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Quaternion derivatives exist only for a very restricted class
of analytic (regular) functions; however, in many applications,
functions of interest are real-valued and hence not analytic,
a typical case being the standard real mean square error
objective function. The recent HR calculus is a step forward and
provides a way to calculate derivatives and gradients of both
analytic and non-analytic functions of quaternion variables;
however, the HR calculus can become cumbersome in complex
optimization problems due to the lack of rigorous product
and chain rules, a consequence of the non-commutativity of
quaternion algebra. To address this issue, we introduce the
generalized HR (GHR) derivatives which employ quaternion
rotations in a general orthogonal system and provide the left-
and right-hand versions of the quaternion derivative of general
functions. The GHR calculus also solves the long-standing
problems of product and chain rules, mean-value theorem and
Taylor’s theorem in the quaternion field. At the core of the
proposed GHR calculus is quaternion rotation, which makes
it possible to extend the principle to other functional calculi
in non-commutative settings. Examples in statistical learning
theory and adaptive signal processing support the analysis.

1. Introduction
Quaternions have become a standard tool in many modern
areas, including image processing [1,2], aerospace and satellite
tracking [3], modelling of wind profile in renewable energy [4]
and in the processing of polarized waves [5,6]. Compared to real
vector algebra, quaternion algebra [7] has been shown to both
reduce the number of parameters in the modelling and offer
advantages in terms of functional simplicity and accuracy [8,9].
The most common optimization approach in applications is based
on the gradient of the objective function; one such algorithm

2015 The Authors. Published by the Royal Society under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
use, provided the original author and source are credited.
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is the quaternion least mean square (QLMS) [4]. The objective functions in practical applications are
typically based on the mean square error (MSE), a real function of quaternion variables, and are thus not
analytic according to standard quaternion analysis [10–12]. This is a major obstacle to a more widespread
use of quaternions in learning systems.

The existing ways to find the derivative of a real function f (q) with respect to the unknown quaternion
variable q are:

— The pseudo-derivative, which considers f as a function of the four real components qa, qb, qc and
qd of the quaternion variable q, and then takes componentwise real derivatives with respect to
the real variables qa, qb, qc and qd. In other words, the real-valued function f : H → R is treated
as a real differentiable mapping between R

4 and R. This leads to unnecessarily long expressions
and is especially cumbersome and tedious in complex optimization problems and when dealing
with nonlinear functions.

— The HR calculus, which is compact and elegant [13], as it finds formal derivatives of f with
respect to the quaternion variables and their involutions in a direct way. This applies to both
real functions of quaternion variables and nonlinear functions. This approach is based on the
differentials of q, qi, qj, qk, which are independent in the quaternion field, as shown in lemmas A.1
and A.2. The advantage of using HR derivatives is that the computations and analysis are
kept in the quaternion domain rather than using quaternion-to-real transformations, and many
algorithms can be readily extended from the complex to the quaternion domain.

Although the HR calculus is a significant step forward, the product and chain rules are not defined within
the HR calculus, which complicates the calculation of derivatives of, for example, nonlinear quaternion
functions. Other functional calculi [10–12,14] in quaternion analysis similarly suffer from this obstacle.

The aim of this work is to revisit the HR calculus [13] and to equip it with the product rule and chain
rule in order to solve these long-standing problems in quaternion calculus. Motivated by the complex
CR calculus [15–17], we first consider a general orthogonal system which, in conjunction with the HR
calculus, introduces the generalized HR (GHR) calculus. The GHR calculus comprises both the left- and
right-hand versions of quaternion derivative; these are necessary to consider due to non-commutativity
of quaternion product. In particular, we show that for real functions of quaternion variables, such as
the standard MSE objective function, the left and right GHR derivatives are identical. An important
consequence of this property is that within the GHR calculus, the choice of the left/right GHR derivative
is irrelevant for practical applications of quaternion optimization; this is currently a major source of
confusion in the quaternion community. Another consequence of the novel product rule is that it not
only enables the calculation of the GHR derivatives for general functions of quaternion variables, but
also it is generic—if one function within the product is real-valued, this novel product rule degenerates
into the traditional product rule, as shown in corollary 4.11. A family of chain rules is also introduced
in order to calculate the derivatives of nonlinear functions of quaternion variables, which include
complex- and real-valued functions as degenerate quaternion functions. Since at the core of the GHR
calculus is the quaternion rotation, this approach can be naturally extended to other functional calculi
in non-commutative settings. Finally, we revisit two fundamental theorems in quaternion calculus—the
quaternion mean value theorem and quaternion Taylor’s theorem—and derive them in a compact and
generic form, based on the GHR derivatives. The GHR calculus therefore provides a solution to some
long-standing mathematical problems [18] and promises a tool for a more widespread use of quaternions
in practical applications. Illustrative examples in statistical signal processing support the analysis.

2. Background on quaternions
2.1. Quaternion algebra
Quaternions are an associative but not commutative algebra over R, defined as

H = span{1, i, j, k} � {qa + iqb + jqc + kqd | qa, qb, qc, qd ∈ R}, (2.1)

where {1, i, j, k} is a basis of H, and the imaginary units i, j and k satisfy i2 = j2 = k2 = ijk = −1, which
implies ij = k = −ji, jk = i = −kj, ki = j = −ik. For any quaternion q = qa + iqb + jqc + kqd = Sq + Vq, the
scalar (real) part is denoted by qa = Sq = R(q), whereas the vector part Vq = I(q) = iqb + jqc + kqd spans
the three imaginary parts. For p, q ∈ H, the quaternion product is given by pq = SpSq − Vp · Vq + SpVq +
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SqVp + Vp × Vq, where the symbols ′·′ and ′×′ denote, respectively, the standard inner product and vector
product. The presence of vector product makes the quaternion product non-commutative, i.e. in general
for p, q ∈ H, pq �= qp. The conjugate of a quaternion q is defined as q∗ = Sq − Vq, while the conjugate of a
quaternion product satisfies (pq)∗ = q∗p∗. The modulus of a quaternion is defined as |q| =√

qq∗, and thus
|pq| = |p||q|. The inverse of a quaternion q �= 0 is q−1 = q∗/|q|2 which yields an important consequence
(pq)−1 = q−1p−1. If |q| = 1, we call q a unit quaternion. A quaternion q is said to be pure if R(q) = 0. For
pure quaternions, q∗ = −q and q2 = −|q|2. Thus, a pure unit quaternion is a square root of −1; examples
are the imaginary units i, j and k.

Quaternions can also be written in the polar form q = |q|(cos θ + q̂ sin θ ), where q̂ = Vq/|Vq| is a pure
unit quaternion and θ = arccos(R(q)/|q|) ∈ R is the angle (or argument) of the quaternion. We shall next
introduce the quaternion rotation and involution operators.

Definition 2.1 (quaternion rotation [19]). For any quaternion q, the transformation

qμ � μqμ−1 (2.2)

geometrically describes a three-dimensional rotation of the vector part of q by an angle 2θ about the
vector part of μ, where μ = |μ|(cos θ + μ̂ sin θ ) is any non-zero quaternion.

Properties of the quaternion rotation (see [6,20] used in this work) are

(pq)μ = pμqμ, pq = qpp = qp(q∗), ∀ p, q ∈ H (2.3)

and

qμν = (qν )μ, qμ∗ � (q∗)μ = (qμ)∗ � q∗μ, ∀ ν, μ ∈ H. (2.4)

Note that the representation in (2.1) can be generalized to a general orthogonal basis {1, iμ, jμ, kμ}, where
the following properties hold [19]:

iμiμ = jμjμ = kμkμ = iμjμkμ = −1. (2.5)

Definition 2.2 (quaternion involution [21]). The involution of a quaternion q around a pure unit
quaternion η is given by

qη = ηqη−1 = ηqη∗ = −ηqη

and represents a rotation of q about η by π .

Of particular interest to this work are quaternion involutions around the imaginary units i, j, k, given
by [21]

q = qa + iqb + jqc + kqd, qi = −iqi = qa + iqb − jqc − kqd

qj = −jqj = qa − iqb + jqc − kqd, qk = −kqk = qa − iqb − jqc + kqd,

⎫⎬
⎭ (2.6)

which allows us to express the four real-valued components of a quaternion q as [13,21]

qa = 1
4

(q + qi + qj + qk), qb = 1
4i

(q + qi − qj − qk), (2.7)

qc = 1
4j

(q − qi + qj − qk), qd = 1
4k

(q − qi − qj + qk). (2.8)

This is analogous to the complex case, where x = 1
2 (z + z∗) and y = −(i/2)(z − z∗) for any z = x + iy ∈ C

[22]. Note that the quaternion conjugation operator (·)∗ is also an involution and can be written in terms
of q, qi, qj and qk as

q∗ = 1
2 (−q + qi + qj + qk). (2.9)

2.2. Analytic functions inH

To arrive at the notion of analytic (regular, monogenic) function in H, recall that due to the non-
commutativity of quaternion product, there are two ways to express the quotient in the definition of
quaternion derivative, as shown below.
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Proposition 2.3 (Sudbery [10]). Let D ⊆ H be a simply connected domain of definition of the function f : D →

H. If for any q ∈ D

lim
h→0

[( f (q + h) − f (q))h−1] (2.10)

exists in H, then necessarily f (q) = ωq + λ for some ω, λ ∈ H. If for any q ∈ D

lim
h→0

[h−1( f (q + h) − f (q))] (2.11)

exists in H, then necessarily f (q) = qν + λ for some ν, λ ∈ H.

Proposition 2.3 is discussed in [10,23] and indicates that the traditional definitions of derivative in
(2.10) and (2.11) are too restrictive and apply only to linear functions of quaternions. One attempt to
relax this constraint is due to Fueter [24,25], whose analyticity condition is termed the Cauchy–Riemann–
Fueter (CRF) equation, and is given by [10,11]

Left CRF :
∂f
∂qa

+ ∂f
∂qb

i + ∂f
∂qc

j + ∂f
∂qd

k = 0

Right CRF :
∂f
∂qa

+ i
∂f
∂qb

+ j
∂f
∂qc

+ k
∂f
∂qd

= 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.12)

The limitations of the CRF condition were pointed out by Gentili & Struppa in [14,26], who showed that
general polynomial functions (even the identity f (q) = q) satisfy neither the left CRF nor the right CRF. To
further relax the analyticity condition, a local analyticity condition (LAC) was proposed in [12], by using
the polar form of a quaternion, to give

Left LAC :
∂f
∂qa

+
(

qb
∂f
∂qa

+ qc
∂f
∂qc

+ qd
∂f
∂qd

)
Vq

|Vq|2
= 0

Right LAC :
∂f
∂qa

+ Vq

|Vq|2
(

qb
∂f
∂qa

+ qc
∂f
∂qc

+ qd
∂f
∂qd

)
= 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.13)

where q = qa + Vq and Vq = iqb + jqc + kqd. The theory of local analyticity is now well developed, and we
refer the reader to [14,26,27] for the slice regular functions and to [28] for applications. More recent work
in this area includes [29,30], and references therein. The advantage of the LAC is that both the polynomial
functions of q and some elementary functions satisfy either the left LAC or the right LAC. However, in
general, the products and compositions of two LAC functions f and g no longer meet the local analytic
condition. For example, if f (q) = q and g(q) = ωq, ω ∈ H, then f and g satisfy the left LAC, but the product
fg = qωq does not satisfy the left LAC. The same applies for the right LAC, when the function g is written
as g(q) = qω.

Quaternion derivative is defined only for analytic functions; however, in optimization it is often
required that the objective function to be minimized or maximized is real-valued. A typical example
is the mean square type objective function given by

J(w) = ‖f (w)‖2. (2.14)

Note that according to the definition of analytic (regular) function given in [10–12,14,26,27], the function
J is not analytic. In order to take its derivatives (but not limited to only such real quadratic functions),
we can, however, use the HR calculus [13] which extends the complex CR calculus [15,17,31] to the
quaternion field. This generalization is not trivial, and the rules of the CR and HR calculus are different;
for more detail see §3.

Remark 2.4. It is important to note that the left (right) terminology introduced in (2.12), (2.13) and
in the sequel differs from that in [10–12,14,27]. We adopt the use of the left (right) terminology based
on the position of ∂f/∂qa, ∂f/∂qb, ∂f/∂qc and ∂f/∂qd, rather than on the positions of imaginary units
i, j, k. Although this is only a notational difference, we later show that the left derivatives (using this
convenience) in definitions 3.2 and 4.1 are in this way equipped with a left constant rule (4.3), that is, the
left constant comes out from the left derivative of product, and the left derivatives stand on the left side of
the quaternion differential in (A 12) and (A 16). This also allows for a consistent, intuitive and physically
meaningful use of terminology.
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3. The HR calculus
Optimization problems involving quaternions arise in a number of applications in control theory, signal
processing, robotics and biomechanics. Solutions often require a first- or second-order approximation of
the objective function; however, real functions of quaternion variables are essentially non-analytic. The
recently proposed HR calculus [13] solves these issues through the use of quaternion involutions. The
HR derivatives (the derivation of HR calculus is given in appendix A) are introduced below.

Definition 3.1 (real-differentiability [10]). A function f (q) = fa(qa, qb, qc, qd) + ifb(qa, qb, qc, qd) +
jfc(qa, qb, qc, qd) + kfd(qa, qb, qc, qd) is called real differentiable when fa(qa, qb, qc, qd), fb(qa, qb, qc, qd),
fc(qa, qb, qc, qd) and fd(qa, qb, qc, qd) are differentiable as functions of real variables qa, qb, qc and qd.

Definition 3.2 (the HR derivatives [13]). If f : H → H is real-differentiable, then the formal left HR
derivatives of the function f with respect to {q, qi, qj, qk} and {q∗, qi∗, qj∗, qk∗} are defined as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f
∂q

,
∂f
∂q∗

∂f
∂qi

,
∂f

∂qi∗

∂f

∂qj
,

∂f

∂qj∗

∂f
∂qk

,
∂f

∂qk∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

= 1
4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f
∂qa

,
∂f
∂qa

∂f
∂qb

, − ∂f
∂qb

∂f
∂qc

, − ∂f
∂qc

∂f
∂qd

, − ∂f
∂qd

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

⎡
⎢⎢⎢⎣

1 1 1 1
−i −i i i
−j j −j j
−k k k −k

⎤
⎥⎥⎥⎦ (3.1)

and the formal right HR derivatives of the function f are defined as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂rf
∂q

,
∂rf
∂q∗

∂rf
∂qi

,
∂rf
∂qi∗

∂rf

∂qj
,

∂rf

∂qj∗

∂rf
∂qk

,
∂rf
∂qk∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1
4

⎡
⎢⎢⎢⎣

1 −i −j −k
1 −i j k
1 i −j k
1 i j −k

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f
∂qa

,
∂f
∂qa

∂f
∂qb

, − ∂f
∂qb

∂f
∂qc

, − ∂f
∂qc

∂f
∂qd

, − ∂f
∂qd

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.2)

where ∂f/∂qa, ∂f/∂qb, ∂f/∂qc and ∂f/∂qd are the partial derivatives of f with respect to qa, qb, qc and qd.

Remark 3.3. It is important to note that the right HR derivatives exist if and only if the left HR
derivatives also exist. The only difference between the left HR derivatives and the right HR derivatives is
in the position of the partial derivative ∂f/∂qa, ∂f/∂qb, ∂f/∂qc and ∂f/∂qd. Within the left HR derivatives,
∂f/∂qa, ∂f/∂qb, ∂f/∂qc and ∂f/∂qd stand on the left side and imaginary units i, j, k on the right side (cf.
(3.1)). It is exactly the opposite case for right HR derivatives. Note that the terms ∂f/∂qa, ∂f/∂qb, ∂f/∂qc

and ∂f/∂qd cannot swap positions with the imaginary units i, j, k because of the non-commutative nature
of quaternion product.

3.1. The validity of the traditional product rule
A straightforward use of the HR derivatives may become too tedious for complicated functions, for
example, for the power function f (q) = qn. This is because the HR calculus does not satisfy the traditional
product rule which would simplify the calculation. Indeed, for two quaternion functions f (q) and g(q),
in general we have ∂( fg)/∂q �= f (∂g/∂q) + ∂f/∂qg. We shall illustrate this difficulty through the following
two examples.

Example 3.4. Find the HR derivative of the function f : H → H given by

f (q) = q2 = q2
a − (q2

b + q2
c + q2

d) + 2qa(iqb + jqc + kqd), (3.3)

where q = qa + iqb + jqc + kqd, qa, qb, qc, qd ∈ R.
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Solution: By definition 3.2, the left HR derivative of q2 becomes

∂(q2)
∂q

= 1
4

(
∂q2

∂qa
− ∂q2

∂qb
i − ∂q2

∂qc
j − ∂q2

∂qd
k

)

= 1
4

(2qa + 2(iqb + jqc + kqd) − (−2qb + 2qai)i − (−2qc + 2qaj)j − (−2qd + 2qak)k)

= 1
4

(8qa + 4qbi + 4qcj + 4qdk) = q + R(q). (3.4)

Alternatively, q(∂q/∂q) + (∂q/∂q)q = 2q. This shows the traditional product rule is not valid.

Example 3.5. Find the HR derivative of the function f : H → H given by

f (q) = |q|2 = qq∗. (3.5)

Solution: By definition 3.2, the HR derivative of |q|2 is

∂(|q|2)
∂q

= 1
4

(
∂|q|2
∂qa

− ∂|q|2
∂qb

i − ∂|q|2
∂qc

j − ∂|q|2
∂qd

k

)
= 1

4
(2qa − 2qbi − 2qcj − 2qdk) = 1

2
q∗, (3.6)

while q(∂q∗/∂q) + (∂q/∂q)q∗ = −q/2 + q∗, and thus the traditional product rule is not valid.

Remark 3.6. Examples 3.4 and 3.5 show that the left HR derivatives do not admit the traditional
product rule. Similarly, the traditional product rule is not applicable for the right HR derivative in
definition 3.2.

4. The generalization of HR calculus: generalized HR derivatives
We now introduce the novel GHR derivatives which comprise both the product and chain rules. This is
archived by replacing the basis {1, i, j, k} in definition 3.2 with a general orthogonal basis {1, iμ, jμ, kμ}, see
also (2.5). The derivation of the GHR calculus is similar to that of the HR calculus in appendix A and is
omitted for space considerations.

Definition 4.1 (the generalized HR derivatives). If f : H → H is real-differentiable, then the left GHR
derivatives of the function f with respect to qμ and qμ∗ (μ �= 0, μ ∈ H) are defined as

∂f
∂qμ

= 1
4

(
∂f
∂qa

− ∂f
∂qb

iμ − ∂f
∂qc

jμ − ∂f
∂qd

kμ

)

and
∂f

∂qμ∗ = 1
4

(
∂f
∂qa

+ ∂f
∂qb

iμ + ∂f
∂qc

jμ + ∂f
∂qd

kμ

)
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.1)

while the right GHR derivatives are defined as

∂rf
∂qμ

= 1
4

(
∂f
∂qa

− iμ
∂f
∂qb

− jμ
∂f
∂qc

− kμ ∂f
∂qd

)

and
∂rf

∂qμ∗ = 1
4

(
∂f
∂qa

+ iμ
∂f
∂qb

+ jμ
∂f
∂qc

+ kμ ∂f
∂qd

)
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.2)

where q = qa + iqb + jqc + kqd, qa, qb, qc, qd ∈ R, ∂f/∂qa, ∂f/∂qb, ∂f/∂qc and ∂f/∂qd are the partial derivatives
of f with respect to qa, qb, qc and qd, while the set {1, iμ, jμ, kμ} is an orthogonal basis of H.

Remark 4.2. The GHR derivatives are more concise and physically more intuitive than the HR
derivatives, which are a special case of the GHR derivatives for μ = {1, i, j, k} (definitions 3.2 and 4.1).
The concept of the GHR derivative can also be applied to other orthogonal systems, such as {1, η, η′, η′′}
in [32].

Proposition 4.3 (constant rule). Let f : H → H be real-differentiable. Then, the following holds:

∂(νf )
∂qμ

= ν
∂f
∂qμ

,
∂( fν)
∂qμ

= ∂f
∂qνμ

ν (4.3)

and
∂r( fν)
∂qμ

= ∂rf
∂qμ

ν,
∂r(νf )
∂qμ

= ν
∂rf

∂qν∗μ , (4.4)

where μ, ν ∈ H are non-zero quaternion constants.
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Proof. By the definition of the left GHR derivative in (4.1), we have

∂(νf )
∂qμ

= 1
4

(
∂(νf )
∂qa

− ∂(νf )
∂qb

iμ − ∂(νf )
∂qc

jμ − ∂(νf )
∂qd

kμ

)

= 1
4

(
ν

∂f
∂qa

− ν
∂f
∂qb

iμ − ν
∂f
∂qc

jμ − ν
∂f
∂qd

kμ

)
= ν

∂f
∂qμ

. (4.5)

Using the equality (qμ)ν = qνμ in (2.4), the second equality of (4.3) is proved as

∂( fν)
∂qμ

= 1
4

(
∂(νf )
∂qa

− ∂(νf )
∂qb

iμ − ∂(νf )
∂qc

jμ − ∂(νf )
∂qd

kμ

)

= 1
4

(
∂f
∂qa

ν − ∂f
∂qb

νiμ − ∂f
∂qc

νjμ − ν
∂f
∂qd

νkμ

)

= 1
4

(
∂f
∂qa

− ∂f
∂qb

iνμ − ∂f
∂qc

jνμ − ν
∂f
∂qd

kνμ

)
ν = ∂f

∂qνμ
ν. (4.6)

Hence, (4.3) immediately follows, and (4.4) can be proved in a similar way. �

Remark 4.4. It is important to note that if a function f is premultiplied by a constant η in the first
equality of (4.3), then the left GHR derivative of the product is equal to the left GHR derivative of f
premultiplied by the constant, but not for postmultiplication. In other words, the left constant ν can
come out from the derivative of the product; for this reason we refer to (4.1) as the left GHR derivative.
The equalities in (4.4) complement those in (4.3). Thus, we refer to the derivatives in (4.2) as the right
GHR derivatives, denoted by ∂r in order to distinguish them from the left GHR derivatives in (4.1).

Proposition 4.5 (conjugate rule). Let f : H → H be real-differentiable. Then, the following holds:

∂f
∂qμ

=
(

∂rf ∗

∂qμ∗

)∗
and

∂f
∂qμ∗ =

(
∂rf ∗

∂qμ

)∗
. (4.7)

Proof. By the definition of the right GHR derivative in (4.2), we have

(
∂rf ∗

∂qμ∗

)∗
= 1

4

(
∂f ∗

∂qa
+ iμ

∂f ∗

∂qb
+ jμ

∂f ∗

∂qc
+ kμ ∂f ∗

∂qd

)∗
. (4.8)

Using the equalities (pq)∗ = q∗p∗ and (q∗)μ = (qμ)∗ in (2.4), the above equality becomes

(
∂rf ∗

∂qμ∗

)∗
= 1

4

(
∂f
∂qa

− ∂f
∂qb

iμ − ∂f
∂qc

jμ − ∂f
∂qd

kμ

)
= ∂f

∂qμ
. (4.9)

Hence, the first part of (4.7) follows, and the second part can be proved in a similar way. �

Proposition 4.6 (rotation rule). Let f : H → H be real-differentiable. Then the following holds:

(
∂f
∂qμ

)ν

= ∂f ν

∂qνμ
and

(
∂f

∂qμ∗

)ν

= ∂f ν

∂qνμ∗ . (4.10)

Proof. Using the equalities in (2.4) and the left GHR derivative in (4.1), we have
(

∂f
∂qμ

)ν

= 1
4

(
∂f
∂qa

− ∂f
∂qb

iμ − ∂f
∂qc

jμ − ∂f
∂qd

kμ

)ν

= 1
4

(
∂f ν

∂qa
− ∂f ν

∂qb
iνμ − ∂f ν

∂qc
jνμ − ∂f ν

∂qd
kνμ

)
= ∂f ν

∂qνμ
. (4.11)

Hence, the first part of (4.10) follows, and the second part can be proved in a similar way. �

Corollary 4.7. Let f : H → H be real-differentiable. Then, the following holds:

(
∂f
∂qη

)η

= ∂f η

∂q
and

(
∂f

∂qη∗

)η

= ∂f η

∂q∗ , ∀ η ∈ {1, i, j, k}. (4.12)

Proof. Since ∂f/∂qηη = ∂f/∂q for any η ∈ {1, i, j, k}, then the proof follows directly from
proposition 4.6. �
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Proposition 4.8. Let f : H → R be real-differentiable. Then, the following holds:

∂f
∂qμ

=
(

∂f
∂qμ∗

)∗
= ∂rf

∂qμ
and

∂f
∂qμ∗ =

(
∂f
∂qμ

)∗
= ∂rf

∂qμ∗ . (4.13)

Proof. Since f is real-valued, its partial derivatives ∂f/∂qa, ∂f/∂qb, ∂f/∂qc and ∂f/∂qd are real numbers,
which yields (∂f/∂ξ )∗ = ∂f/∂ξ , where ξ ∈ {qa, qb, qc, qd}. Using the equality (qμ)∗ = (q∗)μ in (2.4) and the
left GHR derivative in (4.1), we have

(
∂f

∂qμ∗

)∗
= 1

4

(
∂f
∂qa

+ ∂f
∂qb

iμ + ∂f
∂qc

jμ + ∂f
∂qd

kμ

)∗

= 1
4

(
∂f
∂qa

− iμ
∂f
∂qb

− jμ
∂f
∂qc

− kμ ∂f
∂qd

)
= ∂rf

∂qμ

= 1
4

(
∂f
∂qa

− ∂f
∂qb

iμ − ∂f
∂qc

jμ − ∂f
∂qd

kμ

)
= ∂f

∂qμ
. (4.14)

Hence, the first part of (4.13) follows, and the second part can be proved in a similar way. �

Remark 4.9. From the identity (4.13), observe that the left GHR derivative is equal to the right
GHR derivative if the function f is real-valued. This result is instrumental for practical applications
of quaternion optimization, where the objective function (or cost function) is frequently real-valued.
By virtue of the GHR calculus, the choice of the left/right GHR derivative therefore becomes obsolete
as shown in (4.13). In the sequel, without loss in generality we shall mainly focus on the left GHR
derivatives.

4.1. The novel product rule
We now introduce a novel product rule into quaternion analysis and show that the traditional product
rule is a special case of the proposed product rule in corollary 4.11.

Theorem 4.10 (product rule of left GHR). If the functions f , g : H → H are real-differentiable, then so too is
their product fg, so that

∂( fg)
∂qμ

= f
∂g
∂qμ

+ ∂f
∂qgμ

g and
∂( fg)
∂qμ∗ = f

∂g
∂qμ∗ + ∂f

∂qgμ∗ g, (4.15)

where ∂f/∂qgμ and ∂f/∂qgμ∗ can be obtained by replacing μ with gμ in definition 4.1.

Proof. The proof is given in appendix B. �

Corollary 4.11. If the functions f : H → H and g : H → R are real-differentiable, then their product fg satisfies
the traditional product rule

∂( fg)
∂qμ

= f
∂g
∂qμ

+ ∂f
∂qμ

g and
∂( fg)
∂qμ∗ = f

∂g
∂qμ∗ + ∂f

∂qμ∗ g, (4.16)

where ∂f/∂qμ and ∂f/∂qμ∗ are the left GHR derivatives in definition 4.1.

Proof. Since qgμ = qμ and qgμ∗ = qμ∗ for a real function g : H → R, the corollary follows. �

We now present some GHR derivatives of nonlinear quaternion functions enabled by the GHR
calculus. These are very useful in applications, such as in nonlinear adaptive filters and quaternion-
valued neural networks.

Example 4.12 (split-quaternion function). Find the GHR derivative of a split-quaternion function
f : H → H given by

f (q) = ϕ(qa) + jϕ(qb) + jϕ(qc) + kϕ(qd), (4.17)

where q = qa + iqb + jqc + kqd ∈ R and ϕ : R → R is a real-valued differentiable function.
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Solution: By the definition of the left GHR derivatives in (4.1), it follows that

∂f (q)
∂q

= 1
4

(
∂f (q)
∂qa

− ∂f (q)
∂qa

i − ∂f (q)
∂qa

j − ∂f (q)
∂qa

k
)

= 1
4

(ϕ′(qa) + ϕ′(qb) + ϕ′(qc) + ϕ′(qd)) (4.18)

and

∂f (q)
∂q∗ = 1

4

(
∂f (q)
∂qa

+ ∂f (q)
∂qa

i + ∂f (q)
∂qa

j + ∂f (q)
∂qa

k
)

= 1
4

(ϕ′(qa) − ϕ′(qb) − ϕ′(qc) − ϕ′(qd)). (4.19)

This shows that the GHR derivatives of the split-quaternion function are real-valued.

Example 4.13 (power function). Find the GHR derivative of the power function f : H → H given by

f (q) = qn, (4.20)

where n is any positive integer.

Solution: Using the product rule in theorem 4.10, it follows that

∂qn

∂qμ
μ = ∂(qqn−1)

∂qμ
μ = q

∂qn−1

∂qμ
μ + ∂q

∂qqn−1μ
qn−1μ = q

∂qn−1

∂qμ
μ + R(qn−1μ), (4.21)

where the term (∂q/∂qμ)μ, given in table 1, was used in the last equality. Note that the above expression
is recurrent in (∂qn/∂qμ)μ. Upon expanding this expression and using the initial condition (∂q/∂qμ)μ =
R(μ), this yields

∂qn

∂qμ
μ =

n∑
m=1

qn−mR(qm−1μ). (4.22)

In a similar manner, we have

∂qn

∂qμ∗ μ = ∂(qqn−1)
∂qμ∗ μ = q

∂qn−1

∂qμ∗ μ + ∂q

∂qqn−1μ∗ qn−1μ = q
∂qn−1

∂qμ∗ μ − 1
2

(qn−1μ)∗, (4.23)

which is equivalent to
∂qn

∂qμ∗ μ = −1
2

n∑
m=1

qn−m(qm−1μ)∗. (4.24)

Example 4.14 (exponential function). Find the GHR derivative of the function f : H → H given by

exp(q) �
+∞∑
n=0

qn

n!
. (4.25)

Solution: From (4.22), it follows that

∂ exp(q)
∂qμ

μ =
+∞∑
n=0

1
n!

n∑
m=1

qn−mR(qm−1μ). (4.26)

In a similar manner, we have

∂ exp(q)
∂qμ∗ μ = −1

2

+∞∑
n=0

1
n!

n∑
m=1

qn−m(qm−1μ)∗. (4.27)

Remark 4.15. The exponential function is the most important elementary function, as both
trigonometric functions and hyperbolic functions can be expressed in terms of the exponential function.
The elementary function in example 4.14 is a power series, and it does not change the direction of the
vector part of quaternion. Therefore, such elementary functions can swap positions with a quaternion q,
i.e. f (q)q = qf (q), giving an important property, f ∗(q) = f (q∗), which can be used in practical applications,
such as quaternion neural networks [33] and quaternion nonlinear adaptive filters [28]. It is important
to note that if a quaternion variable q degenerates into a real variable x in the definitions of elementary
functions in this subsection, then the GHR derivatives simplify into the standard real derivatives, e.g. the
GHR derivative of the power function in (4.22) will become nxn−1. Therefore, the GHR derivatives are a
generalized form of the real derivatives and the real derivatives are a special case of the GHR derivatives.
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Table 1. Summary of the rules for the left GHR derivatives.

f (q) ∂ f
∂qμ μ ∂ f

∂qμ∗ μ note

q R(μ) − 1
2
μ∗ —

ωq ωR(μ) − 1
2
ωμ∗ ∀ω ∈ H

qν R(νμ) − 1
2
(νμ)∗ ∀ ν ∈ H

ωqν + λ ωR(νμ) − 1
2
ω(νμ)∗ ∀ω, ν , λ ∈ H

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

q∗ − 1
2
μ∗ R(μ) —

ωq∗ − 1
2
ωμ∗ ωR(μ) ∀ω ∈ H

q∗ν − 1
2
(νμ)∗ R(νμ) ∀ ν ∈ H

ωq∗ν + λ − 1
2
ω(νμ)∗ ωR(νμ) ∀ω, ν , λ ∈ H

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

q−1 −q−1R(q−1μ)
1
2
q−1μ∗(q∗)−1 —

(q∗)−1 1
2
(q∗)−1μ∗q−1 −(q∗)−1R((q∗)−1μ) —

(ωqν + λ)−1 −fωR(νfμ)
1
2
fω(νfμ)∗ ∀ω, ν , λ ∈ H

(ωq∗ν + λ)−1 1
2
fω(νfμ)∗ −fωR(νfμ) ∀ω, ν , λ ∈ H

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

q2 qR(μ) + R(qμ) − 1
2
qμ∗ − 1

2
(qμ)∗ —

(q∗)2 − 1
2
q∗μ∗ − 1

2
(q∗μ)∗ q∗R(μ) + R(q∗μ) —

(ωqν + λ)2 gωR(νμ) + ωR(νgμ) − 1
2
gω(νμ)∗ − 1

2
ω(νgμ)∗ g= ωqν + λ

(ωq∗ν + λ)2 − 1
2
gω(νμ)∗ − 1

2
ω(νgμ)∗ gωR(νμ) + ωR(νgμ) g= ωq∗ν + λ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R(q)
1
4
μ

1
4
μ —

R(ωqν + λ)
1
4
μνω

1
4
μω∗ν∗ ∀ω, ν , λ ∈ H

R(ωq∗ν + λ)
1
4
μω∗ν∗ 1

4
μνω ∀ω, ν , λ ∈ H

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

|q| 1
4|q|μq

∗ 1
4|q|μq —

|q|2 1
2
μq∗

1
2
μq —

|ωqν + λ| 1
4|g|μνg∗ω

1
4|g|μω∗gν∗ g= ωqν + λ

|ωq∗ν + λ| 1
4|g|μω∗gν∗ 1

4|g|μνg∗ω g= ωq∗ν + λ

|ωqν + λ|2 1
2
μνg∗ω

1
2
μω∗gν∗ g= ωqν + λ

|ωq∗ν + λ|2 1
2
μω∗gν∗ 1

2
μνg∗ω g= ωq∗ν + λ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Continued.)
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Table 1. (Continued.)

f (q) ∂ f
∂qμ μ ∂ f

∂qμ∗ μ note

q
|q|

1
|q|R(μ) − 1

4|q|3 qμq
∗ − 1

2|q|μ
∗ − 1

4|q|3 qμq —

q∗

|q| − 1
2|q|μ

∗ − 1
4|q|3 q

∗μq∗
1

|q|R(μ) − 1
4|q|3 q

∗μq —

ωqν + λ

|ωqν + λ|
ω

2|g|R(νμ) + g
4|g|3 ν

∗(ω∗gμ)∗ − ω

4|g| (νμ)∗ − g
2|g|3 ν

∗R(ω∗gμ) g= ωqν + λ

ωq∗ν + λ

|ωq∗ν + λ| − ω

2|g| (νμ)∗ − f
|g|

∂|g|
∂qμ

μ
ω

|g|R(νμ) − f
|g|

∂|g|
∂qμ∗ μ g= ωq∗ν + λ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.2. The chain rule
Another advantage of the GHR derivatives is that they admit the chain rule, which is formulated in the
following theorem.

Theorem 4.16 (chain rule of left GHR). Let S ⊆ H and let g : S → H be real-differentiable at an interior
point q of the set S. Let T ⊆ H be such that g(q) ∈ T for all q ∈ S. Assume that f : T → H is real-differentiable at an
interior point g(q) ∈ T, then the composite function f (g(q)) satisfies the following chain rules:

∂f (g(q))
∂qμ

= ∂f
∂gν

∂gν

∂qμ
+ ∂f

∂gνi

∂gνi

∂qμ
+ ∂f

∂gνj

∂gνj

∂qμ
+ ∂f

∂gνk

∂gνk

∂qμ

∂f (g(q))
∂qμ∗ = ∂f

∂gν

∂gν

∂qμ∗ + ∂f
∂gνi

∂gνi

∂qμ∗ + ∂f

∂gνj

∂gνj

∂qμ∗ + ∂f
∂gνk

∂gνk

∂qμ∗

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.28)

and
∂f (g(q))

∂qμ
= ∂f

∂gν∗
∂gν∗

∂qμ
+ ∂f

∂gνi∗
∂gνi∗

∂qμ
+ ∂f

∂gνj∗
∂gνj∗

∂qμ
+ ∂f

∂gνk∗
∂gνk∗

∂qμ

∂f (g(q))
∂qμ∗ = ∂f

∂gν∗
∂gν∗

∂qμ∗ + ∂f
∂gνi∗

∂gνi∗

∂qμ∗ + ∂f

∂gνj∗
∂gνj∗

∂qμ∗ + ∂f
∂gνk∗

∂gνk∗

∂qμ∗ ,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.29)

where μ, ν ∈ H, μν �= 0, and ∂f/∂gν = ∂f (g)/∂gν and ∂f/∂gν∗ = ∂f (g)/∂gν∗ are the left GHR derivatives.

Proof. The proof of theorem 4.16 is given in appendix C. �

Theorem 4.16 is also valid for complex-valued and real-valued composite functions of quaternion
variables, as stated in the following two corollaries, the proofs of which are similar to that of theorem 4.16,
and are thus omitted.

Corollary 4.17. Let S ⊆ H and let g : S → C be real-differentiable at an interior point q of the set S. Let T ⊆ C

be such that g(q) ∈ T for all q ∈ S. Assume that f : T → C is real-differentiable at an interior point g(q) ∈ T, then
the left GHR derivatives of the composite function f (g(q)) are as follows:

∂f (g(q))
∂qμ

= ∂f
∂g

∂g
∂qμ

+ ∂f
∂g∗

∂g∗

∂qμ
and

∂f (g(q))
∂qμ∗ = ∂f

∂g
∂g

∂qμ∗ + ∂f
∂g∗

∂g∗

∂qμ∗ , (4.30)

where μ ∈ H, μ �= 0, and ∂f/∂g = ∂f (g)/∂g and ∂f/∂g∗ = ∂f (g)/∂g∗ are the complex CR derivatives within the CR
calculus.

Corollary 4.18. Let S ⊆ H and let g : S → R be real-differentiable at an interior point q of the set S. Let T ⊆ R

be such that g(q) ∈ T for all q ∈ S. Assume that f : T → R is real-differentiable at an interior point f (q) ∈ T, then
the left GHR derivatives of the composite function f (g(q)) are as follows:

∂f (g(q))
∂qμ

= f ′(g)
∂g
∂qμ

and
∂f (g(q))
∂qμ∗ = f ′(g)

∂g
∂qμ∗ , (4.31)

where μ ∈ H, μ �= 0 and f ′(g) is the real derivative of a real-valued function.

Theorem 4.19 (chain rule of right GHR). Let S ⊆ H and let g : S → H be real-differentiable at an interior
point q of the set S. Let T ⊆ H be such that g(q) ∈ T for all q ∈ S. Assume that f : T → H is real-differentiable at an
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inner point g(q) ∈ T, then the right GHR derivatives of the composite function f (g(q)) are as follows:

∂rf (g(q))
∂qμ

= ∂rgν

∂qμ

∂rf
∂gν

+ ∂rgνi

∂qμ

∂rf
∂gνi

+ ∂rgνj

∂qμ

∂rf

∂gνj
+ ∂rgνk

∂qμ

∂rf
∂gνk

∂rf (g(q))
∂qμ∗ = ∂rgν

∂qμ∗
∂rf
∂gν

+ ∂rgνi

∂qμ∗
∂rf
∂gνi

+ ∂rgνj

∂qμ∗
∂rf

∂gνj
+ ∂rgνk

∂qμ∗
∂rf
∂gνk

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.32)

and
∂rf (g(q))

∂qμ
= ∂rgν∗

∂qμ

∂rf
∂gν∗ + ∂rgνi∗

∂qμ

∂rf
∂gνi∗ + ∂rgνj∗

∂qμ

∂rf

∂gνj∗ + ∂rgνk∗

∂qμ

∂rf
∂gνk∗

∂rf (g(q))
∂qμ∗ = ∂rgν∗

∂qμ∗
∂rf

∂gν∗ + ∂rgνi∗

∂qμ∗
∂rf

∂gνi∗ + ∂rgνj∗

∂qμ∗
∂rf

∂gνj∗ + ∂rgνk∗

∂qμ∗
∂rf

∂gνk∗ ,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.33)

where μ, ν ∈ H, μν �= 0, and ∂rf/∂gν = ∂rf (g)/∂gν and ∂rf/∂gν∗ = ∂rf (g)/∂gν∗ are the right GHR derivatives.

Proof. The proof of theorem 4.19 is similar to that of theorem 4.16 and is thus omitted. �

4.3. Mean value theorem
The mean value theorem is one of the most important tools in calculus, and we next introduce its compact
version for general quaternion-valued functions of quaternion variables.

Theorem 4.20 (mean value theorem of left kind). Consider a continuous function f : S ⊆ H → H for which
the left GHR derivatives exist and are continuous in the set S. Then, for any q0, q1 ∈ S for which the segment joining
them also lies in S, we have

f (q1) − f (q0) =
∑
μ

∫ 1

0

∂f (q0 + tλ)
∂qμ

λμ dt =
∑
μ

∫ 1

0

∂f (q0 + tλ)
∂qμ∗ λμ∗ dt, (4.34)

where μ ∈ {1, i, j, k}, λ = q1 − q0, and ∂f (q0 + tλ)/∂qμ = ∂f (q)/∂qμ|q=q0+tλ is the left GHR derivative as in
definition 4.1.

Proof. Denote F(t) = f (g(t)), where g(t) = q0 + tλ and 0 ≤ t ≤ 1. Then F(t) is continuous on [0, 1] and has
derivatives in (0, 1). By theorem 4.16, the derivative of F(t) is

F′(t) = ∂f (g)
∂g

λ + ∂f (g)
∂gi

λi + ∂f (g)
∂gj

λj + ∂f (g)
∂gk

λk

= ∂f (q)
∂q

∣∣∣∣
q=q0+tλ

λ + ∂f (q)
∂qi

∣∣∣∣
q=q0+tλ

λi + ∂f (q)
∂qj

∣∣∣∣
q=q0+tλ

λj + ∂f (q)
∂qk

∣∣∣∣
q=q0+tλ

λk

= ∂f (q0 + tλ)
∂q

λ + ∂f (q0 + tλ)
∂qi

λi + ∂f (q0 + tλ)
∂qj

λj + ∂f (q0 + tλ)
∂qk

λk. (4.35)

Upon substituting (4.35) into F(1) − F(0) = ∫1
0 F′(t) dt, with F(0) = f (q0) and F(1) = f (q1), the theorem

follows. The second equality can be proved in a similar manner. �

Corollary 4.21. Consider a continuous function f : S ⊆ H → R for which the left GHR derivatives exist and are
continuous in the set S. Then, for any q0, q1 ∈ S for which the segment joining them also lies in S, we have

f (q1) − f (q0) = 4
∫ 1

0
R

(
∂f (q0 + tλ)

∂q
λ

)
dt = 4

∫ 1

0
R

(
∂f (q0 + tλ)

∂q∗ λ∗
)

dt, (4.36)

where λ = q1 − q0 and ∂f (q0 + tλ)/∂qμ = ∂f (q)/∂qμ|q=q0+tλ is the left GHR derivative as in definition 4.1.

Proof. Function f is real-valued, and therefore ∂f/∂q = ∂f η/∂q, where η ∈ {1, i, j, k}. From (2.3) and (4.10),
we now have

∂f
∂qη

λη = ∂f η

∂qη
λη =

(
∂f
∂q

λ

)η

. (4.37)

The corollary then follows from (2.7) and theorem 4.20, while the second equality can be derived using
R(pq) = R(p∗q∗). �
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For λ which is sufficiently small in the modulus, the right-hand side of (4.34) can be approximated as

f (q1) − f (q0) ≈
∑

μ∈{1,i,j,k}

∂f (q0)
∂qμ

λμ. (4.38)

If the left GHR derivatives of f are Lipschitz continuous in the vicinity of q and q1, with the Lipschitz
constant L, we can estimate the error in this approximation as∣∣∣∣∣∣f (q1) − f (q0) −

∑
μ∈{1,i,j,k}

∂f (q0)
∂qμ

λμ

∣∣∣∣∣∣
≤

∑
μ∈{1,i,j,k}

∣∣∣∣∣
∫ 1

0

(
∂f (q0 + tλ)

∂qμ
− ∂f (q0)

∂qμ

)
λμ dt

∣∣∣∣∣≤ 4
∫ 1

0
Lt|λ|2 dt = 2L|λ|2. (4.39)

4.4. Taylor’s theorem
We can now introduce a novel, rigorous version of Taylor’s theorem for quaternion-valued functions of
quaternion variables, as a generalization of the standard univariate Taylor’s theorem.

Lemma 4.22 (Apostol [34]). Consider a (k + 1)-times continuously differentiable function f : D ⊆ R → R.
If x ∈ D, then

f (x0 + h) = f (x0) + f ′(x0)h + f ′′(x0)
h2

2
+ · · · + f (k)(x0)

hk

k!
+ Rk, (4.40)

where the remainder Rk is given by

Rk =
∫ x0+h

x0

f (k+1)(t)
k!

(x0 + h − t)k dt. (4.41)

Theorem 4.23 (Taylor’s theorem of left kind). Consider a third-order continuous real-differentiable
function f : S ⊆ H → H. If q0, q0 + λ ∈ S such that the segment joining them also lies in S, then

f (q0 + λ) − f (q0) =
∑
μ

∂f (q0)
∂qμ

λμ + 1
2

∑
μ,ν

∂2f (q0)
∂qν∂qμ

λνλμ + O(λ3)

=
∑
μ

∂f (q0)
∂qμ∗ λμ∗ + 1

2

∑
μ,ν

∂2f (q0)
∂qν∗∂qμ∗ λν∗λμ∗ + O(λ3) as λ → 0, (4.42)

where μ, ν ∈ {1, i, j, k}, and ∂2f/∂qν∂qμ and ∂2f/∂qν∗∂qμ∗ are the second-order left GHR derivatives.

Proof. Define an auxiliary function g(t) = f (q0 + tλ) with 0 ≤ t ≤ 1. Using the chain rule in theorem 4.16,
we obtain

g′(t) =
∑
μ

∂f (q0 + tλ)
∂qμ

λμ

and g′′(t) =
∑
μ,ν

∂2f (q0 + tλ)
∂qν∂qμ

λνλμ, g′′′(t) =
∑
μ,ν,η

∂3f (q0 + tλ)
∂qη∂qν∂qμ

ληλνλμ,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.43)

where μ, ν, η ∈ {1, i, j, k}. The second-order Taylor polynomial in lemma 4.22 then gives

g(1) = g(0) + g′(0) + 1
2 g′′(0) + R2 (4.44)

which is equivalent to

f (q0 + λ) = f (q0) +
∑
μ

∂f (q0)
∂qμ

λμ + 1
2

∑
μ,ν

∂2f (q0)
∂qν∂qμ

λνλμ + R2, (4.45)

where

R2 =
∫ 1

0

(1 − t)2

2
g′′′(t) dt =

∫ 1

0

(1 − t)2

2

∑
μ,ν,η

∂3f (q0 + tλ)
∂qη∂qν∂qμ

ληλνλμ dt. (4.46)

This integral contains three factors of λ, while the remaining factors are bounded. Therefore, R2 is of
the order |λ|3, making the fraction |R2|/|λ|3 bounded as λ → 0. Hence, the first equality of the theorem
follows, and the second equality can be proved in the same way. �
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Corollary 4.24. Consider a third-order continuous real-differentiable function f : S ⊆ H → R. If q0, q0 + λ ∈ S

such that the segment joining them also lies in S, then

f (q0 + λ) − f (q0) = 4R

(
∂f (q0)

∂q
λ

)
+ 2

∑
ν

R

(
∂2f (q0)
∂qν∂q

λνλ

)
+ O(|λ|3)

= 4R

(
∂f (q0)
∂q∗ λ∗

)
+ 2

∑
ν

R

(
∂2f (q0)
∂qν∗∂q∗ λν∗λ∗

)
+ O(|λ|3) as λ → 0, (4.47)

where ν ∈ {1, i, j, k}, and ∂2f/∂qν∂q and ∂2f/∂qν∗∂q∗ are the second-order left GHR derivatives.

Proof. Using the result for ∂R(q)/∂q in table 1 and the chain rule in theorem 4.16, this corollary is proved
similarly to the proof of corollary 4.21. �

Theorem 4.25 (Taylor’s theorem of centre kind). Consider a third-order continuous real-differentiable
function f : S ⊆ H → R. If q0, q0 + λ ∈ S such that the segment joining them also lies in S, then

f (q0 + λ) − f (q0) =
∑
μ

∂f (q0)
∂qμ

λμ + 1
2

∑
μ,ν

λμ∗ ∂2f (q0)
∂qν∂qμ∗ λν + O(λ3)

=
∑
μ

∂f (q0)
∂qμ∗ λμ∗ + 1

2

∑
μ,ν

λμ ∂2f (q0)
∂qν∗∂qμ

λν∗ + O(λ3) as λ → 0, (4.48)

where μ, ν ∈ {1, i, j, k}, and ∂2f/∂qν∂qμ∗ and ∂2f/∂qν∂qμ∗ are the second-order left GHR derivatives.

Proof. Define an auxiliary function g(t) = f (q0 + tλ) with 0 ≤ t ≤ 1. Using the chain rule in theorem 4.19
and using the property in (4.13), we obtain

g′(t) =
∑
μ

λμ∗ ∂rf (q0 + tλ)
∂qμ∗ =

∑
μ

λμ∗ ∂f (q0 + tλ)
∂qμ∗ . (4.49)

Using the constant rule (4.3), we arrive at

g′′(t) =
∑
μ

λμ∗
(

∂f (q0 + tλ)
∂qμ∗

)′
=
∑
μ,ν

λμ∗ ∂2f (q0 + tλ)
∂qν∂qμ∗ λν , (4.50)

where μ, ν ∈ {1, i, j, k}. The rest of the proof is almost the same as that in theorem 4.23 and is thus omitted.
�

Remark 4.26. The Taylor expansion in theorem 4.23 is concisely expressed using the GHR derivatives.
This is different from the Taylor expansion given by Schwartz [18], which decomposes a quaternion q
into two mutually perpendicular quaternions in a local coordinate system. In contrast, our approach
treats the quaternion q as an augmented quaternion based on quaternion involutions [21]. Schwartz has
also stated that his Taylor expansion would cause trouble when the function has terms qωq, where ω is a
general quaternion. Note that there are no such restrictions in theorem 4.23, which only requires the real-
differentiability condition in definition 3.1, that is, the functions f (q) should admit the partial derivatives
with respect to the four real components qa, qb, qc and qd.

5. Applications of the generalized HR calculus
We now illustrate the utility of the GHR calculus in optimization, statistics, signal processing, machine
learning and other application areas.

5.1. Derivation of the widely linear quaternion least mean square algorithm
The widely linear QLMS (WL-QLMS) algorithm is based on the quaternion widely linear
model y(n) = wT(n)p(n) which deals with the generality of quaternion signals (both proper and
improper) [8,22,35], where p = (xT(n), xiT(n), xjT(n), xkT(n))T is the augmented input vector and w =
(hT(n), gT(n), uT(n), vT(n))T is the associated weight (parameter) vector. The cost function to be minimized
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is a real-valued function of quaternion variables

J(n) = |e(n)|2, (5.1)

where e(n) = d(n) − y(n) is the error between the desired signal d(n) and the filter output y(n). The weight
update of WL-QLMS is then given by

�w(n) = w(n + 1) − w(n) = −α∇w∗ J(n) = −α

(
∂J(n)
∂w∗

)T
, (5.2)

where α is the step size, (·)T denotes the transpose and the gradient ∇w∗ J(n) defines the direction of the
maximum rate of change of J [13,36]. By the product rule within the GHR calculus, given in theorem 4.10,
we have

∂J
∂w∗ = e∗ ∂e

∂w∗ + ∂e∗

∂we∗ e, (5.3)

where the time index ‘n’ is omitted. Note the convention that ∂f/∂w is a row vector whose nth element
is ∂f/∂wn. The above GHR derivatives are calculated as

∂e
∂w∗ = ∂(d − wTp)

∂w∗ = −∂(wTp)
∂w∗ = 1

2
pH

and
∂e∗

∂we∗ e = ∂
(
d∗ − pHw∗)

∂we∗ e = −∂
(
pHw∗)
∂we∗ e = −pHR(e),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.4)

where the terms ∂(qν)/∂q∗ and ∂(ωq∗)/∂qμ∗ are given in table 1 and are used in the last equalities in the
expressions above. Substituting (5.4) into (5.3) yields

∂J
∂w∗ = 1

2
e∗pH − pHR(e) =

(
1
2

e∗ − R(e)
)

pH = −1
2

epH. (5.5)

Finally, the update of the adaptive weight vector of WL-QLMS becomes

w(n + 1) = w(n) + αe(n)p∗(n), (5.6)

where the constant 1
2 in (5.5) is absorbed into α.

Remark 5.1. There are many variations of WL-QLMS algorithms, such as the WL-QLMS algorithms
based on variants {x∗, xi∗, xj∗, xk∗}, {xμ, xμi, xμj, xμk} and {x∗, xμi∗, xμj∗, xμk∗}. Note that if we start from
y(n) = wH(n)p(n), the final update rule would become w(n + 1) = w(n) + αp(n)e∗(n).

5.2. Derivation of quaternion nonlinear adaptive filtering algorithms
Tools of the GHR calculus allow us to concisely derive quaternion nonlinear adaptive filtering
algorithms, a basis for fast-growing area of quaternion learning system. The same real-valued quadratic
cost function as in real LMS and complex LMS is used, that is

J(n) = |e(n)|2 = e2
a(n) + e2

b(n) + e2
c (n) + e2

d(n), (5.7)

where e(n) = ea(n) + ieb(n) + jec(n) + ked(n), e(n) = d(n) − Φ(s(n)), s(n) = wT(n)x(n), and Φ is the
quaternion nonlinearity. The weight update is given by

�w(n) = w(n + 1) − w(n) = −α∇w∗ J(n) = −α

(
∂J(n)
∂w∗

)T
, (5.8)

where α > 0 is the real step size, (·)T denotes the transpose, and the gradient ∇w∗ J(n) defines the direction
of the maximum rate of change of J [13,36]. By using the chain rule in theorem 4.16, the above gradient
can be calculated as

∂J
∂w∗ =

∑
μ∈{1,i,j,k}

∂J
∂sμ∗

∂sμ∗

∂w∗ , (5.9)

where time index ‘n’ is omitted for convenience. Note the convention that ∂f/∂w is a row vector whose
nth element is ∂f/∂wn. Using the term ∂(ωq∗)/∂q∗ in table 1, we have

∂s∗

∂w∗ = ∂(xHw∗)
∂w∗ = xH. (5.10)
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Upon applying the second equality in (4.12) and using the term ∂(ωq∗)/∂qμ∗μ in table 1, this yields

∂sμ∗

∂w∗ =
(

∂s∗

∂wμ∗

)μ

= −μ
∂
(
xHw∗)
∂wμ∗ μ = −μxHR(μ) = 0, ∀ μ ∈ {i, j, k}. (5.11)

Using the chain rule in corollary 4.18, we have

∂J
∂s∗ = 2ea

∂ea

∂s∗ + 2eb
∂eb

∂s∗ + 2ec
∂ec

∂s∗ + 2ed
∂ed

∂s∗

= −2ea
∂Φa(s)

∂s∗ − 2eb
∂Φb(s)

∂s∗ − 2ec
∂Φc(s)

∂s∗ − 2ed
∂Φd(s)

∂s∗ . (5.12)

Upon substituting (5.10)–(5.12) into (5.9), we arrive at

∂J
∂w∗ = −2

(
ea

∂Φa(s)
∂s∗ + eb

∂Φb(s)
∂s∗ + ec

∂Φc(s)
∂s∗ + ed

∂Φd(s)
∂s∗

)
xH. (5.13)

Finally, the weight update for this quaternion nonlinear adaptive filtering algorithm becomes

�w(n) = α

(
ea(n)

∂Φa(s(n))
∂s∗(n)

+ eb(n)
∂Φb(s(n))

∂s∗(n)
+ ec(n)

∂Φc(s(n))
∂s∗(n)

+ ed(n)
∂Φd(s(n))

∂s∗(n)

)
x∗(n), (5.14)

where the constant 2 in (5.13) is absorbed into the step size α.
For illustration, consider an example where Φ is a nonlinear split-quaternion function Φ(s) = ϕ(sa) +

iϕ(sb) + jϕ(sc) + ϕ(sd) and ϕ : R → R is a real-valued differentiable function. Then,

∂Φa(s)
∂s∗ = ∂ϕ(sa)

∂s∗ = 1
4
ϕ′(sa). (5.15)

In a similar manner, we have

∂Φb(s)
∂s∗ = i

4
ϕ′(sb),

∂Φc(s)
∂s∗ = j

4
ϕ′(sc) and

∂Φd(s)
∂s∗ = k

4
ϕ′(sd). (5.16)

The weight update for such a quaternion nonlinear adaptive filtering algorithm becomes

�w(n) = α(ea(n)ϕ′(sa(n)) + ieb(n)ϕ′(sb(n)) + jec(n)ϕ′(sc(n)) + ked(n)ϕ′(sd(n)))x∗(n), (5.17)

where the constant 1
4 in (5.15) and (5.16) is absorbed into the step size α.

Another example is when Φ is a quaternion linear function Φ(s) = s, that is ϕ(x) = x in (5.17). Then,
the update of the adaptive weight vector within the QLMS algorithm becomes

w(n + 1) = w(n) + αe(n)x∗(n) (5.18)

illustrating the generic nature of the GHR calculus.

Remark 5.2. From (5.17) and (5.18), we note that quaternion linear and nonlinear adaptive filtering
algorithms have been developed in a unified form. This also shows that the GHR calculus gives us
much more freedom in the design, as the nonlinear function Φ is not required to satisfy the odd-
symmetry condition [28,37]. We can derive many other algorithms, such as the augmented quaternion
nonlinear gradient descent algorithm [38], in the same way. In the interest of space, we leave this to the
interested reader.

Remark 5.3. The QLMS algorithm (5.18) is different from the QLMS in [4,13], due to the use of different
product rule. The traditional product rule was used in [4,13] to simplify the derivation; however, our
examples in §3a illustrate that the traditional product rule is not applicable to the HR derivatives. On the
other hand, the chain rules within the GHR calculus result in the QLMS in (5.18), which has the same
generic form as that of the complex LMS [39]. For the performance comparison and steady-state analysis
of the existing QLMS algorithms, we refer the reader to [40] for more details.

6. Conclusion
A novel and rigorous framework for the efficient computation of quaternion derivatives, referred to as
the GHR calculus, has been established. The GHR methodology has been shown to greatly relax the
existence conditions for the derivatives of general nonlinear functions of quaternion variables, and to
simplify the calculation of quaternion derivatives through its novel product and chain rules. We have
shown that, unlike the existing quaternion derivatives, the GHR calculus is general and can be used for
both analytic and non-analytic functions of quaternion variables. The core of the GHR calculus is the use
of quaternion rotations in order to overcome the non-commutativity of quaternion product, and the use
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of quaternion involutions to obtain an elegant quaternion basis. Through the analysis and examples, the
proposed framework has been shown to allow for real- and complex-valued optimization algorithms to
be extended to the quaternion field in a generic, compact and intuitive way. Application case studies in
statistical signal processing and learning systems demonstrate the effectiveness of the proposed GHR
framework.
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Appendices
Several results and proofs of statements from the main body are next detailed.

Appendix A. The derivation of the HR calculus
The following lemmas are useful to distinguish between the GHR derivatives and the standard
quaternion differential.

Lemma A.1. Let fn : H → H (n = 1, 2, 3, 4) be any arbitrary quaternion-valued functions and μ ∈ H, μ �= 0. If
for the left case

f1dqμ + f2dqμi + f3dqμj + f4dqμk = 0 (A 1)

or for the right case
dqμf1 + dqμif2 + dqμjf3 + dqμkf4 = 0, (A 2)

then fn = 0 for n ∈ {1, 2, 3, 4}.
Proof. The left case. By applying the rotation transformation on both sides of (2.6), it follows that

qμ = qa + iμqb + jμqc + kμqd, qμi = qa + iμqb − jμqc − kμqd

qμj = qa − iμqb + jμqc − kμqd, qμk = qa − iμqb − jμqc + kμqd.

⎫⎬
⎭ (A 3)

Upon applying the differential operator to the above expressions and substituting dqμ, dqμi, dqμj and dqμk

into (A 1), we have

f1(dqa + iμdqb + jμdqc + kμdqd) + f2(dqa + iμdqb − jμdqc − kμdqd)

+ f3(dqa − iμdqb + jμdqc − kμdqd) + f4(dqa − iμdqb − jμdqc + kμdqd) = 0. (A 4)

This is equivalent to

( f1 + f2 + f3 + f4)dqa + ( f1 + f2 − f3 − f4)iμdqb

+ ( f1 − f2 + f3 − f4)jμdqc + ( f1 − f2 − f3 + f4)kμdqd = 0. (A 5)

Since the differentials dqa, dqb, dqc and dqd are independent, this yields

f1 + f2 + f3 + f4 = 0, f1 + f2 − f3 − f4 = 0,

f1 − f2 + f3 − f4 = 0, f1 − f2 − f3 + f4 = 0.

}
(A 6)

Hence, it follows that f1 = f2 = f3 = f4 = 0. The right case can be proved in a similar way. �

Lemma A.2. Let fn : H → H (n = 1, 2, 3, 4) be any arbitrary quaternion-valued function and μ ∈ H, μ �= 0. If
for the left case

f1dqμ∗ + f2dqμi∗ + f3dqμj∗ + f4dqμk∗ = 0

or for the right case
dqμ∗f1 + dqμi∗f2 + dqμj∗f3 + dqμk∗f4 = 0,

then fn = 0 for n ∈ {1, 2, 3, 4}.
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Proof. The proof of lemma A.2 follows from that of lemma A.1 and is omitted. �

We now provide the derivation of the HR calculus. For any quaternion-valued function f (q) ∈ H, we
can state (since the fields H and R

4 are isomorphic) that

f (q) = fa(qa, qb, qc, qd) + ifb(qa, qb, qc, qd) + jfc(qa, qb, qc, qd) + kfd(qa, qb, qc, qd), (A 7)

where fa(·), fb(·), fc(·), fd(·) ∈ R. Then, the function f can be equally seen as a function of the four
independent real variables qa, qb, qc and qd, and the differential of f can be expressed as [10]

[Left] : df = ∂f
∂qa

dqa + ∂f
∂qb

dqb + ∂f
∂qc

dqc + ∂f
∂qd

dqd (A 8)

and

[Right] : df = dqa
∂f
∂qa

+ dqb
∂f
∂qb

+ dqc
∂f
∂qc

+ dqd
∂f
∂qd

, (A 9)

where ∂f/∂qa, ∂f/∂qb, ∂f/∂qc and ∂f/∂qd are the partial derivatives of f with respect to qa, qb, qc and qd,
respectively. Note that the two equations are identical since dqa, dqb, dqc and dqd are real quantities. As a
result, both equations are equally valid as a starting point for the derivation of the HR calculus.

The left case (A 8). There are two ways to link the real and quaternion differentials; these are based on
(2.7) and its conjugate which correspond to the HR derivatives and conjugate HR derivatives.

A.1. The left HR derivatives
From (2.7), the differentials of the components of a quaternion can be formulated as

dqa = 1
4

(dq + dqi + dqj + dqk), dqb = − i
4

(dq + dqi − dqj − dqk)

dqc = − j
4

(dq − dqi + dqj − dqk), dqd = − k
4

(dq − dqi − dqj + dqk).

⎫⎪⎪⎬
⎪⎪⎭ (A 10)

By inserting (A 10) into (A 8), the differential of the function f becomes

df = 1
4

∂f
∂qa

(dq + dqi + dqj + dqk) − 1
4

∂f
∂qb

i(dq + dqi − dqj − dqk)

− 1
4

∂f
∂qc

j(dq − dqi + dqj − dqk) − 1
4

∂f
∂qd

k(dq − dqi − dqj + dqk)

= 1
4

(
∂f
∂qa

− ∂f
∂qb

i − ∂f
∂qc

j − ∂f
∂qd

k
)

dq + 1
4

(
∂f
∂qa

− ∂f
∂qb

i + ∂f
∂qc

j + ∂f
∂qd

k
)

dqi

+ 1
4

(
∂f
∂qa

+ ∂f
∂qb

i − ∂f
∂qc

j + ∂f
∂qd

k
)

dqj + 1
4

(
∂f
∂qa

+ ∂f
∂qb

i + ∂f
∂qc

j − ∂f
∂qd

k
)

dqk. (A 11)

Now, we can define the formal left derivatives ∂f/∂q, ∂f/∂qi, ∂f/∂qj and ∂f/∂qk, so that

df = ∂f
∂q

dq + ∂f
∂qi

dqi + ∂f

∂qj
dqj + ∂f

∂qk
dqk (A 12)

holds. Comparing (A 12) with (A 11) and applying lemma A.1, yields the left HR derivatives

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f
∂q
∂f
∂qi

∂f

∂qj

∂f
∂qk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

= 1
4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f
∂qa

∂f
∂qb

∂f
∂qc

∂f
∂qd

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

⎡
⎢⎢⎢⎣

1 1 1 1
−i −i i i
−j j −j j
−k k k −k

⎤
⎥⎥⎥⎦ . (A 13)
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A.2. The left conjugate HR derivatives
Upon applying the conjugate operator to both sides of (2.7), the differentials of the components of a
quaternion can be formulated as

dqa = 1
4

(dq∗ + dqi∗ + dqj∗ + dqk∗), dqb = i
4

(dq∗ + dqi∗ − dqj∗ − dqk∗),

dqc = j
4

(dq∗ − dqi∗ + dqj∗ − dqk∗), dqd = k
4

(dq∗ − dqi∗ − dqj∗ + dqk∗).

⎫⎪⎪⎬
⎪⎪⎭ (A 14)

By inserting (A 14) into (A 8), the differential of f can be written as

df = 1
4

∂f
∂qa

(dq∗ + dqi∗ + dqj∗ + dqk∗) + 1
4

∂f
∂qb

i(dq∗ + dqi∗ − dqj∗ − dqk∗)

+ 1
4

∂f
∂qc

j(dq∗ − dqi∗ + dqj∗ − dqk∗) + 1
4

∂f
∂qd

k(dq∗ − dqi∗ − dqj∗ + dqk∗)

= 1
4

(
∂f
∂qa

+ ∂f
∂qb

i + ∂f
∂qc

j + ∂f
∂qd

k
)

dq∗ + 1
4

(
∂f
∂qa

+ ∂f
∂qb

i − ∂f
∂qc

j − ∂f
∂qd

k
)

dqi∗

+ 1
4

(
∂f
∂qa

− ∂f
∂qb

i + ∂f
∂qc

j − ∂f
∂qd

k
)

dqj∗ + 1
4

(
∂f
∂qa

− ∂f
∂qb

i − ∂f
∂qc

j + ∂f
∂qd

k
)

dqk∗. (A 15)

We can now define the formal left derivatives ∂f/∂q∗, ∂f/∂qi∗, ∂f/∂qj∗ and ∂f/∂qk∗, so that

df = ∂f
∂q∗ dq∗ + ∂f

∂qi∗ dqi∗ + ∂f

∂qj∗ dqj∗ + ∂f
∂qk

dqk∗ (A 16)

holds. Upon comparing (A 16) with (A 15) and applying lemma A.2, the following left conjugate HR
derivatives are obtained: ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f
∂q∗

∂f
∂qi∗

∂f

∂qj∗

∂f
∂qk∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

= 1
4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f
∂qa

∂f
∂qb

∂f
∂qc

∂f
∂qd

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

⎡
⎢⎢⎢⎣

1 1 1 1
i i −i −i
j −j j −j
k −k −k k

⎤
⎥⎥⎥⎦ . (A 17)

The right case (A 9). There are two ways to link the real and quaternion differentials, the approach
in (2.7) and its conjugate, which induce to the right HR derivatives or conjugate right HR derivatives,
respectively.

A.3. The right HR derivatives
Applying a rotation transformation to both sides of (A 10), we have

dqa = 1
4 (dq + dqi + dqj + dqk), dqb = − 1

4 (dq + dqi − dqj − dqk)i,

dqc = − 1
4 (dq − dqi + dqj − dqk)j, dqd = − 1

4 (dq − dqi − dqj + dqk)k.

⎫⎬
⎭ (A 18)

Then, by substituting (A 18) into (A 9), the differential of f becomes

df = 1
4

(dq + dqi + dqj + dqk)
∂f
∂qa

− 1
4

(dq + dqi − dqj − dqk)i
∂f
∂qb

− 1
4

(dq − dqi + dqj − dqk)j
∂f
∂qc

− 1
4

(dq − dqi − dqj + dqk)k
∂f
∂qd

= 1
4

dq
(

∂f
∂qa

− i
∂f
∂qb

− j
∂f
∂qc

− k
∂f
∂qd

)
+ 1

4
dqi

(
∂f
∂qa

− i
∂f
∂qb

+ j
∂f
∂qc

+ k
∂f
∂qd

)

+ 1
4

dqj
(

∂f
∂qa

+ i
∂f
∂qb

− j
∂f
∂qc

+ k
∂f
∂qd

)
+ 1

4
dqk

(
∂f
∂qa

+ i
∂f
∂qb

+ j
∂f
∂qc

− k
∂f
∂qd

)
. (A 19)
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Now, define the formal right derivatives ∂rf/∂q, ∂rf/∂qi, ∂rf/∂qj and ∂rf/∂qk, so that

df = dq
∂rf
∂q

+ dqi ∂rf
∂qi

+ dqj ∂rf

∂qj
+ dqk ∂rf

∂qk
(A 20)

holds. Comparing (A 20) and (A 19) and using lemma A.1, the following right HR derivatives are
obtained: ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂rf
∂q
∂rf
∂qi

∂rf

∂qj

∂rf
∂qk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1
4

⎡
⎢⎢⎢⎣

1 −i −j −k
1 −i j k
1 i −j k
1 i j −k

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f
∂qa

∂f
∂qb

∂f
∂qc

∂f
∂qd

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A 21)

A.4. The right conjugate HR derivatives
By applying a rotation transformation to both sides of (A 14), we have

dqa = 1
4 (dq∗ + dqi∗ + dqj∗ + dqk∗), dqb = 1

4 (dq∗ + dqi∗ − dqj∗ − dqk∗)i,

dqc = 1
4 (dq∗ − dqi∗ + dqj∗ − dqk∗)j, dqd = 1

4 (dq∗ − dqi∗ − dqj∗ + dqk∗)k.

⎫⎬
⎭ (A 22)

Upon substituting (A 22) into (A 9), the differential of f can be written as

df = 1
4

(dq∗ + dqi∗ + dqj∗ + dqk∗)
∂f
∂qa

+ 1
4

(dq∗ + dqi∗ − dqj∗ − dqk∗)i
∂f
∂qb

+ 1
4

(dq∗ − dqi∗ + dqj∗ − dqk∗)j
∂f
∂qc

+ 1
4

(dq∗ − dqi∗ − dqj∗ + dqk∗)k
∂f
∂qd

= 1
4

dq∗
(

∂f
∂qa

+ i
∂f
∂qb

+ j
∂f
∂qc

+ k
∂f
∂qd

)
+ 1

4
dqi∗

(
∂f
∂qa

+ i
∂f
∂qb

− j
∂f
∂qc

− k
∂f
∂qd

)

+ 1
4

dqj∗
(

∂f
∂qa

− i
∂f
∂qb

+ j
∂f
∂qc

− k
∂f
∂qd

)
+ 1

4
dqk∗

(
∂f
∂qa

− i
∂f
∂qb

− j
∂f
∂qc

+ k
∂f
∂qd

)
. (A 23)

Now, define the formal right derivatives ∂rf/∂q∗, ∂rf/∂qi∗, ∂rf/∂qj∗ and ∂rf/∂qk∗, so that

df = dq∗ ∂rf
∂q∗ + dqi∗ ∂rf

∂qi∗ + dqj∗ ∂rf

∂qj∗ + dqk∗ ∂rf
∂qk∗ (A 24)

holds. Comparing (A 24) with (A 23) and using lemma A.2, we obtain the following right conjugate HR
derivatives: ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂rf
∂q∗

∂rf
∂qi∗

∂rf

∂qj∗

∂rf
∂qk∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1
4

⎡
⎢⎢⎢⎣

1 i j k
1 i −j −k
1 −i j −k
1 −i −j k

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f
∂qa

∂f
∂qb

∂f
∂qc

∂f
∂qd

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A 25)

Appendix B. The proof of the product rule
Within the GHR calculus, when a quaternion function is post-multiplied by a real function, the novel
product rule degenerates into the traditional product rule. This is stated in the next lemma.

Lemma B.1. If the functions f : H → H and g : H → R have the left GHR derivatives, then their product fg
satisfies the traditional product rule

∂( fg)
∂qμ

= f
∂g
∂qμ

+ ∂f
∂qμ

g and
∂( fg)
∂qμ∗ = f

∂g
∂qμ∗ + ∂f

∂qμ∗ g, (B 1)

where ∂f/∂qμ and ∂f/∂qμ∗ are the left GHR derivatives in definition 4.1.
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Proof. Let f = fa + ifb + jfc + kfd, where fa, fb, fc, fd ∈ R, then fg = fag + ifbg + jfcg + kfdg. Using the

property ∂(νf )/∂qμ = ν(∂f/∂qμ) in (4.3), we have

∂( fg)
∂qμ

= ∂(( fa + ifb + jfc + kfd)g)
∂qμ

= ∂( fag)
∂qμ

+ i
∂( fbg)
∂qμ

+ j
∂( fcg)
∂qμ

+ k
∂( fdg)
∂qμ

= fa
∂g
∂qμ

+ ifb
∂g
∂qμ

+ jfc
∂g
∂qμ

+ kfd
∂g
∂qμ

+ ∂fa
∂qμ

g + i
∂fb
∂qμ

g + j
∂fc
∂qμ

g + k
∂fd
∂qμ

g

= f
∂g
∂qμ

+
(

∂fa
∂qμ

+ i
∂fb
∂qμ

+ j
∂fc
∂qμ

+ k
∂fd
∂qμ

)
g = f

∂g
∂qμ

+ ∂f
∂qμ

g. (B 2)

Hence, the first part of the lemma is proved, and the rest follows in a similar way. �

The proof of theorem 4.10. From (2.5), note that {1, iμ, jμ, kμ} is another orthogonal basis of H. Then, the
quaternion-valued function g can be expressed in the following way:

g = ga + iμgb + jμgc + kμgd, ga, gb, gc, gd ∈ R, (B 3)

and fg = fga + fiμgb + fjμgc + fkμgd, f ∈ H. Using the sum rule, it follows that

∂( fg)
∂qμ

= ∂( fga)
∂qμ

+ ∂( fiμgb)
∂qμ

+ ∂( fiμgc)
∂qμ

+ ∂( fiμgd)
∂qμ

. (B 4)

Applying lemma B.1 to the right side of (B 4) yields

∂( fg)
∂qμ

= f
∂ga

∂qμ
+ fiμ ∂gb

∂qμ
+ fjμ

∂gc

∂qμ
+ fkμ ∂gd

∂qμ
+ ∂f

∂qμ
ga + ∂( f iμ)

∂qμ
gb + ∂( f jμ)

∂qμ
gc + ∂( f kμ)

∂qμ
gd

= f
(

∂ga

∂qμ
+ iμ

∂gb

∂qμ
+ jμ

∂gc

∂qμ
+ kμ ∂gd

∂qμ

)
+ ∂f

∂qμ
ga + ∂( f iμ)

∂qμ
gb + ∂( f jμ)

∂qμ
gc + ∂( f kμ)

∂qμ
gd

= f
∂g
∂qμ

+ ∂f
∂qμ

ga + ∂( f iμ)
∂qμ

gb + ∂( f jμ)
∂qμ

gc + ∂( f kμ)
∂qμ

gd. (B 5)

Next, by using the result ∂( fν)/∂qμ = (∂f/∂qνμ)ν in (4.3), we have

∂( fg)
∂qμ

= f
∂g
∂qμ

+ ∂f
∂qμ

ga + ∂f
∂qμi

iμgb + ∂f

∂qμj
jμgc + ∂f

∂qμk
kμgd

= f
∂g
∂qμ

+ 1
4

(
∂f
∂qa

− ∂f
∂qb

iμ − ∂f
∂qc

jμ − ∂f
∂qd

kμ

)
ga + 1

4

(
∂f
∂qa

− ∂f
∂qb

iμ + ∂f
∂qc

jμ + ∂f
∂qd

kμ

)
iμgb

+ 1
4

(
∂f
∂qa

+ ∂f
∂qb

iμ − ∂f
∂qc

jμ + ∂f
∂qd

kμ

)
jμgc + 1

4

(
∂f
∂qa

+ ∂f
∂qb

iμ + ∂f
∂qc

jμ − ∂f
∂qd

kμ

)
kμgd, (B 6)

where definition 4.1 and (2.4) were used in the last equality above. Grouping together ∂f/∂qa, ∂f/∂qb,
∂f/∂qc and ∂f/∂qd in (B 7) finally yields

∂( fg)
∂qμ

= f
∂g
∂qμ

+ 1
4

∂f
∂qa

(
ga + iμgb + jμgc + kμgd

)− 1
4

∂f
∂qb

(
ga + iμgb + jμgc + kμgd

)
iμ

− 1
4

∂f
∂qc

(
ga + iμgb + jμgc + kμgd

)
jμ − 1

4
∂f
∂qd

(
ga + iμgb + jμgc + kμgd

)
kμ

= f
∂g
∂qμ

+ 1
4

(
∂f
∂qa

g − ∂f
∂qb

giμ − ∂f
∂qc

gjμ − ∂f
∂qd

gkμ

)

= f
∂g
∂qμ

+ 1
4

(
∂f
∂qa

− ∂f
∂qb

giμg−1 − ∂f
∂qc

gjμg−1 − ∂f
∂qd

gkμg−1
)

g

= f
∂g
∂qμ

+ 1
4

(
∂f
∂qa

− ∂f
∂qb

igμ − ∂f
∂qc

jgμ − ∂f
∂qd

kgμ

)
g = f

∂g
∂qμ

+ ∂f
∂qgμ

g, (B 7)

where (2.4) was used in the second to last equality above, and definition 4.1 was used in the last
equality. Hence, the first part of the theorem follows, and the second part can be proved in an analogous
manner. �
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Appendix C. The proof of the chain rule
To prove the chain rule, we shall use the following lemma.

Lemma C.1. Let q = qa + iqb + jqc + kqd, where qa, qb, qc, qd ∈ R. Then, the partial derivatives of the
quaternion composite function f (g(q)) satisfy the following chain rule:

∂f ( g(q))
∂ξ

= ∂f
∂gν

∂gν

∂ξ
+ ∂f

∂gνi

∂gνi

∂ξ
+ ∂f

∂gνj

∂gνj

∂ξ
+ ∂f

∂gνk

∂gνk

∂ξ

and
∂f ( g(q))

∂ξ
= ∂f

∂gν∗
∂gν∗

∂ξ
+ ∂f

∂gνi∗
∂gνi∗

∂ξ
+ ∂f

∂gνj∗
∂gνj∗

∂ξ
+ ∂f

∂gνk∗
∂gνk∗

∂ξ
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(C 1)

where ξ ∈ {qa, qb, qc, qd} and ν ∈ H, ν �= 0.

Proof. Let g(q) = ga + igb + jgc + kgd, where ga, gb, gc, gd ∈ R. Then, the function f (g(q)) can be seen as
a function of the four real-valued variables ga, gb, gc and gd, and the partial derivative of f (g(q)) can be
expressed as

∂f
∂ξ

= ∂f
∂ga

∂ga

∂ξ
+ ∂f

∂gb

∂gb

∂ξ
+ ∂f

∂gc

∂gc

∂ξ
+ ∂f

∂gd

∂gd

∂ξ
. (C 2)

By definition 4.1, the partial derivatives ∂f/∂ga, ∂f/∂gb, ∂f/∂gc and ∂f/∂gd are given by

∂f
∂ga

= ∂f
∂gν

+ ∂f
∂gνi

+ ∂f

∂gνj
+ ∂f

∂gνk
,

∂f
∂gb

=
(

∂f
∂gν

+ ∂f
∂gνi

− ∂f

∂gνj
− ∂f

∂gνk

)
iν ,

∂f
∂gc

=
(

∂f
∂gν

− ∂f
∂gνi

+ ∂f

∂gνj
− ∂f

∂gνk

)
jν

and
∂f
∂gd

=
(

∂f
∂gν

− ∂f
∂gνi

− ∂f

∂gνj
+ ∂f

∂gνk

)
kν .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C 3)

Upon applying the quaternion rotation transform (·)ν to both sides of (2.7) and replacing q with g, the
real-valued components ga, gb, gc and gd can be expressed as

ga = 1
4

(gν + gνi + gνj + gνk), gb = − iν

4
(gν + gνi − gνj − gνk),

gc = − jν

4
(gν − gνi + gνj − gνk), gd = − kν

4
(gν − gνi − gνj + gνk).

⎫⎪⎪⎬
⎪⎪⎭ (C 4)

Taking the partial derivatives of both sides of the above equations yields

∂ga

∂ξ
= 1

4

(
∂gν

∂ξ
+ ∂gνi

∂ξ
+ ∂gνj

∂ξ
+ ∂gνk

∂ξ

)
,

∂gb

∂ξ
= − iν

4

(
∂gν

∂ξ
+ ∂gνi

∂ξ
− ∂gνj

∂ξ
− ∂gνk

∂ξ

)
,

∂gc

∂ξ
= − jν

4

(
∂gν

∂ξ
− ∂gνi

∂ξ
+ ∂gνj

∂ξ
− ∂gνk

∂ξ

)

and
∂gd

∂ξ
= − kν

4

(
∂gν

∂ξ
− ∂gνi

∂ξ
− ∂gνj

∂ξ
+ ∂gνk

∂ξ

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C 5)

Upon substituting the results from (C 3) and (C 5) into (C 2), and using the distributive law and merging
similar terms, we finally have

∂f (g(q))
∂ξ

= ∂f
∂gν

∂gν

∂ξ
+ ∂f

∂gνi

∂gνi

∂ξ
+ ∂f

∂gνj

∂gνj

∂ξ
+ ∂f

∂gνk

∂gνk

∂ξ
. (C 6)

Hence, the first equality of the lemma follows, the second equality following in a similar way. �
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The proof of theorem 4.16. Using definition 4.1, the left HR derivative of the product fg can be

expressed as
∂f (g(q))

∂qμ
= 1

4

(
∂f (g(q))

∂qa
− ∂f (g(q))

∂qb
iμ − ∂f (g(q))

∂qc
jμ − ∂f (g(q))

∂qd
kμ

)
. (C 7)

Upon substituting the first equality of lemma C.1 into (C 7), it then follows that

∂f (g(q))
∂qμ

= 1
4

(
∂f
∂gν

∂gν

∂qa
+ ∂f

∂gνi

∂gνi

∂qa
+ ∂f

∂gνj

∂gνj

∂qa
+ ∂f

∂gνk

∂gνk

∂qa

)

− 1
4

(
∂f
∂gν

∂gν

∂qb
+ ∂f

∂gνi

∂gνi

∂qb
+ ∂f

∂gνj

∂gνj

∂qb
+ ∂f

∂gνk

∂gνk

∂qb

)
iμ

− 1
4

(
∂f
∂gν

∂gν

∂qc
+ ∂f

∂gνi

∂gνi

∂qc
+ ∂f

∂gνj

∂gνj

∂qc
+ ∂f

∂gνk

∂gνk

∂qc

)
jμ

− 1
4

(
∂f
∂gν

∂gν

∂qd
+ ∂f

∂gνi

∂gνi

∂qd
+ ∂f

∂gνj

∂gνj

∂qd
+ ∂f

∂gνk

∂gνk

∂qd

)
kμ. (C 8)

Grouping the terms ∂f/∂gν , ∂f/∂gνi, ∂f/∂gνj and ∂f/∂gνk in (C 8) together, we have

∂f (g(q))
∂qμ

= ∂f
∂gν

1
4

(
∂gν

∂qa
− ∂gν

∂qb
iμ − ∂gν

∂qc
jμ − ∂gν

∂qd
kμ

)

+ ∂f
∂gνi

1
4

(
∂gνi

∂qa
− ∂gνi

∂qb
iμ − ∂gνi

∂qc
jμ − ∂gνi

∂qd
kμ

)

+ ∂f

∂gνj

1
4

(
∂gνj

∂qa
− ∂gνj

∂qb
iμ − ∂gνj

∂qc
jμ − ∂gνj

∂qd
kμ

)

+ ∂f
∂gνk

1
4

(
∂gνk

∂qa
− ∂gνk

∂qb
iμ − ∂gνk

∂qc
jμ − ∂gνk

∂qd
kμ

)

= ∂f
∂gν

∂gν

∂qμ
+ ∂f

∂gνi

∂gνi

∂qμ
+ ∂f

∂gνj

∂gνj

∂qμ
+ ∂f

∂gνk

∂gνk

∂qμ
. (C 9)

Hence, the first equality of the theorem follows, the other equalities following in a similar fashion. �

Appendix D. Fundamental results based on the generalized HR derivatives
For convenience, several of the most important results for the left GHR derivatives are summarized in
table 1. The symbols ν, ω and λ denote quaternion constants, q is a quaternion-valued variable and μ any
quaternion constant or expression.
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