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A Quaternion Gradient Operator and Its Applications
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Abstract—Real functions of quaternion variables are typical cost
functions in quaternion valued statistical signal processing, how-
ever, standard differentiability conditions in the quaternion do-
main do not permit direct calculation of their gradients. To this
end, based on the isomorphism with real vectors and the use of
quaternion involutions, we introduce the calculus as a conve-
nient way to calculate derivatives of such functions. It is shown that
the maximum change of the gradient is in the direction of the con-
jugate gradient, which conforms with the corresponding solution
in the complex domain. Examples in some typical gradient based
optimization settings support the result.

Index Terms—Conjugate gradient, HR calculus, quaternion gra-
dient, quaternion LMS (QLMS), quaternion Wiener filter.

I. INTRODUCTION

Q UATERNION valued signal processing is a rapidly
developing area, with applications across statistical
signal processing, including adaptive filtering, neural

networks, modelling of motion and tracking [1]–[3]. Recently
introduced mathematical tools to support these developments
include the quaternionic singular value decomposition (SVD)
[4] and widely linear modelling [5], [6], however, in gra-
dient based optimization the lack of analyticity of general
quaternion valued functions remains an open issue. Existing
generalizations of the Cauchy–Riemann equations to the
quaternion domain—the Genaralised Cauchy–Riemann (GCR)
and Cauchy–Riemann–Fueter (CRF) conditions [7], [8] are
both too stringent and limit the class of quaternionic analytic
functions to linear functions and constants, respectively.

In complex- and quaternion-valued statistical signal pro-
cessing, a common optimization objective is to minimize a
positive real function of complex/quaternion variables, typi-
cally in the form of error power, . This poses a problem
in both the complex, , and quaternion domain, , since the
standard derivatives are not defined for functions dependent
on both the variable and its conjugate , such as the real
valued cost function . The so called
pseudogradient, that is, a sum of componentwise gradients
is often employed to circumvent this problem; for complex
valued gradients this is justified by Brandwood’s result [9] and
is further formalized within the calculus (for more detail
see [10]), however, the corresponding result for quaternions is
still missing.

The (or Wirtinger) calculus was developed based on
the isomorphism between the fields and and the cor-
responding duality of total differentials of complex valued
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functions and real bivariate
functions , and is proven to be a powerful frame-
work comprising under the same umbrella both the standard
Cauchy–Riemann differentiation (via the derivative) and
the differentiation of real functions of complex variables (via
the derivative, also called the derivative) [10].

Our aim is to establish the duality between the derivatives of
quaternion valued functions in and the corresponding quadri-
variate real functions in , in order to obtain a hypercom-
plex extension of the calculus termed the calculus. It is
shown that this framework allows for calculating derivatives of
both holomorphic quaternionic functions and nonholomorphic
real functions of quaternion variables, typical cost functions. We
also illustrate that in the context of stochastic gradient optimiza-
tion the maximum change of a real function of quaternion vector
variable is in the direction of conjugate gradient. This provides
a generic extension of the corresponding result in the complex
domain, and a rigorous framework for general gradient based
optimization in .

II. QUATERNIONIC LINEAR MODELLING

Quaternions are an associative but not commutative algebra
over , defined as

where the imaginary units and are also unit axis vectors,
for which . For any quaternion

(1)

the scalar (real) part is denoted by , whereas
the vector part (also called pure quaternion)

comprises the three imaginary parts. The quaternion
product for is given by

where the symbol ‘ ’ denotes the scalar product and ‘ ’ the
vector product. Due to the presence of vector product, the
quaternion product is noncommutative, that is,
and, e.g., , whereas
the scalar product is defined as

The quaternion conjugate is given by ,
and the norm by , and thus

, and
.

A. Equivalence Relations and Involutions

Similarity relation, denoted by “ ” between quaternions
and implies that , such that

(2)

It is an equivalence relation and implies
and . Thus, for instance, the three imaginary units are
similar, that is, , and also .
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Equivalence relations of particular importance to this work
are the quaternion involutions (self-inverse mappings) [11]

(3)

Notice that the quaternion conjugate is also an involution1, that
is, . The four real components of a quaternion can
now be expressed based on the involutions as

(4)

allowing any (either quadrivariate or quaternion-valued) func-
tion of the four real variables to be
expressed as a function of the quaternion variable and its per-
pendicular involutions2 (or their conjugates) [11].

III. THE DERIVATIVES

Similarly to the calculus [9], [10], in order to establish the
duality between the derivatives of a quaternion valued function

and the derivatives of the corresponding ‘composite’
quadrivariate real function , we start
from (since the fields and are isomorphic)

(5)

The differential of the function3 is

(6)

From (4) the derivatives of the components of a quaternion

1Involutions are generalizations of the complex conjugate operator, and are
applied component-wise to every imaginary component of a quaternion.

2We can also use the relations � � ��������� � � �� � � ���������� �
� �� � � ���������� � � �� � � ���������� � � �, however, this way
we lose two degrees of freedom, rendering this approach inappropriate for an-
alyzing the duality with the gradients of general quadrivariate functions, ad-
dressed in Section III.

3Function � � is a function of four real variables � � � � � � � � .

and since (also see the Appendix)

(7)

we have

(8)

For a real quadrivariate function that is
differentiable with respect to the real , from (6)–(8)

(9)

Finally, solving for the factors , from (6) we obtain
the set of identities which we refer to as the -derivatives.
The derivative is of particular interest and
is given in (10) shown at the bottom of the page; the complete
set of derivatives is

(12)

where we have used a shorthand notation .

A. The Derivatives

In analogy to the derivatives in the calculus, to arrive
at the derivatives, we can express the real-valued compo-
nents of a quaternion in terms of the quaternion
conjugate and the conjugate involutions (for an
overview of the augmented bases, see [5])

In this conjugate basis, the derivative of the function
can be written as

and thus the derivative of the quadrivariate is

(13)

In the same spirit as above, solving for factors yields
the derivatives; the derivative

(10)

(11)
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is given in (11), and the complete set of derivatives in a
vector-matrix form becomes

(14)
where .

B. Comparison With the -Calculus

The derivative in (10) can be re-
garded as a generalization of the derivative

, however, there are significant differences:
Functions . The derivative can be

directly applied to functions , since the substitution
shows that and and not

independent and thus .
Placement of unit vectors . Notice that both

the quaternion forms and
are valid, since the quadari-

variate function from (6) is
real and thus e.g.,

. These terms, however, do
not commute when replaced in the quaternion valued
function in (5), and so we need to take care of the
positioning.

The use of involutions. Owing to the similarity relation
in (2), for real functions of quaternion variables it is
advantageous to differentiate with respect to
rather than directly with respect to (see the
Appendix); this may also help with the uncertainty re-
garding the placement of the imaginary units.

C. Examples—Quaternion Valued Functions

1) Derivatives of the holomorphic . Using the
derivatives in (12) we obtain the partial deriva-

tives for , as
. This is equivalent to

the standard Cauchy–Riemann–Fueter (CRF) derivative,
which gives .

2) Derivatives of the nonholomorphic .
The four partial derivatives for are

.
This is the main difference from the calculus, where the
derivative ; since ,
the derivative in (10) gives .

3) Derivatives of involutions . As
desired, the derivatives give

(15)

4) The derivatives of . In the same
spirit as above, based on the derivative in (11)
we have , since for the involutions

.

IV. EXTENSION OF BRANDWOOD’S RESULTS IN

In the complex domain, as shown in [9], [10], stationary
points of a real function of complex variables are
defined by both and . It was also

shown that the conjugate gradient provides the direction of the
maximum steepness on the optimization surface, and so for
instance, is used for calculating the maximum gradient
of the cost function with respect to the coefficient vector

; this coincides with the so-called pseudogradient
which was introduced without formal justification.

In the quaternion domain, as shown in (3), the role of the com-
plex self-inverse is played by the involutions, , al-
lowing for more than one equivalent augmented basis [5]. Of
particular interest to this work are the bases

Based on the and derivatives in (10) and (11), the sta-
tionary points of function are obtained for

, giving

(16)

Thus, either or is a necessary
and sufficient condition for the stationary points of a real func-
tion of quaternion variables.

A. Maximum Change of the Quaternion Gradient

The first order multivariate Taylor series expansion of the
function gives

(17)

Observe that and thus

allowing us to simplify the Taylor series expansion in (17) as4

(18)

This result is readily applied to vectors , as

where
.

Since quaternions form a Hilbert space, for real functions of
quaternion variables , and (18)
becomes

(19)

According to the Schwarz inequality, the inner product of two
vectors satisfies . The equality
holds only when is collinear with , that is, ,
and thus the maximum of the derivative in (19) occurs
when is collinear with the conjugate gradient . This
shows that the conjugate gradient defines the direc-
tion of the maximum rate of change of the function , thus
making it a natural choice in gradient type optimization of real
functions of quaternion variables.

4In the process, for a real ���� we have employed the similarity rela-
tion in (2) to obtain the identities ������������ � ��� ��������� �
������������ �� and �������������� � ����������� �, for
� � ��� �� 	�. The properties of the involution product �� � � � � � , and
the conjugate �� � � � � � were also used.
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V. SOME SIGNAL PROCESSING APPLICATIONS

In gradient based optimization problems in adaptive filtering
we desire to minimize the real cost function ,
where the error is the desired signal,
the filter output, the statistical expectation operator,

the vector of filter coefficients, the input
vector, and the Hermitian transpose operator.

Wiener filter. To find the optimum weights , we expand

(20)

Based on the involutions in (3) and Example 2 in Section III-C,
note that , and thus

(21)

where and . Upon
setting to zero, owing to limited algebraic manipulation due to
the noncommutativity of the quaternion product, we obtain the
Wiener solution in two parts, as in [5]. As a simplification, using
the ‘complex form’ of quaternions, , and thus, like
in , assuming , the two terms multiplied by in (21)
vanish, giving the generic Wiener solution .

The Quaternion LMS (QLMS). For consistency with the
QLMS algorithm in [1], consider the cost function

, and the filter output in the form .
The weight update is , and the

calculus gives , to yield

(22)

The errors are given by and
, and thus the error gradients become

As desired, this gives the QLMS update in the original form [1]
(with a scalar constant absorbed in )

(23)

As a simplification, using the complex form of a quaternion and
thus formally assuming , we obtain the same
generic form5 for QLMS as that of the complex LMS (CLMS)

The widely linear QLMS (WLQLMS). The WLQLMS [12] is
based on the augmented basis in (25). Using the gradient defined
as , we arrive directly at the WQLMS update in its
augmented form (see the Appendix)

where and .

5The same form is obtained for a gradient defined via involutions (3), that is,
�� � � �� � � ��� �� ��, and assuming� and� are independent.

VI. CONCLUSION

We have introduced the caluclus, a unifying framework
for the calculation of gradients of both quaternion holomorphic
functions and real functions of quaternion variables. This has
been achieved by making use of perpendicular involutions, aug-
mented bases, and isomorphism with real vectors. The analysis
has shown that the direction of maximum change of the gra-
dient of real functions of quaternion variables is in the direction
of the conjugate gradient, conforming with the corresponding
solution in the complex domain. The usefulness of the cal-
culus has been illustrated on some typical gradient based opti-
mization problems in signal processing.

APPENDIX
QUATERNION WIDELY LINEAR MODEL

Consider the real-valued minimum mean square error
(MMSE) estimator which estimates the values
of signal in terms of another observation . For zero mean,
jointly normal and , the solution is a linear estimator (where

and is the coefficient vector) given by

(24)

In the same spirit, the standard conditional MSE estimator
in the quaternion domain is given by .
However, observe that

. The real valued components can now
be expressed via their quaternion valued perpendicular involu-
tions in (4), to give , thus leading to the
quaternion widely linear model [6], [12]

(25)

where are coefficient vectors, input
involution vectors, .
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