the algorithms that
operate directly in H

N×1. This paper concludes with the
examples of several applications in learning systems enabled
by the GHR framework, such as the quaternion least mean
square (QLMS), nonlinear adaptive filtering, and in neurody-
namic systems (quaternion-valued feedforward and recurrent
neural networks).

II. PRELIMINARIES

A. Quaternion Algebra

In 1843, Sir W. R. Hamilton invented the quaternion algebra,
denoted H in his honor. Quaternions are an associative but not
commutative algebra over R, defined as1

H � {qa + iqb + jqc + kqd | qa, qb, qc, qd ∈ R} (1)

where {1, i, j, k} is a basis of H, and the imaginary
units i, j , and k satisfy i2 = j2 = k2 = i jk = −1, which
implies i j = k = − j i , jk = i = − k j , and ki = j = − ik.
A distinguishing feature is that the multiplication of
two quaternions is noncommutative, for example,
i j �= j i =− k. For any quaternion

q = qa + iqb + jqc + kqd = Sq + Vq (2)

the real (scalar) part is denoted by qa = Sq = R(q), whereas
the vector part (also called pure quaternion) Vq = I(q) =
iqb + jqc + kqd comprises the three imaginary parts. The real
part Sq = qa behaves like a scalar in R, and the vector part
Vq = iqb + jqc +kqd behaves like a vector �v = (qb, qc, qd) in
a 3-D vector space. The conjugate of a quaternion q is
q∗ = qa − iqb − jqc − kqd , while the conjugate of the
product satisfies (pq)∗ = q∗ p∗. The modulus of a quaternion
is defined as |q| = √

qq∗, it is easy to show that |pq| = |p||q|.
The inverse of a quaternion q �= 0 is q−1 = q∗/|q|2, and
an important property of the inverse is (pq)−1 = q−1 p−1.
If |q| = 1, we call q a unit quaternion. If R(q) = 0, then
q∗ = −q and q2 = −|q|2. Thus, a pure unit quaternion is a
square root of −1, such as the imaginary units i, j , and k.

Quaternions can also be written in the polar form
q = |q|(cos θ + q̂ sin θ), where q̂ = Vq/|Vq | is a pure
unit quaternion and θ = arccos(R(q)/|q|) ∈ R is the angle
(or argument) of the quaternion. We shall next introduce the
quaternion rotation and involution operations.

Definition 1 (Quaternion Rotation [30, p. 81]): For any
quaternion q , the transformation

qμ � μqμ−1 (3)

1For advanced reading on quaternions, we refer to [30], and to [31] for
results on matrices of quaternions.

geometrically describes a 3-D rotation of the vector part
of q by an angle 2θ about the vector part of μ, where
μ = |μ|(cos θ + μ̂ sin θ) is any nonzero quaternion.

In particular, if μ in (3) is a pure unit quaternion, then the
quaternion rotation (3) becomes quaternion involution [22],
such as qi , q j , and qk , defined by

qi = −iqi = qa + iqb − jqc − kqd

q j = − jq j = qa − iqb + jqc − kqd

qk = −kqk = qa − iqb − jqc + kqd . (4)

The properties of the quaternion rotation that are important
for this paper (the proof of [32, eqs. 5 and 6]) are

qμ = q
(

μ
|μ|

)
, (pq)μ = pμqμ, pq = q p p = qp(q∗)

∀p, q ∈ H (5)

qμν = (qν)μ, qμ∗ � (q∗)μ =(qμ)∗ � q∗μ ∀ν,μ ∈ H (6)

where μ/|μ| is an unit quaternion, that is, |μ/|μ|| = 1. There-
fore, the quaternion μ in (3)–(6) is not required to be a unit
quaternion, as qμ = q(μ/|μ|). Note that the real representation
in (1) can be easily generalized to a general orthogonal system
{1, iμ, jμ, kμ}, where the following properties hold [23], [30]:

iμiμ = jμ jμ = kμkμ = iμ jμkμ = −1. (7)

B. GHR Calculus

Standard quaternion pseudoderivatives represent
component-wise real derivatives of quaternion univariate
components and are thus a very restrictive tool for the
development of learning algorithms, due to their cumbersome
and tedious computations [10]. A recent, more elegant,
approach that is also applied to cost functions, is the
HR calculus, whereby the HR derivatives are given by [18]

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎝

∂ f

∂q
∂ f

∂qi

∂ f

∂q j

∂ f

∂qk

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎠

= 1

4

⎛

⎜
⎜
⎝

1 −i − j −k
1 −i j k
1 i − j k
1 i j −k

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎝

∂ f

∂qa
∂ f

∂qb
∂ f

∂qc
∂ f

∂qd

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎠

(8)

and the conjugate HR derivatives (HR∗ derivatives)
⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎝

∂ f

∂q∗
∂ f

∂qi∗
∂ f

∂q j∗
∂ f

∂qk∗

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎠

= 1

4

⎛

⎜
⎜
⎝

1 i j k
1 i − j −k
1 −i j −k
1 −i − j k

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎝

∂ f

∂qa
∂ f

∂qb
∂ f

∂qc
∂ f

∂qd

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎠

. (9)

Remark 2: It is important to note that the traditional product
and chain rules are not valid for the HR calculus. For example,
f (q) = |q|2, then from (8) (∂|q|2/∂q) = (1/2)q∗, but
(∂|q|2/∂q) �= q(∂q∗/∂q) + (∂q/∂q)q∗ = −(1/2)q + q∗.

XU et al.: OPTIMIZATION IN QUATERNION DYNAMIC SYSTEMS 251

This difficulty has been solved within the framework of the
GHR calculus, which incorporates the novel product and chain
rules (12)–(15), see [23] for more detail.

Definition 3 (GHR Derivatives [23]): Let f : H → H.
Then, the left GHR derivatives of f (q) with respect to
qμ and qμ∗ (μ �= 0, μ ∈ H) are defined as

∂ f

∂qμ
= 1

4

(
∂ f

∂qa
− ∂ f

∂qb
iμ − ∂ f

∂qc
jμ − ∂ f

∂qd
kμ

)
∈ H

∂ f

∂qμ∗ = 1

4

(
∂ f

∂qa
+ ∂ f

∂qb
iμ + ∂ f

∂qc
jμ + ∂ f

∂qd
kμ

)
∈ H (10)

while the right GHR derivatives are defined as

∂r f

∂qμ
= 1

4

(
∂ f

∂qa
− iμ ∂ f

∂qb
− jμ ∂ f

∂qc
− kμ ∂ f

∂qd

)
∈ H

∂r f

∂qμ∗ = 1

4

(
∂ f

∂qa
+ iμ ∂ f

∂qb
+ jμ ∂ f

∂qc
+ kμ ∂ f

∂qd

)
∈ H (11)

where ∂ f /∂qa, ∂ f /∂qb, ∂ f /∂qc, and ∂ f /∂qd ∈ H are the
partial derivatives of f with respect to qa , qb, qc, and qd ,
respectively, and the set {1, iμ, jμ, kμ} is a general orthogonal
basis of H.

Some properties of the left GHR derivatives are [23]

Product rule : ∂(f g)

∂qμ
= f

∂g

∂qμ
+ ∂(f g)

∂qgμ
g (12)

Product rule : ∂(f g)

∂qμ∗ = f
∂g

∂qμ∗ + ∂(f g)

∂qgμ∗ g (13)

Chain rule : ∂ f (g(q))

∂qμ
=

∑

ν∈{1,i, j,k}

∂ f

∂gν

∂gν

∂qμ
(14)

Chain rule : ∂ f (g(q))

∂qμ∗ =
∑

ν∈{1,i, j,k}

∂ f

∂gν∗
∂gν∗

∂qμ∗ (15)

Rotation rule :
(

∂ f

∂qμ

)ν

= ∂ f ν

∂qνμ
,

(
∂ f

∂qμ∗

)ν

= ∂ f ν

∂qνμ∗

(16)

Conjugate rule :
(

∂ f

∂qμ

)∗
= ∂r f ∗

∂qμ∗ ,

(
∂ f

∂qμ∗

)∗
= ∂r f ∗

∂qμ
(17)

if f is real

(
∂ f

∂qμ

)∗
= ∂ f

∂qμ∗ ,

(
∂ f

∂qμ∗

)∗
= ∂ f

∂qμ
.

(18)

Example 4: Find the GHR derivatives of the functions

f (q) = ωqν + λ, g(z) = ωq∗ν + λ

where ω, ν, and λ ∈ H are the quaternion constants.
Solution: Using product rule (12) and setting μ = 1,

we have

∂ f (q)

∂q
= ∂(ωqν)

∂q
= ωq

∂ν

∂q
+ ∂(ωq)

∂qν
ν = ω

∂q

∂qν
ν = ωR(ν).

In a similar manner, it follows that:
∂ f (q)

∂q∗ = ∂(ωqν)

∂q∗

= ωq
∂ν

∂q∗ + ∂(ωq)

∂qν∗ ν = ω
∂q

∂qν∗ ν = −1

2
ων∗

∂g(q)

∂q
= ∂(ωq∗ν)

∂q

= ωq∗ ∂ν

∂q
+ ∂(ωq∗)

∂qν
ν = ω

∂q∗

∂qν
ν = −1

2
ων∗

∂g(q)

∂q∗ = ∂(ωq∗ν)

∂q∗

= ωq∗ ∂ν

∂q∗ + ∂(ωq∗)
∂qν∗ ν = ω

∂q∗

∂qν∗ ν = ωR(ν).

Remark 5: Observe that for μ ∈ {1, i, j, k}, the
HR derivatives in (8) and (9) are a special case of the right
GHR derivative in (11), the latter being more general, as
the GHR derivatives incorporate the product and chain rules
in (12)–(15). These rules are instrumental for compact and
elegant quaternion optimization.

Remark 6: Due to the noncommutativity of quaternion
products, in general, the left GHR derivatives are different
from the right GHR derivatives. However, they will be
equal if the function f is real valued [23], as is the case
with the most frequently used mean square error (MSE)-
based optimization. In the sequel, we therefore mainly
focus on the left GHR derivatives, because their convenient
properties (12)–(18) are consistent with physical intuition.

C. Quaternion Gradient

The existing quaternion gradient formulations are much
more restricted than the standard real gradient, which has
prevented systematic development of quaternion gradient-
based optimization. Although the quaternion pseudogradient
(real component-wise gradients combined) can be used [10],
the calculation of the pseudogradient is cumbersome and
tedious, making the derivation of optimization algorithms of
quaternion variables very prone to errors. Another type of
quaternion gradient with local analyticity has been proposed
in [17], which allows for derivatives of polynomials and some
elementary functions. However, the products and compositions
of two local analytic functions are generally not local analytic.
An elegant new approach is the HR calculus [18], which
defines the HR gradient with respect to a quaternion vector
variable and its involutions. However, the traditional product
rule is not applicable to the HR gradient. A gradient based
on quaternion involutions, called the Involution-gradient (I-
gradient) [33], provides a generic generalization of the real and
complex least mean square (LMS) algorithms; however, it does
not admit the traditional product rule. The quaternion gradient
proposed in this paper rectifies these issues, as it is based
on the GHR calculus, which incorporates the novel product
and chain rules (12)–(15). For rigor, we consider a
general case of functions f (q) : H

N×1 → H, where
q = (q1, q2, . . . , qN)T ∈ H

N×1.

252 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 27, NO. 2, FEBRUARY 2016

Definition 7 (Quaternion Gradient): The two quaternion
gradients of a function f : H

N×1 → H are defined as

∇q f �
(

∂ f

∂q

)T

=
(

∂ f

∂q1
, . . . ,

∂ f

∂qN

)T

∈ H
N×1

∇q∗ f �
(

∂ f

∂q∗

)T

=
(

∂ f

∂q∗
1
, . . . ,

∂ f

∂q∗
N

)T

∈ H
N×1.

Definition 8 (Quaternion Jacobian Matrix): The quater-
nion Jacobian matrices of f :HN×1→H

M×1 are defined as

∂f
∂q

=

⎛

⎜⎜
⎜
⎜
⎜
⎜
⎝

∂ f1

∂q1
. . .

∂ f1

∂qN
...

. . .
...

∂ fM

∂q1
. . .

∂ fM

∂qN

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎠

,
∂f
∂q∗ =

⎛

⎜⎜
⎜
⎜
⎜
⎜
⎝

∂ f1

∂q∗
1

. . .
∂ f1

∂q∗
N

...
. . .

...

∂ fM

∂q∗
1

. . .
∂ fM

∂q∗
N

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎠

.

Note that the convention for two vectors f ∈ H
M×1 and

q ∈ H
N×1, ∂f/∂q is a matrix for which the (m, n)th

element is (∂ fm/∂qn), thus, the dimension of ∂f/∂q
is M × N .

D. Quaternion Hessian

Since a formal derivative of a function f : H → H is
(wherever it exists) again a function from H to H, it makes
sense to take the GHR derivative of a GHR derivative, that is,
a higher order GHR derivative. We next consider second-order
quaternion derivatives of the form

∂2 f

∂qμ∂qν
= ∂

∂qμ

(
∂ f

∂qν

)
,

∂2 f

∂qμ∗∂qν∗ = ∂

∂qμ∗

(
∂ f

∂qν∗

)

∂2 f

∂qμ∂qν∗ = ∂

∂qμ

(
∂ f

∂qν∗

)
,

∂2 f

∂qμ∗∂qν
= ∂

∂qμ∗

(
∂ f

∂qν

)
.

Note that the second-order cross derivatives are in general not
identical [23], that is (∂2 f /∂qμ∂qν) �= (∂2 f /∂qν∂qμ).
However, the second-order GHR derivatives do
commute [15], [23]

∂2 f

∂qμ∂qμ∗ = ∂2 f

∂qμ∗∂qμ
= 1

16

(
∂2 f

∂q2
a

+ ∂2 f

∂q2
b

+ ∂2 f

∂q2
c

+ ∂2 f

∂q2
d

)

.

(19)

For a real valued f : H → R, the conjugate rule for the
second-order GHR derivatives is given by [23]

(
∂2 f

∂qμ∂qν

)∗
= ∂2 f

∂qν∗∂qμ∗ ,

(
∂2 f

∂qμ∗∂qν∗

)∗
= ∂2 f

∂qν∂qμ

(
∂2 f

∂qμ∂qν∗

)∗
= ∂2 f

∂qν∂qμ∗ ,

(
∂2 f

∂qμ∗∂qν

)∗
= ∂2 f

∂qν∗∂qμ
. (20)

Definition 9 (Quaternion Hessian Matrix): Let f :
H

N×1 → H, then the two quaternion Hessian matrices of the

mapping f are defined as

Hqq � ∂

∂q

(
∂ f

∂q

)T

=

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎝

∂2 f

∂q1∂q1
. . .

∂2 f

∂qN ∂q1
...

. . .
...

∂2 f

∂q1∂qN
. . .

∂2 f

∂qN ∂qN

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎠

∈ H
N×N

Hqq∗ � ∂

∂q

(
∂ f

∂q∗

)T

=

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

∂2 f

∂q1∂q∗
1

. . .
∂2 f

∂qN ∂q∗
1

...
. . .

...

∂2 f

∂q1∂q∗
N

. . .
∂2 f

∂qN ∂q∗
N

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

∈ H
N×N .

III. OPTIMIZATION IN THE QUATERNION FIELD

Consider the quaternion dynamic systems described by the
nonlinear ordinary differential equation q̇ = �(q(t)), where
� is the quaternion nonlinearity and q(t) is the state of
quaternion variable. The objective function J is expressed in
terms of the adjustable parameter vector w and the values of
the state at discrete points t − r, r = 0, 1, . . . , N − 1, that is,
J = J [q, w], where q = [q(t), q(t − 1), . . . , q(t − N + 1)]T .
The optimization problems for real functions of quaternion
parameters frequently arise in engineering applications and can
be formulated as

min
w∈HN

J (w)

where J is a real smooth function in N quaternion variables w.
Solutions often require a first- or second-order approximation
of the objective function to generate a new step or a descent
direction. However, the quaternion analyticity conditions given
in [15]–[17] assert that the real-valued function of quaternion
variable is necessarily nonanalytic. A conventional approach
for algorithm derivation is to cast the optimization problem
into the real domain by separating the four real components
of w and then taking the real derivatives. The consequence is
that the computations may become cumbersome and tedious.
The GHR calculus provides an alternative elegant formulation,
which is based on simple rules and principles (12)–(18) and is
a natural generalization of the CR derivatives [21], [24], [29].

For an intuitive link between the real and quaternion
vectors, consider a quaternion vector q = qa + iqb + jqc+
kqd ∈ H

N×1, expressed by its real coordinate vectors
qa, qb, qc, and qd ∈ R

N×1. Following an approach similar
to that in [18], [23], and [24] for the case of scalar
quaternions, we can now define an augmented quaternion
vector h ∈ H

4N×1, as shown in (21). The relationship
between the augmented quaternion vector h ∈ H

4N×1 and its

XU et al.: OPTIMIZATION IN QUATERNION DYNAMIC SYSTEMS 253

dual-quadrivariate real vector r ∈ R
4N×1 is given by [35], [36]

⎛

⎜
⎜
⎝

q
qi

q j

qk

⎞

⎟
⎟
⎠

︸ ︷︷ ︸
h

=

⎛

⎜
⎜
⎝

IN iIN jIN kIN

IN iIN − jIN −kIN

IN −iIN jIN −kIN

IN −iIN − jIN kIN

⎞

⎟
⎟
⎠

︸ ︷︷ ︸
J

⎛

⎜
⎜
⎝

qa

qb

qc

qd

⎞

⎟
⎟
⎠

︸ ︷︷ ︸
r

(21)

where IN is the N × N identity matrix, and J is the 4N × 4N
matrix in (21). Multiplying both sides of (21) by (1/4)JH and
noting that (1/4)JH J = I4N , we have

r = 1

4
JH h ∈ R

4N×1. (22)

From (21), a real scalar function f (q) : H
N×1 → R can be

viewed in three equivalent forms

f (q)⇔ f (qa, qb, qc, qd) � f (r)⇔ f (q, qi , q j , qk) � f (h).

(23)

Since (22) is a linear transformation and r is a real vector,
it follows that:

∂ f

∂h
= ∂ f

∂r
∂r
∂h

= 1

4

∂ f

∂r
JH ⇔ ∂ f

∂r
= ∂ f

∂h
J, f ∈ R (24)

where (∂ f /∂h) ∈ H
1×4N and (∂ f /∂r) ∈ R

1×4N . Since
f and r are real valued, we have

∇r f �
(

∂ f

∂r

)T

=
(

∂ f

∂r

)H

=
(

∂ f

∂h
J
)H

(from (24))

= JH
(

∂ f

∂h

)H

= JH
(

∂ f

∂h∗

)T

(from (18))

= JH∇h∗ f. (25)

This shows that the real gradient ∇r f ∈ R
4N×1 and the

augmented quaternion gradient ∇h∗ f ∈ H
4N×1 are related by

a simple invertible linear transformation JH .
Remark 10: Based on (21), (23), and (25), we can now

state a necessary and sufficient condition for the existence of
stationary points of a real-valued function f in the form of
the following equivalent relations:
∂ f

∂q
= 0 ⇔ ∂ f

∂q∗ = 0 ⇔ ∂ f

∂r
= 0 ⇔ ∂ f

∂h
= 0 ⇔ ∂ f

∂h∗ = 0.

A. Quaternion Gradient Descent Algorithm

Gradient descent (also known as steepest descent) is a first-
order optimization algorithm, which finds a local minimum
of a function by taking iterative steps proportional to the
negative of the gradient of the function. From (23), a real
scalar function f (q) : H

N×1 → R, can also be viewed as
f (r) : R

4N×1 → R, for which the quadrivariate real gradient
descent update rule is given by [37], [46]

�r = −α∇r f, r ∈ R
4N×1 (26)

where �r denotes a small increment in r and α ∈ R
+ is the

step size. Using (21), (25), and (26), we now obtain

�h = J�r = −αJ∇r f = −αJJH∇h∗ f = −4α∇h∗ f. (27)

From (21), we have h = (qT, qiT, q j T, qkT)T , so that (27)
can be rewritten as

�h =

⎛

⎜
⎜
⎝

�q
�qi

�q j

�qk

⎞

⎟
⎟
⎠ = −4α

⎛

⎜
⎜
⎝

∇q∗ f
∇qi∗ f
∇q j∗ f
∇qk∗ f

⎞

⎟
⎟
⎠. (28)

This gives the quaternion gradient descent update rule in the
form

�q = −4α∇q∗ f = −4α

(
∂ f

∂q∗

)T

= −4α

(
∂ f

∂q

)H

, f ∈ R

(29)

where α ∈ R
+ is the step size, and the conjugation rule in (18)

was used in the last equality above.
Remark 11: Note from (29) that the quaternion gradient of

a real-valued scalar function f with respect to a quaternion
vector q is equal to ∇q∗ f = (∂ f /∂q∗)T , and not ∇q f . This
result is a generalization of the CR calculus given in [20], and
makes a possible compact derivation of learning algorithms
in H.

B. Quaternion Taylor Series Expansion

Using (19) and (20), it follows that the matrix Hqq∗ is
Hermitian symmetric, so that HH

qq∗ = Hqq∗ . Then, up

to second order, the TSE of the real scalar function
f (q) : H

N×1 → R, when viewed as a real analytic function

f (r) : R
4N×1 → R of the vector r ∈ R

4N×1 from (23),
is given by [37], [46]

f (r + �r) = f (r) + ∂ f

∂r
�r + 1

2
�rT Hrr�r + h.o.t (30)

where Hrr � ∂/∂r(∂ f /∂r)T ∈ R
4N×4N is a real symmetric

Hessian matrix, HT
rr = Hrr, and h.o.t. denotes the higher

order terms. From (21) and (24), the first-order term in the
augmented quaternion space is calculated as

∂ f

∂r
�r = 1

4

∂ f

∂h
JJH�h = ∂ f

∂h
�h. (31)

Noting from (21) that h = (qT, qiT, q j T, qkT)T , we can now
expand the first-order term in (30) as follows:
∂ f

∂r
�r = ∂ f

∂h
�h (from (31))

= ∂ f

∂q
�q + ∂ f

∂qi
�qi + ∂ f

∂q j
�q j + ∂ f

∂qk
�qk (from (21))

= ∂ f

∂q
�q +

(
∂ f

∂q
�q

)i

+
(

∂ f

∂q
�q

) j

+
(

∂ f

∂q
�q

)k

= 4R

{
∂ f

∂q
�q

}
(from (22)). (32)

254 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 27, NO. 2, FEBRUARY 2016

Consider now the 4N × 4N augmented quaternion Hessian
matrix

Hhh∗ � ∂

∂h

(
∂ f

∂h∗

)T

=

⎛

⎜
⎜
⎜
⎝

Hqq∗ Hqi q∗ Hq j q∗ Hqkq∗
Hqqi∗ Hqi qi∗ Hq j qi∗ Hqkqi∗
Hqq j∗ Hqi q j∗ Hq j q j∗ Hqkq j∗
Hqqk∗ Hqi qk∗ Hq j qk∗ Hqkqk∗

⎞

⎟
⎟
⎟
⎠

. (33)

Its equivalence with Hrr ∈ R
4N×4N can be established as

Hrr = ∂

∂r

(
∂ f

∂r

)T

= ∂

∂r

(
∂ f

∂r

)H

(since f is real-valued)

= ∂

∂r

(
∂ f

∂h
J
)H

(from (24))

= ∂

∂r

{

JH
(

∂ f

∂h

)H
}

= ∂

∂h

{

JH
(

∂ f

∂h

)H
}

J (from (24))

= JH ∂

∂h

(
∂ f

∂h∗

)T

J (from (18))

= JH Hhh∗J. (34)

Note that the Hermitian operator in (34) cannot be replaced
with the transpose operator, because for quaternion matrices
(AB)T �= BT AT . Recalling that the Hessian Hrr is a real sym-
metric matrix, it is evident from (34) that Hhh∗ is Hermitian,
that is, HH

hh∗ = Hhh∗ . Subsequently, for the second-order term
in (30), we have

1

2
�rT Hrr�r = 1

2
�rH Hrr�r (since r is real-valued)

= 1

2
�rH JH Hhh∗J�r (from (34))

= 1

2
�hH Hhh∗�h (from (21)). (35)

From (21) and (35), the second-order term in (30) can now
be expanded as

1

2
�rT Hrr�r = 1

2
�hH Hhh∗�h

= 1

2

∑

μ,ν∈{1,i, j,k}
(�qν)H Hqμqν∗�qμ (from (33))

= 2
∑

μ∈{1,i, j,k}
R(�qH Hqμq∗�qμ) (from (22)). (36)

Using (23), (30), (31), and (35), the TSE in H
4N (augmented

TSE) up to the second-order term can be expressed as

f (h+�h) = f (h) + ∂ f

∂h
�h + 1

2
�hH Hhh∗�h + h.o.t. (37)

Finally, a combination of the expansions in (32) and (36)
yields the TSE expressed directly in H

N, given by

f (q+�q) = f (q)+4R

(
∂ f

∂q
�q

)

+ 2
∑

μ∈{1,i, j,k}
R

(
�qH Hqμq∗�qμ

) + h.o.t. (38)

Also, from (34) and noting that (1/4)JJH = I4N , we have

Hhh∗ − λI4N = 1

16
J (Hrr − 4λI4N) JH . (39)

Remark 12: Since the real scalar function f is nonanalytic,
the TSE in (37) and (38) is always augmented, due to the
presence of the terms �qμ, μ ∈ {i, j, k}. This is in contrast
to the complex TSE for analytic functions.

Remark 13: Equation (39) illustrates that the eigenvalues
of the quadrivariate real Hessian Hrr are quadruple of those
for the augmented quaternion Hessian Hhh∗ . An important
consequence is that the augmented quaternion Hessian Hhh∗
and the quadrivariate real Hessian Hrr have the same positive
definiteness properties and condition number. This result is
important in numerical applications using the Hessian such as
quaternion Newton minimization.

C. Quaternion Newton Method

The Newton method is a second-order optimization method,
which makes use of the Hessian matrix. This method
often has better convergence properties than the gradient
descent method, but it can be very expensive to calculate
and store the Hessian matrix. For a real scalar cost
function f (q) : H

N×1 → R, which from (23) can be viewed
as f (r) : R

4N×1 → R, the Newton iteration step �r for
the minimization of the function f (r) with respect to its real
parameters r = (qT

a, qT
b, qT

c , qT
d)T is described by [37], [46]

Hrr�r = −∇r f, r ∈ R
4N×1 (40)

where ∇r f is the real gradient defined by (25).
From (21), (25), (34), and (40), it then follows that:
JH Hhh∗�h = JH Hhh∗J�r = Hrr�r = −∇r f =−JH∇h∗ f.

(41)

Upon multiplying both sides of (41) by (1/4)J and noting that
(1/4)JJH = I4N , we obtain

Hhh∗�h = −∇h∗ f (42)

where Hhh∗ is the augmented quaternion Hessian defined
by (33). Since h = (qT, qiT, q j T, qkT)T, we can
expand (42) as

Hhh∗�h = Hhh∗

⎛

⎜⎜
⎝

�q
�qi

�q j

�qk

⎞

⎟⎟
⎠ = −

⎛

⎜⎜
⎝

∇q∗ f
∇qi∗ f
∇q j∗ f
∇qk∗ f

⎞

⎟⎟
⎠. (43)

If Hhh∗ [equivalently, Hrr in (39)] is positive definite, then
using the Banachiewicz inversion formula for the inverse of

XU et al.: OPTIMIZATION IN QUATERNION DYNAMIC SYSTEMS 255

a nonsingular partitioned matrix [39], yields

�h =
(−H−1

qq∗ − LT−1U LT−1

T−1U −T−1

)
⎛

⎜
⎜
⎝

∇q∗ f
∇qi∗ f
∇q j∗ f
∇qk∗ f

⎞

⎟
⎟
⎠ (44)

where T = (
Hhh∗/Hqq∗

)
is the Schur complement [39] of

Hqq∗ in Hhh∗ , and

L = H−1
qq∗

⎛

⎝
Hqqi∗
Hqq j∗
Hqqk∗

⎞

⎠

H

, U =
⎛

⎝
Hqqi∗
Hqq j∗
Hqqk∗

⎞

⎠ H−1
qq∗ . (45)

The invertibility of the Schur complement T follows from the
positive definiteness of Hhh∗ , so that the quaternion Newton
update rule is given by:

�q = −H−1
qq∗∇q∗ f + LT−1

⎛

⎜
⎜
⎜⎜
⎝

−Hqqi∗H−1
qq∗∇q∗ f + ∇qi∗ f

−Hqq j∗H−1
qq∗∇q∗ f + ∇q j∗ f

−Hqqk∗H−1
qq∗∇q∗ f + ∇qk∗ f

⎞

⎟
⎟
⎟⎟
⎠

.

(46)

A substantial simplification can be introduced by avoiding
the computation of the inverse of the Schur complement T,
so that the quaternion Newton method (QNM) in (46) may be
approximated as

�q ≈ −H−1
qq∗∇q∗ f. (47)

Remark 14: Note that the QNM (46) and approximated
QNM (47) directly operate in H

N×1, thus removing the redun-
dancy present in (44). For the interested reader, we leave an
estimation problem of the upper bound of the approximation
error between (46) and (47).

IV. APPLICATION EXAMPLES

The above introduced quaternion gradient and Hessian are
essential for numerical solutions in quaternion-valued parame-
ter estimation problems, and in quaternion learning systems.

A. Quaternion Least Mean Square

We can now derive the QLMS algorithm [10], [18], a
workhorse of adaptive estimation, in an elegant and compact
way using the GHR calculus. For convenience, the rather
tedious standard QLMS derivation applied component wise
is given in Appendix I. Within the QLMS, the cost function
to be minimized is a real-valued function of quaternion-valued
error

J (n) = |e(n)|2 = e∗(n)e(n) (48)

where the error e(n) = d(n)− y(n), d(n) is the desired signal,
y(n) = wT (n)x(n) is the filter output, w(n) ∈ H

N×1 is the
vector of filter coefficients, x(n) ∈ H

N×1 is the input vector,
and N is the filter length.

From (29), the weight update of QLMS is given by

w(n + 1) − w(n) = −α∇w∗ J (n) = −α

(
∂ J (n)

∂w(n)

)H

(49)

where α > 0 is the step size and the negative gradient
−∇w∗ J (n) defines the direction of gradient descent in (29).
To find ∇w∗ J , we use the product rule (12)

∂ J

∂w
= e∗ ∂e

∂w
+ ∂e∗

∂we
e (50)

where time index n is omitted for convenience. The above
two partial derivatives now become

∂e

∂w
= ∂(d − wT x)

∂w
= −∂(wT x)

∂w
= −R(xT)

∂e∗

∂we e = ∂(d∗ − xH w∗)
∂we e = −∂(xH w∗)

∂we e = 1

2
xH e∗ (51)

where the results ∂(wT x)/∂w and ∂(xH w∗)/(∂we)e can be
seen as a vector version of the GHR derivatives in Example 4.
Substituting (51) into (50) now yields

∂ J

∂w
= −e∗R(xT) + 1

2
xH e∗ = −1

2
xT e∗. (52)

Finally, the update of the adaptive weight vector of QLMS
becomes

w(n + 1) = w(n) + α e(n)x∗(n) (53)

where the constant 1/2 in (52) is absorbed into the step size α.
Remark 15: From (53) and (92), we can see that the

QLMS derived using the GHR calculus is exactly the same
as that using the pseudogradient. However, the derivation of
component-wise gradient in Appendix I is too cumbersome
and tedious. The expressions in (53) and (92) also provide a
theoretical support for the gradient descent method in (29).

Remark 16: Note that if we start from e(n) = d(n) −
wH (n)x(n), the final update rule of QLMS would become
w(n +1) = w(n)+α x(n)e∗(n). The QLMS algorithm in (53)
is therefore a generic generalization of complex LMS [40] to
the quaternion field.

Remark 17: The QLMS algorithm in (53) is different from
the original QLMS [10] based on component-wise gradi-
ents, the HR-QLMS [18] based on the HR gradient, and the
Involution-QLMS (I-QLMS) [33] based on the I-gradient.
The difference from the original QLMS arises due to the
rigorous use of the noncommutativity of quaternion product
in (90) and (91). The difference from the HR-QLMS and I-
QLMS is due to the rigorous use of the novel product rule in
(50).

B. Quaternion Nonlinear Adaptive Filtering

We now derive the quaternion nonlinear gradient
descent (QNGD) algorithm given in [27] according to
the rules of GHR calculus. The same real-valued quadratic
cost function as in LMS and CLMS is used, that is

J (n) = |e(n)|2 (54)

where e(n) = d(n) − y(n) is the error between the desired
signal d(n) and the filter output y(n) = �(s(n)), where

s(n) = wT (n)x(n), � is the quaternion nonlinearity defined
in Appendix II, w(n) ∈ H

N×1 forms filter coefficients, and
x(n) ∈ H

N×1 defines the input vector.

256 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 27, NO. 2, FEBRUARY 2016

From (29), the weight update is given by

w(n + 1) −w(n) = −α∇w∗ J (n) = −α

(
∂ J (n)

∂w∗(n)

)T

(55)

where α > 0 is the step size. To find ∇w∗ J , we use the chain
rule (15)

∂ J

∂w∗ =
∑

μ∈{1,i, j,k}

∂|e|2
∂eμ∗

∂eμ∗

∂w∗ (56)

where time index n is omitted for convenience. Using the
product rule (13), the derivative of |e|2 can be calculated as

∂|e|2
∂eμ∗ = ∂(e∗e)

∂eμ∗ = e∗ ∂e

∂eμ∗ + ∂e∗

∂eeμ∗ e = 1

2
eμ. (57)

Next, we need to calculate the following derivative:
∂eμ∗

∂w∗ = ∂(d − y)μ∗

∂w∗ = −∂yμ∗

∂w∗ = −∂�μ∗(s)
∂w∗ . (58)

By the chain rule in (15), we have

∂�μ∗(s)
∂w∗ =

∑

ν∈{1,i, j,k}

∂�μ∗(s)
∂sν∗

∂sν∗

∂w∗ (59)

where the derivatives of sν∗ employ the term ∂(ωq∗)/∂q∗
in Example 4, to give

∂s∗

∂w∗ = ∂(xH w∗)
∂w∗ = xH . (60)

Next, using the rotation rule (16) and the term
(∂(ωq∗)/∂qμ∗)μ in Example 4, we have

∂sν∗

∂w∗ =
(

∂s∗

∂wν∗

)ν

= −ν
∂(xH w∗)

∂wν∗ ν

= −νxHR(ν) = 0 ∀ν ∈ {i, j, k}. (61)

Substituting (60) and (61) into (59), then yields

∂�μ∗(s)
∂w∗ = ∂�μ∗(s)

∂s∗ xH ∀μ ∈ {1, i, j, k}. (62)

By combining (57), (58), and (62) with (56), we finally obtain

∂ J

∂w∗ = −1

2

∑

μ∈{1,i, j,k}
eμ ∂�μ∗(s)

∂s∗ xH . (63)

This gives the update of the adaptive weight vector of QNGD
algorithm in the form

w(n + 1) = w(n) + α
∑

μ∈{1,i, j,k}
eμ(n)

∂�μ∗(s(n))

∂s∗(n)
x∗(n) (64)

where the constant 1/2 in (63) is absorbed into the step size α.
Remark 18: For a linear function �(q) = q , the QNGD

algorithm will degenerate into the QLMS in Section IV-A.
This shows that, as desired, the QLMS algorithm is a special
case of the QNGD algorithm. In addition, using the
GHR calculus for the QNGD algorithm, the nonlinear function
� is not required to satisfy the odd-symmetry condition
�∗(q) = �(q∗), which is required in [27] and [28].

C. Quaternion Feedforward Neural Networks

For convenience, we shall consider a single hidden layer
quaternion feedforward neural network. The forward equations
for signal passing through the network are given by

y = Vx + a, h = �(y), g = Wh + b (65)

where � denotes the quaternion nonlinearity defined
in Appendix II, x is the input signal, h, g are, respectively,
the output at hidden and output layers, V and W the weight
matrices associated with hidden and output layer neurons, and
a and b the biases at the hidden and output layer neurons. The
network error produced at the output layer is defined by

e = d − g (66)

where d denotes the desired output vector. Then, the gradient
descent algorithm minimizes a real-valued loss function

J = ‖e‖2 = eH e. (67)

From (29), the GHR quaternion gradient of the error function
is given by

∇q∗ J =
(

∂ J

∂q∗

)T

=
(

∂ J

∂q

)H

. (68)

Using the chain rule (14) and rotation rule (16), we have

∂ J

∂q
=

∑

μ∈{1,i, j,k}

∂‖e‖2

∂eμ

∂eμ

∂q
= −

∑

μ∈{1,i, j,k}

∂‖e‖2

∂eμ
(Jqμ)μ (69)

where Jqμ � (∂g/∂qμ) is the Jacobian matrix of g, and the

derivative of ‖e‖2 is a vector version of the term ∂|e|2/∂eμ

in (57), given by

∂‖e‖2

∂eμ
= 1

2
(eμ)H . (70)

Substituting (69) and (70) into (68), we arrive at

∇q∗ J = −1

2

∑

μ∈{1,i, j,k}

(
JH

qμe
)μ

. (71)

Now, we shall derive the quaternion backpropagation (QBP)
algorithm for the QVNN in an explicit form as

Jbμ = δμ1 I, Jyμ = ∂g
∂yμ

= W
∂h
∂yμ

(72)

where I is the identity matrix and δμν is the Kronecker delta

δμν =
{

1, μ = ν

0, μ �= ν.
(73)

We note from (65) that Jaμ = Jyμ . Thus, the update rules for
the bias at hidden and output layers are

�a = α
∑

μ∈{1,i, j,k}

(
JH

aμe
)μ

, �b = αe (74)

where α > 0 is the learning rate. Using the chain rule (15),
the update rules for hidden and output layer weight matrices
become

�V = �a xH , �W = �b hH . (75)

XU et al.: OPTIMIZATION IN QUATERNION DYNAMIC SYSTEMS 257

Remark 19: A comparison of the weight update
structure of the QBP (74), (75) with the complex
backpropagation (CBP) [41], [42] shows that the QBP
is not a simple extension of the CBP. The extra terms in
the QBP weight update are needed to capture the additional
statistical information that exists in the quaternion field.

D. Quaternion Recurrent Neural Networks

We next consider a three-layer quaternion recurrent neural
network (QRNN) [43] with a concatenated input-feedback
layer, a processing layer of computation nodes, and an output
layer. Let h(n) and g(n) denote the output of processing
and output layers at time index n, and x(n) denotes the
external input vector. The following equations fully describe
the QRNN:

y(n) = U h(n − 1) + Vx(n) + a

h(n) = �(y(n)), g(n) = Wh(n) + b (76)

where � denotes the quaternion nonlinearity defined
in Appendix II, U is the internal weight matrix, V and W
are the input and output weight matrices, and a and b are the
biases of the processing and output layers. The network error
produced at the processing layer is defined by

e(n) = d(n) − g(n) (77)

where d(n) denotes the desired output. The objective of the
network training is to minimize a real-valued loss function

J (n) = ‖e(n)‖2 = eH (n)e(n). (78)

From (71), the quaternion gradient of the error function is
given by

∇q∗ J (n) =
(

∂ J (n)

∂q

)H

= −1

2

∑

μ∈{1,i, j,k}

(
JH

qμ(n)e(n)
)μ (79)

where Jqμ(n) � (∂g(n)/∂qμ) is the Jacobian matrix
of g(n). We now derive the quaternion real-time recurrent
learning (QRTRL) algorithm for the QRNN in an explicit
form as

Jbμ(n) = δμ1I, Jaμ(n) = W
∂h(n)

∂aμ
(80)

where δμ1 is the Kronecker delta and I is the identity matrix.
Using the chain rule (14) and rotation rule (16), we have

∂h(n)

∂a
=

∑

μ∈{1,i, j,k}

∂h(n)

∂yμ(n)

∂yμ(n)

∂a

=
∑

μ∈{1,i, j,k}

∂h(n)

∂yμ(n)

(
∂y(n)

∂aμ

)μ

=
∑

μ∈{1,i, j,k}
�yμ(n)

(
δμ1I + U

∂h(n − 1)

∂aμ

)μ

(81)

where the Jacobian �yμ(n) = (∂h(n)/∂yμ(n)) is a diag-
onal matrix consisting of the derivatives of the activation
function �. Note that, (81) is a recursive relation about
∂h(n)/∂aμ with the initial condition ∂h(n)/∂aμ = 0

for n ≤ 0. Then, update rules for the bias at processing and
output layers are

�a(n) = α
∑

μ∈{1,i, j,k}

(
JH

aμ(n)e(n)
)μ

, �b(n) = α e(n) (82)

where α > 0 is the learning rate. Similar to (75), the update
rules for processing layer weights can be written as

�W(n) = �b(n)hH (n)

�U(n) = �a(n)hH (n − 1)

�V(n) = �a(n)xH (n). (83)

Remark 20: The QRTRL in (81) is a generalization of
CRTRL [44] to the quaternion case. The QRTRL does not
impose restrictions on the type of activation function and
all computations are directly performed in the quaternion
field. The derivation can be straightforwardly extended to
more complicated multilayered recurrent networks, such as the
Jordan network.

V. SIMULATIONS

To verify the suitability of the proposed quaternion gradient
calculation for quaternion dynamic systems enabled by the
novel GHR calculus, numerical simulations were conducted
in the MATLAB programming environment.

We first considered a performance comparison in the context
of system identification of the QLMS derived by the proposed
GHR calculus, the original QLMS, and the HR calculus-
based QLMS [10], [18], as well as with two nonquaternion
algorithms, the four-channel univariate LMS, and a pair of
bivariate complex LMS. Note that both the channel-wise LMS
and bivariate complex LMS adaptive filtering algorithms were
suboptimal, but had reduced complexity as they dealt with
quaternions as four/two independent real/complex quantities.
The system coefficient vector wo to be estimated was
composed of uniformly distributed unit quaternions with
length N = 4, given by

wo =

⎡

⎢
⎢
⎣

0.2806 + ı0.8315 + j0.4769 + κ0.0502
0.3914 + ı0.3184 + j0.8526 + κ0.1359
0.0469 + ı0.7521 + j0.4195 + κ0.5061
0.8895 + ı0.0627 + j0.1234 + κ0.4355

⎤

⎥
⎥
⎦

while the system input vector x was generated using the
quaternion-valued normal distribution. The desired signal d(n)
at time instant n was created by d(n) = wT

o x(n) + r(n),
where r(n) is the system noise, generated by quaternion-
valued white Gaussian distribution and for which the variance
was calculated so as to give the SNR at 40 dB. The
step-size α was set to α = 0.005 for all adaptive filtering algo-
rithms considered. Fig. 1 shows the learning curves, measured
in terms of the MSE averaged over 1000 trials. As expected,
the nonquaternion adaptive filtering algorithms did not achieve
acceptable performance due to the loss of mutual informa-
tion among channels, and we also observed that among all
QLMS versions in H the QLMS derived by the proposed
GHR calculus, that is (53), exhibits both fastest conver-
gence and smallest MSEs in the steady state, indicating that

258 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 27, NO. 2, FEBRUARY 2016

Fig. 1. Evolution of the MSE E(n) in decibel for the original QLMS, the
HR calculus-based QLMS, and the proposed GHR calculus-based QLMS as
well as their nonquaternion counterparts, four-channel univariate LMS and
bivariate CLMS, averaged over 1000 trials. (a) MSE evolution process of
all the considered algorithms. (b) Zoomed-in view in of the steady-state
performance, elliptic region of Fig. 1(a).

the proposed GHR calculus enables more accurate gradient
calculation as compared with the HR calculus.

We next performed a comprehensive comparison of the
performances of a nonlinear finite-impulse response (FIR)
filter trained by the proposed GHR calculus-based QNGD
learning algorithm (64) and the original QNGD [27] in a
one step-ahead signal prediction setting. The split-quaternion
tanh function [27] was employed as the activation function, as
defined in Appendix II and given in the following:

�(q) = tanh(qa) + i tanh(qb)+ j tanh(qc)+k tanh(qd) (84)

where q = qa + iqb + jqc + kqd ∈ H. The signal considered
was the chaotic Lorenz signal, governed by the following
coupled ordinary differential equations [45]:

∂x

∂ t
= α(y − x),

∂y

∂ t
= x(ρ − z) − y,

∂z

∂ t
= xy − βz

where α = 10, ρ = 28, and β = 8/3. The Lorenz attractor
was modeled as a 3-D pure quaternion by mapping the

Fig. 2. Performance of QNGD versions on a one step-ahead prediction of
the 3-D chaotic Lorenz attractor, against different step sizes and filter lengths.

three system states (x , y, and z) as q = ı x + j y + κz.
The coupled differential equations were recursively solved
using the MATLAB function ode45, with the initial condition
x(0) = 5, y(0) = 5, and z(0) = 20. To train the nonlinear
FIR filter as a one step-ahead predictor, at time instant n,
q(n) = [q(n), q(n − 1), . . . , q(n − N + 1)]T served as the
input vector, and the difference between the output y(k) and
the desired signal q(k + 1) was used for the weight update
in (64). The performance was measured using the prediction
gain Rp defined as [46]

Rp = 10log10

σ̂ 2
q

σ̂ 2
e

(85)

where σ̂ 2
q and σ̂ 2

e denote the estimated variances of the input
and the prediction error. The length of the data sequence was
set to 4000, and the last 500 samples were used to evaluate
the prediction gain Rp . Fig. 2 shows the performance in
terms of the prediction gains of both algorithms considered
against different filter lengths N and step-sizes α. In all cases,
the proposed GHR calculus provided a better prediction as
compared with the original QNGD.

The usefulness of the QRNN trained by the QRTRL algo-
rithm, which is enabled by the proposed GHR calculus,
was investigated based on a real-world 3-D nonstationary
body motion tracking experiment. The 3-D motion data were
recorded using the XSense MTx 3-DOF orientation tracker,
placed on the left and right hands, left and right arms, and
the waist of an athlete performing Tai Chi movements. The
movement of the left arm was used as a pure quaternion input
for this one step-ahead prediction experiment. The architecture
of the QRNN consisted of 10 neurons with the tap input length
N = 5; in this way, to predict the motion at time instant n+1,
that is, x(n + 1), x(n) = [x(n), x(n − 1), . . . , x(n − N + 1)]T

served as the input vector of the QRNN, as shown in (76).
For comparison, the quaternion nonlinear FIR filtered with
filter length N = 5 trained by the proposed GNGD algorithm
was also used in this experiment, as it can be regarded as a
simplified QRNN with a single input layer and an identity
output matrix W, as shown in (76). Fig. 3 shows that along
all the three dimensions, the QRNN was able to track the

XU et al.: OPTIMIZATION IN QUATERNION DYNAMIC SYSTEMS 259

Fig. 3. Tracking capabilities of a nonlinear FIR filter trained by the QNGD algorithm and a QRNN trained by the QRTRL algorithm on a one step-ahead
prediction of the 3-D left arm motion of an athlete performing Tai Chi movements. The two learning algorithms are enabled by the proposed GHR calculus.
(a) ı-component. (b) j -component. (c) κ-component.

Fig. 4. MSE performance, evaluated over all the three dimensions, of the
proposed QNGD and QRTRL algorithms for quaternion neural networks, for
the real-world 3-D body motion tracking experiment.

left arm motion of the athlete more quickly and more accu-
rately than the nonlinear FIR filter, which is further supported
by the evolution of the MSE, as shown in Fig. 4.

VI. CONCLUSION

A new formulation for the quaternion gradient and
Hessian of smooth real functions of quaternion variables
has been proposed based on the novel GHR calculus.
The QLMS, nonlinear adaptive filtering, backpropagation,
and real-time recurrent learning algorithms have been
derived in this way and shown to perform all computations
directly in the quaternion field, without the need to
increase the problem dimensionality. The GHR calculus
thus resolves the long standing problems of quaternion
analyticity, product, and chain rule, and greatly simplifies
the derivation of first- and second-order iterative
optimization procedures. The proposed framework has been
shown to serve as a basis for generic extensions of
real- and complex-valued optimization solutions. Illustrative
simulations verify the faster convergence and better
steady-state performance of the proposed algorithms over

their counterparts enabled by the original HR calculus, as
well as nonquaternion algorithms.

APPENDIX I
QLMS DERIVATION USING COMPONENT-WISE

PSEUDOGRADIENT

From Definitions 3 and 7, the weight update of QLMS can
be written component wise as

w(n + 1) − w(n) = −α∇w∗ J (n) = −1

4
α(∇wa J (n)

+ ∇wb J (n)i + ∇wc J (n) j + ∇wd J (n)k)

(86)

where α > 0 is the step size and the negative gradient
−∇w∗ J (n) defines the direction of gradient descent in (29).
Using the traditional product rule, the subgradients in (86) are
calculated as

∇wa J (n) = e∗(n)(∇wa e(n)) + (∇wa e∗(n))e(n)

∇wb J (n) = e∗(n)(∇wb e(n)) + (∇wbe∗(n))e(n)

∇wa J (n) = e∗(n)(∇wc e(n)) + (∇wc e∗(n))e(n)

∇wd J (n) = e∗(n)(∇wd e(n)) + (∇wd e∗(n))e(n). (87)

The traditional product rule is valid here owing to the real
valued nature of wa, wb, wc, and wd . We can now calculate
the following subgradient:
∇wa e(n)

= −∇wa (w
T (n)x(n))

= −∇wa

((
wT

a (n) + wT
b (n)i + wT

c (n) j + wT
d (n)k

)
x(n)

)

= −∇wa

(
wT

a (n)x(n)
) = −x(n). (88)

Similarly, the other terms in (87) can be obtained: ∇wb e(n) =
−ix(n), ∇wc e(n) = − jx(n), and ∇wd e(n) = −kx(n).
Following on (88), the subgradients of e∗(n) in (87) can be
expressed as:
∇wa e∗(n)

= −∇wa (x
H (n)w∗(n))

= −∇wa (x
H (n)(wa(n) − wb(n)i − wc(n) j − wd(n)k))

= −∇wa (x
H (n)wa(n)) = −x∗(n). (89)

260 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 27, NO. 2, FEBRUARY 2016

In a similar manner, we have ∇wb e∗(n) = x∗(n)i ,
∇wc e∗(n) = x∗(n) j and ∇wd e∗(n) = x∗(n)k. Upon
substituting (88) and (89) to (87), we arrive at

∇wa J (n) = −e∗(n)x(n) − x∗(n)e(n)

∇wb J (n) = −e∗(n)ix(n) + x∗(n)ie(n)

∇wc J (n) = −e∗(n) jx(n) + x∗(n) je(n)

∇wd J (n) = −e∗(n)kx(n) + x∗(n)ke(n). (90)

Substituting (90) to (86) yields

∇w∗ J (n) = −1

4
e∗(n)(x(n) + ix(n)i + jx(n) j + kx(n)k)

−1

4
x∗(n) (e(n) − ie(n)i − je(n) j − ke(n)k)

= 1

2
e∗(n)x∗(n) − x∗(n)R(e(n))

=
(

1

2
e∗(n) − R(e(n))

)
x∗(n)

= −1

2
e(n)x∗(n). (91)

Finally, we obtain the expression of the QLMS in the form

w(n + 1) = w(n) + α e(n)x∗(n) (92)

where the constant 1/2 in (91) is absorbed into the step
size α.

APPENDIX II
DEFINITION OF QUATERNION NONLINEAR FUNCTIONS

One of the widely used quaternion nonlinear functions is
the following split-quaternion function:

�(q) = fa(qa) + i fb(qb) + j fc(qc) + k fd(qd)

where q = qa + iqb + jqc +kqd is the quaternion variable and
fa, fb, fc, fd : R → R are the real-valued nonlinear differ-
entiable functions, such as the hyperbolic tangent functions.
Then, the GHR derivatives of the split-quaternion functions
are given by

∂�(q)

∂q
= 1

4

(
∂�(q)

∂qa
− ∂�(q)

∂qb
i − ∂�(q)

∂qc
j − ∂�(q)

∂qd
k

)

= 1

4

(
f ′
a(qa) + f ′

b(qb) + f ′
c(qc) + f ′

d (qd)
)

∂�(q)

∂q∗ = 1

4

(
∂�(q)

∂qa
+ ∂�(q)

∂qb
i + ∂�(q)

∂qc
j + ∂�(q)

∂qd
k

)

= 1

4

(
f ′
a(qa) − f ′

b(qb) − f ′
c(qc) − f ′

d (qd)
)
.

A special case is when fa(x) = fb(x) = fc(x) =
fd (x) = tanh(x). Then, the GHR derivatives of such a function
become
∂�(q)

∂q
= 1

4

(
f ′
a(qa) + f ′

b(qb) + f ′
c(qc) + f ′

d(qd)
)

= 1

4
(4 − tanh2(qa) − tanh2(qb) − tanh2(qc) − tanh2(qd))

∂�(q)

∂q∗ = 1

4

(
f ′
a(qa) − f ′

b(qb) − f ′
c(qc) − f ′

d(qd)
)

= 1

4
(tanh2(qb) + tanh2(qc) + tanh2(qd) − tanh2(qa) − 2).

This shows that the GHR derivatives of split-quaternion
functions are real valued.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their insightful comments and suggestions on how to
improve this paper.

REFERENCES

[1] N. Matsui, T. Isokawa, H. Kusamichi, F. Peperm, and H. Nishimura,
“Quaternion neural network with geometrical operators,” J. Intell. Fuzzy
Syst., vol. 15, nos. 3–4, pp. 149–164, Dec. 2004.

[2] S.-C. Pei and C.-M. Cheng, “Color image processing by using binary
quaternion-moment-preserving thresholding technique,” IEEE Trans.
Image Process., vol. 8, no. 5, pp. 614–628, May 1999.

[3] P. Arena, L. Fortuna, G. Muscato, and M. G. Xibilia, “Multilayer
perceptrons to approximate quaternion valued functions,” Neural Netw.,
vol. 10, no. 2, pp. 335–342, Mar. 1997.

[4] L. Fortuna, G. Muscato, and M. G. Xibilia, “A comparison between
HMLP and HRBF for attitude control,” IEEE Trans. Neural Netw.,
vol. 12, no. 2, pp. 318–328, Mar. 2001.

[5] C. Jahanchahi and D. P. Mandic, “A class of quaternion Kalman filters,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 3, pp. 533–544,
Mar. 2014.

[6] F. A. Tobar and D. P. Mandic, “Quaternion reproducing kernel Hilbert
spaces: Existence and uniqueness conditions,” IEEE Trans. Inf. Theory,
vol. 60, no. 9, pp. 5736–5749, Sep. 2014.

[7] Y. Xia, C. Jahanchahi, and D. P. Mandic, “Quaternion-valued echo
state networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 4,
pp. 663–673, Apr. 2015.

[8] Y. Xia, C. Jahanchahi, T. Nitta, and D. P. Mandic, “Performance bounds
of quaternion estimators,” IEEE Trans. Neural Netw. Learn. Syst.,
to be published, doi: 10.1109/TNNLS.2015.2388782.

[9] F. Shang and A. Hirose, “Quaternion neural-network-based PolSAR land
classification in Poincare-sphere-parameter space,” IEEE Trans. Geosci.
Remote Sens., vol. 52, no. 9, pp. 5693–5703, Sep. 2014.

[10] C. C. Took and D. P. Mandic, “The quaternion LMS algorithm for
adaptive filtering of hypercomplex processes,” IEEE Trans. Signal
Process., vol. 57, no. 4, pp. 1316–1327, Apr. 2009.

[11] C. C. Took and D. P. Mandic, “A quaternion widely linear adaptive
filter,” IEEE Trans. Signal Process., vol. 58, no. 8, pp. 4427–4431,
Aug. 2010.

[12] N. Le Bihan and J. Mars, “Singular value decomposition of quater-
nion matrices: A new tool for vector-sensor signal processing,” Signal
Process., vol. 84, no. 7, pp. 1177–1199, Jul. 2004.

[13] S. Buchholz and N. Le Bihan, “Polarized signal classification by
complex and quaternionic multi-layer perceptrons,” Int. J. Neural Syst.,
vol. 18, no. 2, pp. 75–85, Sep. 2008.

[14] A. J. Hanson, Visualizing Quaternions. San Francisco, CA, USA:
Morgan Kaufmann, 2005.

[15] A. Sudbery, “Quaternionic analysis,” Math. Proc. Cambridge Philos.
Soc., vol. 85, no. 2, pp. 199–225, 1979.

[16] C. A. Deavours, “The quaternion calculus,” Amer. Math. Monthly,
vol. 80, no. 9, pp. 995–1008, 1979.

[17] S. De Leo and P. P. Rotelli, “Quaternionic analyticity,” Appl. Math. Lett.,
vol. 16, no. 7, pp. 1077–1081, 2003.

[18] D. P. Mandic, C. Jahanchahi, and C. C. Took, “A quaternion gradient
operator and its applications,” IEEE Signal Process. Lett., vol. 18, no. 1,
pp. 47–50, Jan. 2011.

[19] W. Wirtinger, “Zur formalen theorie der funktionen von mehr komplexen
veränderlichen,” Math. Ann., vol. 97, no. 1, pp. 357–375, 1927.

[20] D. H. Brandwood, “A complex gradient operator and its application in
adaptive array theory,” IEE Proc. F, Commun., Radar Signal Process.,
vol. 130, no. 1, pp. 11–16, Feb. 1983.

[21] K. Kreutz-Delgado. (2009). “The complex gradient operator and the
CR-calculus.” [Online]. Available: http://arxiv.org/abs/0906.4835

[22] T. A. Ell and S. J. Sangwine, “Quaternion involutions and anti-
involutions,” Comput. Math. Appl., vol. 53, no. 1, pp. 137–143, 2007.

[23] D. Xu, C. Jahanchahi, C. C. Took, and D. P. Mandic. (2014).
“Quaternion derivatives: The GHR calculus.” [Online]. Available:
http://arxiv.org/abs/1409.8168v1

[24] A. van den Bos, “Complex gradient and Hessian,” IEE Proc.-Vis, Image
Signal Process., vol. 141, no. 6, pp. 380–383, Dec. 2011.

XU et al.: OPTIMIZATION IN QUATERNION DYNAMIC SYSTEMS 261

[25] L. Sorber, M. Van Barel, and L. De Lathauwer, “Unconstrained
optimization of real functions in complex variables,” SIAM J. Optim.,
vol. 22, no. 3, pp. 879–898, Jul. 2012.

[26] H. Li and T. Adali, “A class of complex ICA algorithms based on
the kurtosis cost function,” IEEE Trans. Neural Netw., vol. 19, no. 3,
pp. 408–420, Mar. 2008.

[27] B. C. Ujang, C. C. Took, and D. P. Mandic, “Split quaternion nonlinear
adaptive filtering,” Neural Netw., vol. 23, no. 3, pp. 426–434, Apr. 2010.

[28] B. C. Ujang, C. C. Took, and D. P. Mandic, “Quaternion-valued
nonlinear adaptive filtering,” IEEE Trans. Neural Netw., vol. 22, no. 8,
pp. 1193–1206, Aug. 2011.

[29] D. P. Mandic and S. L. Goh, Complex Valued Nonlinear Adaptive Filters:
Noncircularity, Widely Linear and Neural Models. New York, NY, USA:
Wiley, 2009.

[30] J. P. Ward, Quaternions and Cayley Numbers: Algebra and Applications.
Boston, MA, USA: Kluwer, 1997.

[31] F. Zhang, “Quaternions and matrices of quaternions,” Linear Algebra
Appl., vol. 251, pp. 21–57, Jan. 1997.

[32] D. Xu and D. P. Mandic, “The theory of quaternon matrix derivatives,”
IEEE Trans. Signal Process., vol. 63, no. 6, pp. 1543–1556, Mar. 2015.

[33] C. C. Took, C. Jahanchahi, and D. P. Mandic, “A unifying framework for
the analysis of quaternion valued adaptive filters,” in Proc. Conf. Rec.
45th Asilomar Conf. Signals, Syst. Comput., Nov. 2011, pp. 1771–1774.

[34] J. Navarro-Moreno, “ARMA prediction of widely linear systems by
using the innovations algorithm,” IEEE Trans. Signal Process., vol. 56,
no. 7, pp. 3061–3068, Jul. 2008.

[35] C. C. Took and D. P. Mandic, “Augmented second-order statis-
tics of quaternion random signals,” Signal Process., vol. 91, no. 2,
pp. 214–224, Feb. 2011.

[36] J. Vía, D. Ramírez, and I. Santamaría, “Properness and widely linear
processing of quaternion random vectors,” IEEE Trans. Inf. Theory,
vol. 56, no. 7, pp. 3502–3515, Jul. 2010.

[37] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New York,
NY, USA: Springer-Verlag, 1999.

[38] S. O. Haykin, Adaptive Filter Theory, 4th ed. Upper Saddle River, NJ,
USA: Prentice-Hall, 2002.

[39] F. Zhang, Ed., The Schur Complement and Its Applications. Dordrecht,
The Netherlands: Springer-Verlag, 2005.

[40] B. Widrow, J. McCool, and M. Ball, “The complex LMS algorithm,”
Proc. IEEE, vol. 63, no. 4, pp. 719–720, Apr. 1975.

[41] H. Leung and S. Haykin, “The complex backpropagation algorithm,”
IEEE Trans. Signal Process., vol. 39, no. 9, pp. 2101–2104, Sep. 1991.

[42] T. Nitta, “An extension of the back-propagation algorithm to complex
numbers,” Neural Netw., vol. 10, no. 8, pp. 1391–1415, Nov. 1997.

[43] D. P. Mandic and J. A. Chambers, Recurrent Neural Networks for
Prediction: Learning Algorithms, Architectures and Stability. New York,
NY, USA: Wiley, 2001.

[44] S. L. Goh and D. P. Mandic, “An augmented CRTRL for complex-valued
recurrent neural networks,” Neural Netw., vol. 20, no. 10, pp. 1061–1066,
Dec. 2007.

[45] S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to
Physics, Biology, Chemistry, and Engineering (Studies in Nonlinearity).
Boulder, CO, USA: Westview, 2001.

[46] S. Haykin and L. Li, “Nonlinear adaptive prediction of nonstationary
signals,” IEEE Trans. Signal Process., vol. 43, no. 2, pp. 526–535,
Feb. 1995.

Dongpo Xu received the B.S. degree in applied
mathematics from Harbin Engineering University,
Harbin, China, in 2004, and the Ph.D. degree in
computational mathematics from the Dalian Univer-
sity of Technology, Dalian, China, in 2009.

He was a Lecturer with the College of Science,
Harbin Engineering University, from 2009 to 2014,
a Visiting Scholar with the Department of Elec-
trical and Electronic Engineering, Imperial College
London, London, U.K., from 2013 to 2014. He is
currently a Lecturer with the School of Mathematics

and Statistics, Northeast Normal University, Changchun, China. His current
research interests include neural networks, machine learning, and signal
processing.

Yili Xia (M’11) received the B.Eng. degree in
information engineering from Southeast University,
Nanjing, China, in 2006, the M.Sc. (Hons.) degree
in communications and signal processing from
the Department of Electrical and Electronic Engi-
neering, Imperial College London, London, U.K.,
in 2007, and the Ph.D. degree in adaptive signal
processing from Imperial College London, in 2011.

He has been a Research Associate with Imperial
College London since 2011. He is currently an
Associate Professor with the School of Information

and Engineering, Southeast University. His current research interests include
linear and nonlinear adaptive filters, and complex valued and quaternion
valued statistical analysis.

Danilo P. Mandic (M’99–SM’03–F’12) is currently
a Professor of Signal Processing with Imperial
College London, London, U.K., where he has been
involved in nonlinear adaptive signal processing
and nonlinear dynamics. He has been a Guest
Professor with the Katholieke Universiteit Leuven,
Leuven, Belgium, the Tokyo University of Agricul-
ture and Technology, Tokyo, Japan, and Westminster
University, London, and a Frontier Researcher with
the RIKEN Brain Science Institute, Tokyo. His
publications include two research monographs titled

Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures
and Stability (Wiley, 2001) and Complex Valued Nonlinear Adaptive Filters:
Noncircularity, Widely Linear and Neural Models (Wiley, 2009). He has edited
a book titled Signal Processing for Information Fusion (Springer, 2008), and
has over 200 publications on signal and image processing.

Prof. Mandic has been a member of the IEEE Technical Committee on
Signal Processing Theory and Methods, and an Associate Editor of the IEEE
Signal Processing Magazine, the IEEE TRANSACTIONS ON CIRCUITS AND

SYSTEMS II, the IEEE TRANSACTIONS ON SIGNAL PROCESSING, and the
IEEE TRANSACTIONS ON NEURAL NETWORKS. He has produced award
winning papers and products resulting from his collaboration with the industry.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

