
www.ietdl.org
Published in IET Signal Processing
Received on 7th April 2011
Revised on 21st December 2011
doi: 10.1049/iet-spr.2011.0128

Special Issue on Multi-Sensor Signal Processing for
Defence: Detection, Localisation & Classification

ISSN 1751-9675

Kalman filtering for widely linear complex and
quaternion valued bearings only tracking
D.H. Dini C. Jahanchahi D.P. Mandic
Department of Electrical and Electronic Engineering, Imperial College London, Exhibition Road, London SW7 2BT, UK
E-mail: dahir.dini@imperial.ac.uk

Abstract: Bearings only target tracking is concerned with estimating the trajectory of an object from noise-corrupted bearing
(phase) measurements. Traditionally this problem has been formulated as real valued for the Cartesian coordinate system or
modified polar coordinate system. In this study, the authors introduce the bearings only tracking problem for the complex and
quaternion domains to take advantage of the natural representation offered by these domains, for multivariate real signals, as
well as the greater insights provided into the dynamics of tracking. Moreover, the authors introduce the augmented complex
and quaternion extended Kalman filters for the modelling of second-order non-circular complex and quaternion valued
signals, for which a widely linear model is shown to be more suitable than a strictly linear model.
1 Introduction

Bearings only tracking (BOT) paradigm is encountered in a
variety of practical applications, including submarine
tracking by passive sonar or aircraft surveillance by a radar
in passive mode. The objective is to estimate online the
kinematics (position and velocity) of a moving target using
observer line of sight bearing (phase) measurements
corrupted by noise. As the range measurements are not
available and the bearings are not linearly related to the
target state, the problem is hence inherently non-linear.
Since a single static sensor is not able to track targets using
bearings measurements only (because of the lack of range
measurements [1, 2]), in order to estimate the range, the
sensor has to manoeuvre. For two or more sensors,
observability problem is not an issue, as the multiple
bearing measurements can be used to form a range estimate.

Bearings only target motion analysis is generally carried
out in either two dimensions for ocean environment or three
dimensions for passive radar tracking [3, 4]. In both cases,
the problem has been formulated as real valued in Cartesian
or modified polar coordinate systems. However, the phase is
inherently related to the complex (quaternion) domain, we
aim to represent the two-dimensional (2D) and three-
dimensional (3D) BOT scenarios more naturally as complex
and quaternion valued problems.

The convenience of representation offered by the complex
and quaternion domains is yet to be fully exploited by the
research community within the context of bearings only
target motion analysis. This is because the second-order
statistics of complex and quaternion signals are not simple
extensions of their real valued counterparts, and as such,
conventional complex and quaternion valued statistical
signal processing algorithms, such as the complex extended
Kalman filter, are suboptimal for non-circular data and will
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generally not utilise all the available statistical information.
In addition, the non-linear function relating the target
position to the bearing measurement is non-holomorphic
(non-analytic) in the Cauchy–Riemann and Cauchy–
Riemann–Fueter sense, hence restricting the use of the
extended Kalman filter (EKF) which uses the Taylor series
expansion of the observation non-linearities.

The BOT problem is normally addressed from a state space
point of view, lending itself to the use of the EKF [5]. In this
work, we propose the use of the augmented complex and
quaternion EKF in the context of BOT and prove their
isomorphism (duality) with the real valued bivariate and
quadvariate EKFs, thus enabling the use of the complex
and quaternion domains as more convenient and natural
alternatives to the real domain [6].

We first address 2D BOT using the widely linear
(augmented) complex valued EKF [7]. Owing to recent
advances in the so-called augmented complex statistics, for
a second-order non-circular complex signal z ¼ zr + jzi, that
is, a signal with a rotation-dependent probability density
function, the standard linear estimation model based on the
covariance Rz ¼ E{zzH}, where E{.} is the statistical
expectation operator, is inadequate and a second moment
function known as the pseudocovariance Pz ¼ E{zzT} is also
required to fully capture the second-order statistics. This is
carried out by use of the widely linear model, where z and
its conjugate z∗ are combined to form the augmented input
vector za ¼ [zT, zH]T. The issue of non-analyticity of the
non-linear observation function is addressed through the
so-called CR calculus, which exploits the duality between
augmented complex vectors and real valued vectors to
allow for the derivatives of non-analytic functions to be
computed.

For tracking objects in a 3D space, we propose to use a
quaternion representation. To this end, we first introduce the
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quaternion Taylor series and derive the quaternion Kalman
filter using the recently proposed HR calculus framework
[8], and show that the quaternion Kalman filter has the
same generic form as its complex counterpart. Similarly to
the complex case, to utilise full second-order information,
we employ the widely linear model to cater for non-circular
quaternion valued signals. Simulations on 2 and 3D BOT
support the analysis.

2 Background

2.1 Second order statistics of complex signals and
widely linear modelling

The second-order statistical properties of a zero mean
complex vector z = x + jy [ CN is normally charcaterised
by its covariance matrix Rz ¼ E{zzH}, where E{.} is the
statistical expectation operator. In practice, this only holds
for the special class of complex signals known as second-
order circular or proper, that is, those with rotation invariant
probability distributions [9].

Most real world processes are non-circular, either because
of the different signal powers in the real and imaginary parts,
or due to correlation between the real and imaginary parts
[10]. Therefore for second-order non-circular (improper)
signals we also need to include the pseudocovariance
matrix Pz ¼ E{zzT}, in order to capture the full second-order
information. For circular signals, Pz ¼ 0, while for non-
circular signals, Pz = 0, that is, the pseudocovariance
cannot be ignored as it contains crucial information [9]. To
cater for the generality of complex signals, we employ the
widely linear model, which is linear in both the input z and
its conjugate z∗ [11], that is

y = Hz + Gz∗ (1)

where y is the output, H and G are complex coefficient
matrices and za ¼ [zT, zH]T is the augmented or widely
linear input. For G ¼ 0, (1) becomes the standard strictly
linear model. The full second-order information is now
contained in the augmented covariance matrix

Ra
z = E{zazaH} = Rz Pz

P∗
z R∗

z

[ ]
(2)

which encompasses both Pz and Rz.

2.2 BOT in R

Conventionally, although the notion of phase is intimately
related with the complex (quaternion) number system, the
BOT problem has been formulated with a real valued state
space representation. In order to estimate the trajectory of a
target at every discrete time instant k, that is, its position
(xk , yk) and velocity (ẋk , ẏk ), for a system with L observers
located at (xi,k

o , yi,k
o ), i ¼ 1, 2, . . . , L, the real valued state

space model is given by

xr
k = Frxr

k−1 + K rwr
k (3a)

zr
k = hr[xr

k] + vr
k (3b)

where the variables are defined as follows:
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† xr
k = xk ẋk yk ẏk

[ ]T
is the target state vector at time

k,
† Fr and K r are matrices defined as

Fr =

1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

⎡
⎢⎢⎣

⎤
⎥⎥⎦ and K r =

T2

2
0

T 0

0
T 2

2
0 T

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

where T is the sampling interval.
† zr

k is the observation vector and the vector
hr[xr

k] = b1,k b2,k · · · bL,k

[ ]T
contains the true target

bearings with respect to the different sensors, where
bi,k = tan−1 (yk − yo

i,k/xk − xo
i,k) is the true bearing at sensor

i; the observation function hr[.] can be deduced from the
given expression.
† wr

k = ẍk ÿk

[ ]T
is the zero-mean state noise vector (the

unknown target acceleration is modelled as noise) with
covariance Rr

w,k and vk = v1,k v2,k · · · vL,k

[ ]T
is the

zero-mean observation noise vector with covariance Rr
v,k .

The state space in (3) can be implemented using the real
valued EKF to form online estimates of the target state. The
EKF approximates the non-linearities in the state space by a
first-order Taylor series expansion, in order to form
linearised state and observation models. In the BOT
problem the state equation is linear, however, the
observation equation is non-linear and its first-order
linearisation about the state estimate x̂ r

k|k−1 is given by

zr
k = hr[x̂r

k|k−1] + H r
k(xr

k − x̂r
k|k−1) + vr

k

= H r
kxr

k + vr
k + dr

k (4)

where H r
k = (∂hr/∂xr

k )|xr
k
=x̂r

k|k−1
and dr

k = hr[x̂r
k|k−1]−

H r
k x̂r

k|k−1 is a deterministic input to the model. The above
model depends on the point about which the linearisation is
carried out and this point should be as close as possible to
the true state xr

k in order to have a good approximation. The
complete implementation of the BOT problem using the
real valued EKF is shown in Algorithm 1.

Algorithm 1: Real valued EKF
Initialise with

x̂r
0|0 = E{xr

0} M r
0|0 = E{xr

0xrT
0 }

Model output

x̂r
k|k−1 = Frx̂r

k−1|k−1 (5)

M r
k|k−1 = FrM r

k−1|k−1FrT + K rRr
w,kK rT (6)

Measurement output

Gr
k = M r

k|k−1H rT
k (H r

kM r
k|k−1H rT

k + Rr
v,k)−1 (7)

x̂r
k|k = x̂r

k|k−1 + Gr
k (zr

k − hr[x̂r
k|k−1]) (8)

M r
k|k = (I − Gr

kH r
k )M r

k|k−1 (9)

The algorithm for 3D BOT in R3 follows directly from its
IET Signal Process., 2012, Vol. 6, Iss. 5, pp. 435–445
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2D counterpart, with the following differences accounting
for the higher dimensionality:

† The 3D state vector becomes

xr
k = [xk ẋk yk ẏk zk żk]T

† The state transition matrix becomes

Fr =

1 T 0 0 0 0
0 1 0 0 0 0
0 0 1 T 0 0
0 0 0 1 0 0
0 0 0 0 1 T
0 0 0 0 0 1

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

† The state noise matrix becomes

K r =

T2

2
0 0

T 0 0

0
T 2

2
0

0 T 0

0 0
T 2

2
0 0 T

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

† The observation function hr[xr
k] contains the true azimuth

angle u and elevation f angle with respect to the different
sensors, that is

hr[xr
k ] = [u1, . . . , uL, f1, . . . , fL]T

where

ui = tan−1 yk − y0
i

xk − x0
i

fi = tan−1 zk − z0
i

((xk − x0
i )2 + (yk − y0

i )2)1/2

† The state noise vector becomes

wr
k = [ẍk ÿk z̈k ]T

The geometry of a system, where a target is tracked by a
single sensor, is shown in Fig. 1.

2.3 Quaternion algebra

Quaternions are an extension of complex numbers (forming
an ordered pair) and comprise a real part (denoted by a
subscript a) and three imaginary parts (denoted by
subscripts b, c and d). A quaternion variable q [ H can be
described as

q = qa + iqb + jqc + kqd

The unit vectors i, j and k in the quaternion domain H are also
IET Signal Process., 2012, Vol. 6, Iss. 5, pp. 435–445
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imaginary units, and obey the following rules

ij = k jk = i ki = j

i2 = j2 = k2 = ijk = −1

Note that quaternion multiplication is not commutative, that
is, ij = ji ¼ 2k.

A quaternion variable q can be conveniently written as [12]

q = Sq + Vq

where Sq ¼ qa (denotes the scalar part of q) and
Vq ¼ iqb + jqc + kqd (denotes the vector part of q). The
quaternion product can then be expressed as

q1q2 = (Sq1 + Vq1)(Sq2 + Sq2)

= Sq1Sq2 − Vq1 · Vq2 + Sq2Vq1 + Sq1Vq2 + Vq1 × Vq2

where the symbol ‘.’ denotes the dot-product and ‘×’ the
cross-product in vector analysis. The quaternion conjugate,
denoted by q∗ is given by

q∗ = Sq − Vq

the norm ‖q‖ of a quaternion variable q is defined as

||q|| =
����
qq∗

√
=

��������������������
q2

a + q2
b + q2

c + q2
d

√

The 3D vector part Vq is also called a pure quaternion,
whereas the inclusion of the real part Sq gives a full
quaternion. The unique algebraic structure of quaternions
enables unified processing of 3D and 4D multivariate
processes under one umbrella.

The key to widely linear modelling in the quaternion
domains are the involutions, or self-inverse mappings
defined as (Note that the quaternion conjugate is also an
involution, that is (q1q2)∗ = (q∗

2q∗1).) [13]

qi = −iqi = qa + iqb − jqc − kqd

qj = −jqj = qa − iqb + jqc − kqd

qk = −kqk = qa − iqb − jqc + kqd

To show that involutions are self-inverse mappings, consider

Fig. 1 Single observer BOT system
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for instance (qi)i ¼ q. The quaternion involutions have the
following properties:

P1: (qinv)inv ¼ q for inv ¼ i, j, k
P2: (q1q2)inv = qinv

1 qinv
2 for inv ¼ i, j, k

P3: (qi) j ¼ (qj)i ¼ qk

It is important to realise that involutions can be seen as a
counterpart of the complex conjugate, as they allow the
components of a quaternion variable to be expressed in
terms of the actual variable and its involutions, that is,

qa =
1

4
[q+ qi + qj + qk ] qb =

1

4i
[q+ qi − qj − qk ]

qc =
1

4j
[q− qi + qj − qk] qd =

1

4k
[q− qi − qj + qk]

(10)

similar to the complex domain where x and y can be written as

x = 1

2
(z+ z∗) y = 1

2i
(z− z∗) (11)

2.4 HR calculus

The concept of CR calculus has been recently extended to the
quaternion domain [8] and can be summarised as follows

∂f (q, qi, qj, qk)

∂q

∂f (q, qi, qj, qk)

∂qi

∂f (q, qi, qj, qk)

∂qj

∂f (q, qi, qj, qk)

∂qk

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

1 −i −j −k

1 −i j k

1 i −j k

1 i j −k

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

×

∂f (qa, qb, qc, qd)

∂qa

∂f (qa, qb, qc, qd)

∂qb

∂f (qa, qb, qc, qd)

∂qc

∂f (qa, qb, qc, qd)

∂qd

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∂f (q∗, qi∗, qj∗, qk∗)

∂q∗

∂f (q∗, qi∗, qj∗, qk∗)

∂qi∗

∂f (q∗, qi∗, qj∗, qk∗)

∂qj∗

∂f (q∗, qi∗, qj∗, qk∗)

∂qk∗

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

1 i j k

1 i −j −k

1 −i j −k

1 −i −j k

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

×

∂f (qa, qb, qc, qd)

∂qa

∂f (qa, qb, qc, qd)

∂qb

∂f (qa, qb, qc, qd)

∂qc

∂f (qa, qb, qc, qd)

∂qd

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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with the first set of equations called the HR derivatives and
the second called the HR∗ derivatives. This allows us to
perform the derivatives of both the holomorphic and non-
holomorphic non-linear functions. The rigid CRF
conditions for quaternion differentiability have pervented
development of non-linear algorithms, and the HR calculus
is a breakthrough.

2.5 Quaternion widely linear model

In the complex domain, non-circular signals have non-
vanishing pseudocovariance E[xxT] and for complete
second-order modelling both the pseudocovariance E[xxT]
as well as the covariance matrix E[xxH] are required. In
adaptive filtering problems this translates to deriving
algorithms based on the widely linear model.

Recently, widely linear modelling has been extended to the
quaternion domain [14], where to entirely describe the
second-order statistics of quaternion non-circular random
variables, the additional complementary covariance matrices
E[qqiH], E[qqjH] and E[qqkH] are employed. Analogously to
the complex case, for a non-circular process, the model
should comprise the involution terms q, qi, qj and qk, to
fully capture the so-called augmented statistics. The
augmented covariance matrix of the quaternion augmented
vector qa ¼ [qT, qiT, qjT, qkT]T can now be written as

Ra
q = E[qaqaH]

Rq Pqi Pqj Pqk

Pi
qi Ri

q Pi
qk Pi

qj

Pj
qj Pj

qk Rj
q Pj

qi

Pk
qk Pk

qj Pk
qi Rk

q

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

where Rq ¼ E[qqH], Pqi = E[qqiH], Pqj = E[qq jH],

Pqk = E[qqkH].

2.6 Quaternion Taylor series

We next introduce quaternion valued Taylor series, where
development has been hampered by the stringent CRF
consitions. The use of the HR calculus allows us, for the
first time, to write a generic expression for quaternion TSE.
This is achieved by starting from the Taylor series of a real
quadrivariate function u(qa, qb, qc, qd) given in [15]

u(qa, qb, qc, qd) = u(qa0, qb0, qc0, qd0) +
∑1

n=1

1

n
Dqa

∂

∂qa

[

+ Dqb

∂

∂qb

+ Dqc

∂

∂qc

+ Dqd

∂

∂qd

+
]n

× u(qa0, qb0, qc0, qd0)

(12)

where Dqa ¼ qa 2 qa0, Dqb ¼ qb 2 qb0, Dqc ¼ qc 2 qc0 and
Dqd ¼ qd 2 qd0. By using the identity (∂f/∂wT) ¼ (∂f/∂vT)A,
this can be expanded as

∂f

∂qa

∂f

∂qb

∂f

∂qc

∂f

∂qd

[ ]

= ∂f

∂q

∂f

∂qi

∂f

∂qj

∂f

∂qk

[ ] 1 i j k

1 i −j −k

1 −i j −k

1 −i −j k

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ (13)
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For a real function of quaternion variables, we have f (q, qi, qj,
qk) ¼ u(qa, qb, qc, qd) and so substituting (13) into (12) and
using the identities

Dqa = 1

4
(Dq + Dqi + Dqj + Dqk )

Dqb = 1

4i
(Dq + Dqi − Dqj − Dqk)

Dqc =
1

4j
(Dq − Dqi + Dqj − Dqk)

Dqd = 1

4k
(Dq − Dqi − Dqj + Dqk)

the quaternion Taylor series can be obtained as

f (q, qi, qj, qk) = f (q0, qi
0, qj

0, qk
0) +

∑1

n=1

1

n
Dq

∂

∂q

[

+ Dqi ∂

∂qi
+ Dqj ∂

∂qj
+ Dqk ∂

∂qk
+
]n

f (q0, qi
0, qj

0, qk
0)

For a multivariate quaternion function, the Taylor series
becomes

f (q, qi, qj, qk ) = f (q0, qi
0, qj

0, qk
0) +

∑1

n=1

1

n
DqT ∂

∂q

[

+ DqiT ∂

∂qi
+ Dq jT ∂

∂qj
+ DqkT ∂

∂qk
+
]n

f (q0, qi
0, qj

0, qk
0)

(14)

and will serve as a basis for the development of extended
quaternion valued filters.

3 BOT in C

3.1 Augmented complex extended Kalman filter
(ACEKF)

The 2D BOT problem can be conveniently represented in the
complex domain, where the complex BOT state space can be
defined as

xk = Fxk−1 + Kwk (15a)

zk = h[xk] + vk (15b)

and the model variables are described as follows:

† xk = xk + jyk ẋk + jẏk

[ ]T
is the complex target state

vector
† F and K are matrices defined as

F = 1 T
0 1

[ ]
and K =

T2

2
T

⎡
⎣

⎤
⎦
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† zk is the complex observation vector and h[xk] is a complex
vector function defined as

h[xk] =

b1,k + jb(L/2)+1,k

b2,k + jb(L/2)+2,k

..

.

b(L/2),k + jbL,k

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

† wk = ẍk + jÿk is the zero mean state noise with variance
rw,k and pseudovariance pw,k, while

vk = v1,k + jvL/2+1,k · · · vL/2,k + jvL,k

[ ]T

is the zero mean observation noise with covariance Rv,k and
pseudocovariance Pv,k.

The function h[xk] is complex valued and it is
straightforward to show that this function does not satisfy
the Cauchy–Riemann conditions, that is, (∂h[xk ]/∂x∗k ) = 0
and is hence non-holomorphic. However, by utilising the
CR calculus [16] framework, the Taylor series expansions
of this non-holomorphic function is possible, and its first-
order TSE about x̂k|k−1 is given by

h[xk] ≃ h[x̂k|k−1] + Ak (xk − x̂k|k−1) + Bk (x∗k − x̂∗
k|k−1)

(16)

where the matrices Ak and Bk are the Jacobians defined as

Ak = ∂h

∂xk

|xk=x̂k|k−1
and Bk = ∂h

∂x∗k
|x∗

k
=x̂∗

k|k−1
(17)

The observation equation can then be written as

zk = Akxk + Bkx∗k + vk + dk (18)

where dk = h[x̂k|k−1] − Ak x̂k|k−1 − Bk x̂∗k|k−1. From (18) note
that the observation equation is a widely linear function of the
state, being a function of the state xk and its conjugate x∗k . This
is because the first-order TSE of non-holomorphic functions
are widely linear, since the derivative with respect to the
complex conjugate does not vanish, that is Bk = 0 in (16).

The transformation xk � x∗k is a non-linear mapping, and
as such, the first-order Taylor series approximation in (18)
remains a non-linear function of the state xk . In order to
overcome this non-linear relationship between the state and
the observation, the state space needs to be redefined so that
the augmented state vector xa

k is utilised instead of the
conventional state vector xk. However, by using an
augmented state vector xa

k , the observation equation
becomes a linear function of the state.

Therefore in order to cater for the covariances and
pseudocovariances of the state and observation noises, both
the state and observation equations have to be augmented,
and can be implemented using the ACEKF. Earlier versions
of the augmented complex Kalman filter (ACKF) and
ACEKF were introduced for the training of recurrent neural
networks [17, 18], where the gradient was calculated using
the augmented RTRL [19]. The ACEKF derived here is
different, as it is more general, and is able to cater for the
full second-order statistics of both the state and observation
noises. The fully augmented complex state space for BOT
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is defined as

xa
k = Faxa

k−1 + Kawa
k (19a)

za
k = ha[xa

k] + va
k (19b)

where

xa
k =

xk

x∗
k

[ ]
, wa

k =
wk

w∗
k

[ ]
, Fa =

F 0

0 F∗

[ ]
,

Ka =
K 0

0 K∗

[ ]
, za

k =
zk

z∗k

[ ]
,

va
k =

vk

v∗k

[ ]
and ha[xa

k] =
h[xk]

h∗[xk ]

[ ]

and the linearised augmented state space can be expressed as

xa
k = Faxa

k−1 + Kawa
k

za
k = Ha

kxa
k + va

k + da
k

where Ha
k = (∂ha/∂xa

k) = Ak Bk

B∗
k A∗

k

[ ]
, da

k = dk

d∗
k

[ ]
and

dk = h[x̂k|k−1] − Ak x̂k|k−1 − Bk x̂∗k|k−1.
The ACEKF, which utilises the augmented state space, is

summarised in Algorithm 2.

Algorithm 2: Augmented Complex EKF (ACEKF)
Initialise with

x̂a
0|0 = E{xa

0} Ma
0|0 = E{xa

0xaH
0 }

Model output

x̂a
k|k−1 = Fax̂a

k−1|k−1 (20)

Ma
k|k−1 = FaMa

k−1|k−1FaH + KaRa
w,kKaH (21)

Measurement output

Ga
k = Ma

k|k−1HaH
k (Ha

kMa
k|k−1HaH

k + Ra
v,k)−1 (22)

x̂a
k|k = x̂a

k|k−1 + Ga
k (za

k − ha[x̂a
k|k−1]) (23)

Ma
k|k = (I − Ga

kHa
k )Ma

k|k−1 (24)

The ACEKF utilises the augmented state and observation
noise covariance matrices, that is

Ra
w,k = E{wa

kwaH
k } = rw,k pw,k

p∗
w,k r∗w,k

[ ]
(25)

Ra
v,k = E{va

kvaH
k } = Rv,k Pv,k

P∗
v,k R∗

v,k

[ ]
(26)

where pw,k and Pv,k are the state and observation noises,
hence, ACEKF caters for the full second-order statistics.

4 Duality between the ACEKF and real
valued EKF

Owing to the duality between the augmented complex space
C

2N and the real space R2N , the ACEKF and the real valued
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EKF are equivalent and give the same estimate at every time
instant. For any complex vector u ¼ ur + jui it holds that

u
u∗

[ ]
︸�︷︷�︸

ua

= I jI
I −jI

[ ]
︸�����︷︷�����︸

J

ur

ui

[ ]
︸�︷︷�︸

ur

where I is the identity matrix and J 21 ¼ (1/2)J H. By utilising
this isomorphism between the augmented and real spaces, the
augmented complex state space (19) can be transformed into
the corresponding real valued state space (3). By
premultiplying (19) with J 21 and using xr

k = J−1xa
k ,

zr
k = J−1za

k , vr
k = J−1va

k and wr
k = J−1wa

k , the duality
between the two state spaces can be observed through

J−1xa
k = J−1Faxa

k−1 + J−1Kawa
k

= J−1FaJxr
k−1 + J−1KaJwr

k

= Frxr
k−1 + K rwr

k

J−1za
k = J−1ha[xa

k ] + J−1va
k

= hr[xr
k ] + vr

k

(27)

where Fr ¼ J 21FaJ, K r ¼ J 21K aJ and hr[xr
k] = J−1ha[xa

k ].
The covariance matrices of the real valued state and
observation noises, wr

k and vr
k , are given by

Rwr ,k = E{wr
kwrT

k } = J−1Rwa ,kJ−H

Rvr ,k = E{vr
kvrT

k } = J−1Rva ,kJ−H

It can be shown that the real valued EKF has the exact same
performance as the ACEKF for every time instant. Assume
the ACEKF is initiated at time instant (k 2 1), with initial
state x̂a

k−1|k−1 and covariance matrix Ma
k−1|k−1. The real

valued EKF is then initialised as follows

x̂r
k−1|k−1 = J−1x̂a

k−1|k−1 (28)

M r
k−1|k−1 = J−1Ma

k−1|k−1J−H (29)

It is now straightforward to show that the predicted states and
covariance matrices of the two filters are related as

x̂r
k|k−1 = J−1x̂a

k|k−1 (30)

M r
k|k−1 = J−1Ma

k|k−1J−H (31)

The relationship between the real and augmented complex
Jacobians H r

k and Ha
k can be shown to be

H r
k−1 = J−1Ha

kJ , while the Kalman gains in (22) and (7)
are related as

Ga
k = Ma

k|k−1HaH
k [Ha

kMa
k|k−1HaH

k + Rva,k]−1

= JM r
k|k−1JHJ−HH rH

k J H

× [JH r
kJ−1JM r

k|k−1J HJ−HH rH
k JH + JRvr ,kJH]−1

= JM r
k|k−1H rH

k [H r
kM r

k|k−1H rH
k + Rvr ,k ]−1J−1

= JGr
kJ−1

(32)
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Consequently, the state estimates x̂a
k|k and x̂r

k|k have the
following relationship

x̂r
k|k = x̂r

k|k−1 + Gr
k (zr

k − hr[x̂r
k|k−1])

= J−1x̂a
k|k−1 + J−1Ga

kJ (yr
k − hr[x̂r

k|k−1])

= J−1x̂a
k|k (33)

and the covariance matrices are related as

M r
k|k = J−1Ma

k|kJ−H (34)

From (33), observe that the state estimates x̂a
k|k and x̂r

k|k are
equivalent and are related by an invertible linear mapping.
To show that ACKF and its dual real valued Kalman filter
achieve the same mean square error (MSE), recall that the
MSE for the real valued bivariate Kalman filter is given by
(The use of the term MSE is a misnomer since the ACEKF
and real valued EKF are only approximations to the MSE
estimator, except for the case of linear state space models
with uncorrelated Gaussian state and observation noises.)

1
r
k = tr{M r

k|k} (35)

where the symbol tr{.} denotes the matrix trace operator.
Similarly, the MSE corresponding to the augmented MSE
matrix Ma

n|n is given by the trace of (34), that

Tr{Ma
k|k} = tr{JM r

k|kJH}

= tr{M r
k|kJ HJ}

= 2 · tr{M r
k|k} (36)

where the expression J H ¼ 2J 21 was utilised. At first, this
result is misleading as it suggests that ACEKF achieves
twice the error of its dual real valued KF. However, this is
because the error term is counted twice by the trace of
Ma

k|k , owing to the block diagonal structure of the
augmented MSE covariance matrix, and hence needs to be
halved to express the true augmented MSE, that is

1
a
k = 1

2
tr{Ma

k|k} = 1
r
k

Therefore the ACEKF and the its dual bivariate real valued
KF are equivalent forms of the same state space models.
They achieve the same state estimates and MSE at every
time instant, regardless of the circularity of the processed
signals.

5 3D BOT in H

We next introduce the quaternion counterparts of the
proposed widely linear complex Kalman filters for BOT.

5.1 Quaternion EKF

The state space representation for the quaternion EKF takes
the same form as the quaternion Kalman filter (see the
IET Signal Process., 2012, Vol. 6, Iss. 5, pp. 435–445
doi: 10.1049/iet-spr.2011.0128
Appendix) and can be written as

xk = Fxk−1 + Kwk (37)

zk = h[xk] + vk (38)

where for 3D BOT, we define

† xk = [ixk + jyk + kzk iẋk + jẏk + kżk ]
† the state transition matrix F and matrix K are defined as

F = 1 T
0 1

[ ]

K =
T2

2
0

T 0

⎡
⎣

⎤
⎦

† the function h[xk] is defined as

h[xk] =

u1 + iu(L/2)+1 + jf1 + kf(L/2)+1

u2 + iu(L/2)+2 + jf2 + kf(L/2)+2

...

uL/2 + iuL + jfL/2 + kfL

⎡
⎢⎢⎣

⎤
⎥⎥⎦

where

ui = tan−1 yk − y0
i

xk − x0
i

fi = tan−1 zk − z0
i

((xk − x0
i )2 + (yk − y0

i )2)1/2

† wk ¼ ixk + jyk + kzk is the zero mean state noise.

Using the quaternion Taylor series derived in Section 2.6,
in conjunction with the HR calculus, the function h[xk] can
be linearised as

h[xk ] ≃ h[x̂k|k−1] + Ak(xk − x̂k|k−1) + Bk(xi
k − x̂i

k|k−1)

+ Ck(xj
k − x̂j

k|k−1) + Dk(xk
k − x̂k

k|k−1)

(39)

where the matrices Ak, Bk, Ck, Dk are defined as

Ak = ∂h

∂xk

, Bk = ∂h

∂xi
k

Ck = ∂h

∂xj
k

, Dk = ∂h

∂xk
k

(40)

The observation equation can now be written as

zk = Akxk + Bkxi
k + Ckxj

k + Dkxk
k + (h[x̂k|k−1] − Ak x̂k|k−1

− Bk x̂i
k|k−1 − Ck x̂j

k|k−1 − Dk x̂k
k|k−1)

(41)

Similarly to the complex case, the observation equation is
widely linear in xk, the state space model in (38) must be
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modified as

xa
k = Faxa

k−1 + Kawa
k (42)

zk = Hkxa
k + vk + dk (43)

where

xa
k = [xk xi

k xj
k xk

k ]T

wa
k = [wk wi

k wj
k wk

k]T

Fa =

F 0 0 0
0 Fi 0 0
0 0 Fj 0
0 0 0 Fk

⎡
⎢⎢⎣

⎤
⎥⎥⎦

Ka =

K 0 0 0
0 K i 0 0
0 0 K j 0
0 0 0 Kk

⎡
⎢⎢⎣

⎤
⎥⎥⎦

Hk = [Ak Bk Ck Dk]

dk = h[x̂k|k−1] − Ak x̂k|k−1 − Bk x̂i
k|k−1 − Ck x̂j

k|k−1 − Dk x̂k
k|k−1

5.2 Augmented quaternion extended Kalman filter
(AQEKF)

Similar to the complex case, the state space for the quaternion
BOT becomes

xa
k = Faxa

k−1 + Kawa
k (44)

za
k = ha[xa

k] + va
k (45)

where

za
k = [zk zi

k zj
k zk

k ]

va
k = [vk vi

k vj
k vk

k ]

ha[xk ] = [h[xk ] hi[xk ] hj[xk] hk
k[xk]]

Using the Taylor series to linearise the non-linear function,
the state model can be re-written as

xk = Faxa
k−1 + Kawa

k (46)

za
k = Ha

kxa
k + va

k + da
k (47)

where

Ha
k =

Ak Bk Ck Dk

Bi
k Ai

k Di
k C i

k

C j
k Dj

k Aj
k Bj

k

Dk
k Ck

k Bk
k Ak

k

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

The definitions above can be applied to the algorithm in (21)–
(24) to obtain the widely linear quaternion BOT. The duality
between the real and quaternion valued 3D BOT follows from
the fact that the quaternion variable {q, qi, qj, qk} and the real
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variable {qa, qb, qc, qd} are linearly related, as

q
qi

qj

qk

⎡
⎢⎢⎣

⎤
⎥⎥⎦ =

1 i j k
1 i −j −k
1 −i j −k
1 −i −j k

⎡
⎢⎢⎣

⎤
⎥⎥⎦

qa

qb

qc

qd

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (48)

This isomorphism between the augmented quaternion and
real space is similar to that found between the complex and
real space and can be used to show that the AQEKF and its
dual real valued EKF are essentially the same filter.

6 Simulation examples

6.1 Simulation results for a 2D tracking scenario

To illustrate the potential of ACEKF within the bearings only
target motion analysis context, we first consider a scenario
with two static sensors located at (21200, 1300) and
(1000, 1500). The system described by (3.1) was simulated
with a sampling interval of T ¼ 1 s to generate 300
samples. The target was initially located at (200, 100) and
was moving with an initial velocity (2, 1). The true target
state vector was assumed to be unknown at initialisation,
and as such the ACEKF algorithm were initialised with
position (300, 300) and velocity (4, 4).

The system was simulated using second-order circular and
non-circular state and observation noises, and the results are
illustrated in Fig. 2. In the first set of experiments, the
system was simulated using second-order circular white
Gaussian noise processes wk and vk with distributions

wk � N (0, 2.5 × 10−2, 0)

vk � N (0, 5 × 10−7, 0)

where the last term in the distribution represents the
pseudocovariance of the noise. Fig. 2a shows that the
ACEKF converged, and that it was able to estimate
the target velocity more accurately than its position. This is
because the target experiences larger variations in its
location (driven by the state noise process) than in velocity.

The next set of experiments were for a non-circular state
noise and a circular observation noise, that is

wk � N (0, 2.5 × 10−2, 2.3 × 10−2)

vk � N (0, 5 × 10−7, 0)

The results are shown in Fig. 2b, where again ACEKF was
able to capture the target dynamics, as well as achieving a
lower steady state error compared to the case with circular
noises.

6.2 Simulation results for a 3D tracking scenario

For the 3D BOT, the two static sensors were located at
(21200,1300,0) and (1000,1500,100) while the target was
initially located at (200,100,300) and was moving with an
initial velocity (2,1,0.5). The initial target position and
velocity were again assumed unknown and the Kalman
filter was initiated with location (300,300,400) and velocity
(4,4,4). The sampling interval used was the same as that in
the 2D case. Similarly to the complex case, the system was
first simulated using second-order circular white Gaussian
IET Signal Process., 2012, Vol. 6, Iss. 5, pp. 435–445
doi: 10.1049/iet-spr.2011.0128



www.ietdl.org
Fig. 2 Performance of ACEKF for a 2D tracking scenario and system with second-order circular and non-circular state and observation
noises

a Circular state and observation noises
b Non-circular state noise and a circular observation noise

Fig. 3 Performance of AQEKF for a system with second-order circular and non-circular state and observation noises

a Circular state and observation noises
b Non-circular state noise and a circular observation noise
noise wk and vk with distributions

wn � N (0, 2.5 × 10−2, 0, 0, 0)

vn � N (0, 5 × 10−7, 0, 0, 0)

where the last three terms in the distribution represent the
pseudovariance of the noise (respectively, Pi

q, Pj
q, Pk

q).
The MSE performance is shown in Fig. 3a. As expected,

Fig. 4 3D target tracking in the presence of non-circular noise
IET Signal Process., 2012, Vol. 6, Iss. 5, pp. 435–445
doi: 10.1049/iet-spr.2011.0128
the AQEKF converged and was able to track the underlying
dynamics of the target position and velocity. The same
experiment is repeated but this time the state noise is made
non-circular, that is,

wn � N (0, 2.5 × 10−2, −2.5 × 10−2, −2.5 × 10−2, 2.5

× 10−2)

vn � N (0, 10−7, 0, 0, 0)

Similarly to the case with circular state noise, the AQEKF
converged, but to a lower steady state MSE. Fig. 4 shows
the performance of AQEKF from a geometric view point. A
geometric view of the converging performance of AQEKF
is shown in Fig. 4, where the algorithm was initialised with
the wrong target location and velocity.

7 Conclusion

The complex and quaternion domains are the natural
representations of 2 and 3D motion trajectories as they are
naturally suited to signals with amplitude and direction
(angle). To this effect, the 2D and 3D BOT problem has
been revisited, and the duality between the real valued EKF
and the augmented complex and quaternion EKFs, ACEKF
and AQEKF, has been illuminated. The analysis has shown
that the observation model is non-holomorphic in the
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Cauchy-Riemann sense, and by using the recently developed
CR and HR calculus, it has been shown that its Taylor series
approximation is a widely linear function of the state, hence
lending itself to the ACEKF and AQEKF algorithms, which
cater for the second-order statistics of the complex and
quaternion signals, through their use of widely linear
models. Simulation on circular and non-circular bearing
only tracking problems in both 2D and 3D support the
analysis, where both the complex and quaternion
augmented EKFs have been shown to be able to accurately
track target dynamics.
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10 Appendix: derivation of the quaternion
Kalman filter

To perform 3D BOT in the quaternion domain, the quaternion
augmented Kalman filter was first derived. Following the
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complex domain derivation, we assume that the quaternion
state xk [ Hn×1 evolves according to

xk = Fkxk−1 + Bkuk + wk (49)

where Fk [ Hn×n is the state transition matrix, Bk [ Hn×n is
the control-input matrix for the control input uk [ Hn×1 and
wk [ Hn×1 is the model noise.

The state xk cannot be observed directly but can be inferred
from measuring the quantity zk [ Hm×1 which relates to the
state xk according to

zk = H kxk + vk (50)

where H k [ Hm×n is the observation matrix and vk [ Hm×1

is the measurement noise. Both the model noise and
measurement noise are zero mean and Gaussian, that is,

wk � N (0, Rw,k) (51)

vk � N (0, Rv,k) (52)

The a priori state estimate x̂k|k−1 [ Hn×1 (the estimate of the
state xk before obtaining the new measurement) can be
obtained from the state model

x̂k|k−1 = Fk x̂k−1|k−1 + Bkuk (53)

where x̂k−1|k−1 is the a posteriori state estimate (from the
previous state estimate).

Using the measurement zk, the estimate x̂k|k−1 can be
improved to obtain the a posteriori state estimate x̂k|k .

x̂k|k = x̂k|k−1 + Gk(zk − Hk x̂k|k−1) (54)

where zk − H k x̂k|k−1 is the innovation factor (the error
between the estimate and the measurement). Following the
same approach as for the derivation of the complex Kalman
filter, an expression for the Kalman gain Gk can be
obtained, leading to the quaternion Kalman filter,
summarised in Algorithm 3

Algorithm 3: Quaternion Kalman Filter (QKF)
Model output

x̂k|k−1 = Fk x̂k−1|k−1 + Bkuk (55)

M k|k−1 = FkM k−1|k−1FH
k + Rw,k (56)

Measurement output

Sk = H kM k|k−1HH
k + Rv,k (57)

Gk = Mk|k−1HH
k S−1

k (58)

x̂k|k = x̂k|k−1 + Gk[zk − Hk x̂k|k−1] (59)

Mk|k = [I − GkHk ]Mk|k−1 (60)

Note that the expressions above have the same generic form
as those in the complex domain.

To cater for quaternion non-circularity, the widely linear
model can be incorporated into the quaternion Kalman
IET Signal Process., 2012, Vol. 6, Iss. 5, pp. 435–445
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filter, giving the following structure to the filter

xa
k = Fa

kxa
k−1 + Ba

kua
k + wa

k

za
k = Ha

kxa
k−1 + va

k

(61)

where

xa
k = [xT

k xiT
k x jT

k xkT
k ]T

wa
k = [wT

k wiT
k wjT

k wkT
k ]T

va
k = [vT

k viT
k v jT

k vkT
k ]T

Fa
k =

F1 F2 F3 F4

Fi
2 Fi

1 Fi
4 Fi

3

F3 Fj
4 Fj

1 Fj
2

Ak
4 Fk

3 Fk
2 Fk

4

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

Ha
k =

H1 H2 H3 H4

H i
2 H i

1 H i
4 Hi

3

H j
3 H j

4 H j
1 H j

2

Hk
4 H k

3 Hk
2 Hk

1

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦
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Note that the structure in Ha
k and Fa

k (the subscript k is
dropped in the partitioned matrix for ease of representation)
is necessary for the model in (61) to hold. If the model is
linear in x, then the off-diagonal elements will vanish. The
only difference is notational, where every term has a
superscript a. The augmented quaternion Kalman filter
expressions are summarised in Algorithm 4.

Algorithm 4: Augmented Quaternion Kalman Filter (AQKF)
Model output

x̂a
k|k−1 = Fa

k x̂a
k−1|k−1 + Ba

kua
k (62)

Ma
k|k−1 = Fa

kMa
k−1|k−1FaH

k + Ra
w,k (63)

Measurement output

Sa
k = Ha

kMa
k|k−1HaH

k + Ra
v (64)

Ga
k = Ma

k|k−1HaH
k Sa−1

(65)

x̂a
k|k = x̂a

k|k−1 + Ga
k[za

k − Hax̂a
k|k−1] (66)

Ma
k|k = [I − Ga

kHa
k ]Ma

k|k−1 (67)
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