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Abstract-A quaternion valued recursive least squares algorithm for 

the processing of the generality of quaternion valued random processes 

(both circular and noncircular) is introduced. This is achieved by 

extending the widely linear model from the complex domain, and 

accounting for the specific properties of quaternion algebra. Firstly, the 

widely linear quaternionic Wiener solution is introduced which uses the 
'augmented' input and weight vectors and thus makes full use of the 

available second order information. Next, the widely linear quaternion 

recursive least squares (WL-QRLS) algorithm is derived and is shown 

to exhibit enhanced transient and steady state properties as compared to 

the standard widely linear quaternion least mean square (WL-QLMS). 

Simulations on real world 3D wind signal support the approach. 

I. INTRODUCTION 

The recursive least squares (RLS) algorithm is a standard in many 
real world applications requiring accurate adaptive filters. Compared 
to the least mean square (LMS) algorithm, it generally exhibits 
improved convergence and better steady state properties, at the cost 
of greater computational requirement. It also has a desirable property 
that the rate of convergence is invariant to the condition number of 
the correlation matrix R of the input signal [1]. 

The recent advances in sensing technology [2], robotics [3] and 
human centered computing have brought to light problems involving 
vector sensors, which are typically three- and four-dimensional. This 
has resulted in the development of the corresponding signal process­
ing algorithms, making them suitable for the operation directly in the 
domain where the observed processes reside. One such example is 
the recent development of statistical signal processing for quaternion 
valued signals, where the power of quaternion algebra has been shown 
to be advantageous in the processing of three- and four-dimensional 
signals, such as color images [4], bodysensor measurements [5], 
communications and renewable energy [6]. 

We have also witnessed the development of adaptive signal pro­
cessing algorithms suitable for the quaternion domain, thus allowing a 
unified filtering of three- and four-dimensional signals [7]. In analogy 
to the complex domain, where in order to account for second order 
complex noncircularity (improperness), a whole class of adaptive 
filtering algorithms suitable for the generality of complex signals 
(both proper and improper) has been developed [8], the first step 
in this direction in the quaternion domain is the widely-linear QLMS 
(WL-QLMS) algorithm [9]. It is important to notice that whereas 
the so called widely linear modeling in C is based on combining 
the complex vector and its complex conjugate to produce a new, 
'augmented' input, the situation in the quaternion domain is radically 
different, not only due to the higher dimensionality, but also owing 
to the special properties of quaternion algebra. 

To illustrate the need for widely linear quaternion modeling, 
consider the mean square error estimator (MSE), which estimates a 
variable y in terms of an observation x. The estimate y that minimizes 
the MSE error is the conditional expectation 

y = E[ylx] (1) 
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which for the zero mean, jointly normal y and x, becomes a linear 
model 

A T y=a x (2) 

where a is a vector of coefficients, and x = [Xl, . . .  , XN]T. In the 
complex domain, the estimator in (2) is only valid for circular signals, 
and an enhanced model, called the widely linear model must be used 
[8]. To show this, denote the real and imaginary parts of complex 
quantities by ( - ) r and ( . k Then, 

y = E[Yrlxr,Xi] + jE[Yilxr,Xi] 
+ • • 

Given Xr = T and Xi = "';j , we have 

y = E[ylx, x*] 

that is, for an optimal linear estimator, the 'augmented' input 
[xT, xHf must be used, leading to the widely linear model [8] 

(3) 

Analogously, for a quaternion variable q = qa + iqb + jqc + kqd, the 
linear MSE estimator has the components 

Ym = E[Ymlxa,Xb,Xc,Xd], mE {a,b,c,d} 

and the corresponding quaternion widely model becomes 

y = uT X + vT Xi + gT xj + hT xk 

as explained in Section IV. 

(4) 

In this work, we first develop the widely linear quaternion model 
and proceed with the derivation of the widely linear quaternion RLS 
(WL-QRLS), showing that it offers enhanced performance for the 
general class of noncircular signals. The enhanced performance of 
the WL-QRLS algorithm is illustrated by simulations which compare 
the WL-QLMS and WL-QRLS on the prediction of four dimensional 
signals, such as real-world wind measurements. 

II. QUATERNION ALGEBRA 

Quaternions are an extension of complex numbers (forming an 
ordered pair) comprising of a real part (denoted by a subscript a) and 
three imaginary parts (denoted by subscripts b, c and d). A quaternion 
variable q E JH[ can be described as: 

(5) 

The unit axis vectors i, j and k in the quaternion domain JH[ are also 
imaginary units, and obey the following rules 

ij = k jk = i ki = j 

i2 = j2 = k2 = ijk = -1 

Note that quaternion multiplication is not commutative, that is ij = 
k # ji = -k. 

A quaternion variable q can be conveniently written as [10] 

q=Sq+Vq 



where, Sq = qa (denotes the scalar part of q) and V q = iqb + jqc + kqd (denotes the vector part of q). Then, the quaternion product can 
be expressed as: 

qlq2 (Sql + V ql)(Sq2 + V q2) 
�� -�.�+��+��+�x� 

where symbol '.' denotes the dot-product and 'x' denotes the cross­
product in vector analysis. The quaternion conjugate, denoted by q* 
is given by 

q* = Sq -Vq 

The norm II q II of a quaternion variable q, is defined as 

[[q[[= ..jij(j* = Jq� + q� + q� + q� 

The three-dimensional vector part V q is also called a pure quaternion, 
whereas the inclusion of the real part Sq gives a full quaternion. The 
unique algebraic structure of quaternions enables unified processing 
of three- and four-dimensional multivariate processes. 

A. Quaternion Involution 
Involutions [11] are self-inverse mappings and are defined asl 

qi = -iqi = qa + iqb -jqc -kqd 

qj = -jqj = qa -iqb + jqc -kqd 

qk = -kqk = qa -iqb -jqc + kqd 

(6) 

(7) 

(8) 

To verify that involutions represent self-inverse mappings, consider 
for instance (qi)i = q. The involution of a product is also a product 
of the individual involutions (i.e. (qlq2)i = qlq�). It is important to 
realize that involutions can be seen as a quaternionic counterpart of 
the complex conjugate, as they allow the components of a quaternion 
variable to be expressed in terms of the actual variable and its 
involutions, that is 

1 . . 
k qa = 4" [q + q' + ql + q ] 

1 . . 
k qb = 4i [q + q' -ql -q ] 

1 . .  
k qc = 4j [q -q' + ql -q ] 

1 . .  
k qd = 4k [q -q' -ql + q ] 

(9) 

(10) 

(11) 

(12) 

The above representation is instrumental in the derivation of quater­
nion valued widely-linear adaptive filtering models. 

III. QUATERNION GRADIENT 

The cost function within the Mean Square Error (MSE) optimiza­
tion in the quaternion domain is the standard error power, given by 

(13) 

To obtain the Minimum MSE (MMSE) in linear estimation prob­
lems, the gradient of the cost function J is usually calculated using 
so called pseudogradients, or by optimizing the error powers channel­
wise [12]. However, both these approaches lead to suboptimal solu­
tions, as the error gradient should be calculated rigorously, by taking 
into account the non-commutativity of the quaternion product [7]. 
In the complex domain, it has been established that the gradient of 
real functions with respect to complex filter coefficients should be 
calculated with respect to the conjugate of the complex weights [13] 

1 Note that the quaternion conjugate is also an involution. 
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[8]. In order to provide a corresponding formalism in the quaternion 
domain, we shall make use of lHlR-calculus [14]. 

The lHlR derivatives with respect to the quaternion variable q and 
its conjugate q* are given in (14) and (15). In Section VI we illustrate 
a solution to a minimization problem, based on the conjugate gradient 
in (15). 

IV. WIDELY LINEAR QUATERNION MODELING 

In the complex domain, noncircul� signals have non-vanishing 
pseudocovariance E[xxT] [15], and for complete second order 
modeling of general, noncircular signals, both the pseudocovariance 
E[xxT] as well as the covariance matrix E[XXH] must be used. 
In adaptive filtering problems this translates to deriving algorithms 
based on the widely linear model (3). 

Recently, widely linear modeling has been extended to the quater­
nion domain [16], where it is shown that to entirely describe 
the second-order statistics of quaternion noncircular random vari­
ables, the additional complementary covariance matrices E[qqiH] , 
E[qqjH] and E[qqkH] must be employed. Analogously to the com­
plex domain, for a noncircular process, the model should comprise 
the terms q, l, qj and qk, to fully capture the so called augmented 
statistics. 

In adaptive signal processing algorithms, we obtain an estimate 
y(n) of a teaching signal d(n) in terms of the tap input x(n). That 
is, 

y(n) = E[d(n)[x(n)] 

Based on (1)-(4), for a quaternion valued adaptive filter, we can split 
y(n) and x(n) into their components to give 

Ya(n) = E[da(n)[xa(n),xb(n),xc(n),xd(n)] 

Yb(n) = E[db(n)[xa(n), xb(n), xc(n), xd(n)] 

Yc(n) = E[dc(n)[xa(n),xb(n),xc(n),xd(n)] 

Yd(n) = E[dd(n)[Xa(n),xb(n),xc(n),xd(n)] (16) 

From equations (9) to (12), the terms Xa(n), xb(n), xc(n), xd(n) 
can be written in terms of x(n), xi(n), xj (n) and xk(n), and the 
four expressions in (16) can be rewritten as: 

Ya(n) = E[da(n)[x(n), xi(n), xj (n), xk(n)] 

Yb(n) = E[db(n)[x(n), xi(n), xj (n), xk(n)] 

Yc(n) = E[dc(n)[x(n),xi(n),xj(n),xk(n)] 

Yd(n) = E[dd(n)[x(n), xi(n), xj (n), xk(n)] 

and the output y( n) of a quaternion valued FIR filter can be expressed 
as 

y(n) = E[d(n) [x(n), xi(n),xj(n), xk(n)] (17) 

In other words, to capture full second order information available 
we should use the adaptive version of the widely linear quaternionic 
model (4), to give the filter output 

y(n) = wT(n)q(n) (18) 

where the augmented weight vector w(n) and input vector q(n), are 
defined respectively as 

q(n) = [xT(n) xiT(n) xjT(n) xkT(nW (19) 

w(n) = [uT(n) vT(n) gT(n) hT(nW (20) 

2Complex circularity refers to rotation-invariant probability distributions. 
A second order circular signal is termed 'proper', whereas a second order 
noncircular signal is termed improper. 



8f(q, qi, qi, qk) 
= 

� (8f(qa, qb, qc, qd) _ i 8f(qa, qb, qc, qd) _ j 8f(qa, qb, qc, qd) _ k 8f(qa, qb, qc, qd) ) (14) 8q 4 8qa 8qb 8qc 8qd 
8f(q*,qi*,qi*,qk*) 

= � (8f(qa,qb,qC,qd) +i8f(qa,qb,qc,qd) +j8f(qa,qb,qc,qd) +k8f(qa,qb,qC,qd) ) (15) 
� 4 � � � � 

V. THE WIDELY-LINEAR QLMS 

Recently, the widely-linear quatemionic model (18) has been 
incorporated into the QLMS algorithm [7] to yield the widely linear 
QLMS (WL-QLMS), described in [9]. With the output yen) defined 
as in (18), the input error 

e(n) = d(n) -y(n) 

and the standard stochastic gradient, the adaptive weights become 

u(n + 1) u(n) + J1, Ge(n)x*(n) -�x(n)e*(n)) 
v(n + 1) 

g(n + 1) 

h(n + 1) 

v(n) + J1, (�e(n)xi*(n) -�xi(n)e*(n)) 
g(n) + J1, (�e(n)xi*(n) -�xi(n)e*(n)) 
h(n) + J1, (�e(n)xk*(n) -�xk(n)e*(n)) (21) 

The WL-QLMS has been shown to have performance advantage 
for the filtering of noncircular quatemion signals [7]. 

VI.  DERIVATION OF THE WIDELY LINEAR QRLS 

Within the RLS class of algorithms, the aim is to minimize the 
following objective function: 

n n 
J(n) = 2:>n-k 1 e(k) 12= LAn-ke(k)e*(k) (22) 

k=O k=O 

where the forgetting factor A E (0,1] and the output error 

p 

e(k) = d(k) -w�q(k) = d(k) -L wn(r)q(k -r) 
r=O 

(23) 

where p is the filter order, and q(k) and Wn denote respectively the 
augmented input vector at time k and the augmented weight vector 
at time n defined in (19) and (20). 

A. The Wiener Solution 
Our aim is to find a recursive solution that minimizes the objective 

function in (22). To this end, following lHlR-calculus (15), we set the 
partial derivative with respect to w�(l) for I = 1 to p, to zero, to 
give 

8J(n) 
8w;'(I) 

which yields, 

� A n-k 8e(k)e(k)* 
L 8w;'(I) k=O 

� An-k (e(k) 8e*(k) 8e(k) e*(k)) L 8w;'(I) + 8w;'(I) k=O 
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Substitute for e( k) in (23) and set the cost function to zero to obtain3: 

8J(n) 
= � t An-kq(k -I) (d*(k) - t q*(k -r)w�(r)) 8w;'�) 2k=o r=O 

-� An-k (d(k) - � wn(r)q(k -r)) q*(k -I) = 0 

The terms above can be re-arranged as 

8J(n) 
8w;'(I) 

n p 

L L An-kwn(r)q(k -r)q*(k -I) 
k=Or=O 

+ � t An-kq(k -l)d*(k) - t An-kd(k)q*(k -I) 
k=O k=O 

� t t An-kq(k -l)q*(k -r)w�(r) = 0 

k=Or=O 

In a more compact form, we have 

w�Rqq(n) - (�Rqqw�) T 
= rIq(n) -�r�d(n) (24) 

where 
n 

Rqq(n) L An-kq(k)qH (k) 
k=O 

n 
rqd(n) L An-kq(k)d*(k) 

k=O 
n 

rdq(n) L An-kd*(k)q(k) (25) 
k=O 

((w;Rqq(n))H)T Observe that (w;Rqq(n))* 
(R�(n)w�)T = (Rqq(n)w�)T 
therefore follows from (24) that 

and (rIq(n))* = r�d(n) . It 

w�Rqq(n) = rIq(n) 

Post-multiplying both sides by R;ql(n) we finally obtain 

w� = rIq(n)R;;-ql(n) (26) 

The Wiener filter solution in the quatemion domain can be obtained 
from (26), as the recursive estimate of the correlation matrix Rqq(n) 
converges to a true correlation matrix Rqq for n -t 00. The same 
applies to the estimated cross-correlation rdq, giving 

R;;-ql(n) 
rIq(n) 

and the Wiener filter solution 

T T R-I W = rdq qq (27) 

The difference from the complex domain Wiener solution arises 
due to the non-commutativity of quatemion products, as the position 
of r dq relative to R;ql (n) is important and hence the term wT. 

3The quatemion conjugate property (qIq2)* = q2qi was used. 



We shall next derive the WL-QRLS algorithm, a recursive solution 
to the Wiener filtering problem in (26). Our approach follows the 
general idea of the derivation of the complex widely-linear RLS 
algorithm4 in [17], and extends this approach by accounting for the 
specific properties of quatemion algebra. 

B. The Widely-linear QRLS algorithm 
The term q(k)q(k)H within the covariance matrix Rqq in (25) 

can be expressed as 

yielding a simpler form 

n 

x(k)xjH (k) 
xi(k)xjH (k) 
xi (k)xjH (k) 
xk(k)XiH (k) 

pi sj 

[! 
Ri Ti Rqq = L>.n-kq(k)q(k)H = Ti Ri 

k=l Si pj 

where 
n 

R L >.n-kq(k)qH (k) 
k=l n 

p L >.n-kqi(k)qH (k) 
k=l n 

S L >.n-kqj (k)qH (k) 
k=l n 

T = L >.n-kqk(k)qH (k) 
k=l 

(28) 

Tk 

j 
Sk 
pk 
Rk 

(29) 

(30) 

To demonstrate the matrix R;q1 has the same structure as the matrix 
Rqq, observe that when R;q1 takes the form in (29) then RqqR;q1 = 
I is a valid solution, that is 

[! 
pi si Tk 

][� 
Bi Ci Dk 

j RqqR;q1 Ri Ti Sk Ai Di Ck 
Ti Ri pk Di Ai Bk 
Si pj Rk Ci Bi Ak 

[ � 
0 0 

n 
I 0 

0 I 

0 0 

Out of the 16 equations (one for each entry of the identity matrix), 

RA + piB + si C + TkD = I 

PA+RiB+TjC+SkD = 0 

SA + TiB + Rj C + pkD = 0 

TA+ SiB+pjC+RkD = 0 

only four are linearly independent, as all others are involutions of 
these equations. This set of linear equations has four unknowns A, 
B, C and D. As there is only one solution for A, B, C and D, hence 
the structure assumed for R;q1 must be valid. A direct consequence 
of this structure is that the matrix R;q1 can be fully described by 
only a quarter of its entries. 

4The complex WL-RLS algorithm, proposed by C. Douglas, takes advan­
tage of a special structure inherent to the augmented covariance matrix to 
simplifY the calculation [17]. 
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The first step towards the WL-QRLS algorithm is to find a 
recursive solution for R;q1 and rdq. Using Woodbury's identity, the 
matrix inverse R;q1 can be written as: 

>. -lR;q1(n -1) 
>.-2R;q1(n-1)q(n)qH(n)R;i(n-1) 

1 + >.-lqH(n)R;;-q1(n - l)q(n) 
(31) 

A recursive solution for A(n), B(n), C(n) and D(n) can now be 
obtained by expanding the expression for R;q1 ( n) into its compo­
nents. Note that A(n), B(n), C(n) and D(n) can be written as 

A(n) 

B(n) 

C(n) 

D(n) 

H >.-lA(n -1) _ >.-2PP 
c 
i H >.-lB(n -1) ->.-2� 

c 

j H >.-lC(n -1) _ >.-2� 
c 

k H >.-lD(n -1) _ >.-2� 
c 

where P and c are defined as 

(32) 

P = [A(n - l)x(n) + Bi(n - l)xi(n) + cj (n - l)xi (n) 
+Dk(n - l)xk(n)] 

c = 1+>.-14R (xH(n)p) 
where symbol R(·) denotes the real part of a quatemion. The cross­
correlation r dq can be recursively estimated by 

rdq(n) = >'rdq(n -1) + d(n)q*(n) (33) 

The augmented weight update of the WL-QRLS algorithm, w'{; = 
rIqR;q1 can be expanded as: 

Bi(n) 
Ai(n) 
Di(n) 
Ci(n) 

Cj(n) 
Dj(n) 
Aj(n) 
Bj(n) 

We can now write expressions for Un, Vn, gn and hn in terms of 
A, B, C and D 

(34) 

By substituting (32) and (33) into (34), we can obtain a recursive time 
update for the weight vectors Un, Vn, gn and hn. For illustration, 
the update of the weight component Un is given below. The update 
for the other three weight vectors are obtained analogously. 

u�= (>.rIq1(n-1)+ d(n)xH(n)) (>.-lA(n _ 1) _ >.-2P�H ) 
+ (>.rIq2 (n -1) + d(n)xiH (n)) (>. -lB(n _ 1) _ >.-2 pi�H ) 
+ (>.rIq3 (n -1) + d(n)xjH (n)) (>. -lC(n _ 1) _ >.-2 pj:H ) 
+ (>.rIq4 (n -1) + d(n)xkH (n)) (>.-lD(n _ 1) _ >.-2 pk:H ) 

Expanding U'{; we can split the terms above into four groups, as 
shown in (35). It can be shown that the first row equals U'{;-l and 



U� rIq1 (n - l)A(n -1) + rIq2 (n - l)B(n -1) + rIq3 (n - l)C(n -1) + dq4 (n - l)A(n -1) 
+ A -ld(n)xH (n)A(n -1) + A -ld(n)xiH (n)B(n -1) + A -ld(n)xjH (n)C(n -1) + A -ld(n)xkH (n)D(n -1) 

-1 T ppH -1 T ppiH -1 T ppjH -1 T ppkH A rdq1(n-1)-c --A rdq2(n-1)-c --A rdQ3(n-1)-c--A rdQ4(n-1)-c-

p H H pipH H pj H H pkpH A-2d(n)xH(n)� - A-2d(n)xi (n) -- - A-2d(n)xj (n)-p- - A-2d(n)xk (n)-- (35) c c c c 

the second row equals A -ld(n)pH (n). The third row can be written 
as 

H 
A-I (U�_lx(n) + V�_lxi(n) + g�-IXj (n) + h�_lxk(n)) Pc 
whereas the last row can be written as 

Thus giving, 

H 
U� = U�_1 + A -ld(n)pH -A -2d(n)(4�(xH (n)p)L -c 

( T T i T j T k ) pH Un_lx(n) + Vn_lx (n) + gn-lx (n) + hn_1x (n) --z-
Using A-14�(xH(n)p) = c + 1, we finally obtain 

u� = U�_1 + A-I (d(n)- (36) 

( T T i T j T k )) pH Un_lx(n) + Vn-lx (n) + gn-lx (n) + hn_1x (n) --z-
The update for v�, g� and h� follows a similar form, summarized 
in (43). 

C. Summary of the Widely-Linear QRLS Algorithm 
The WL-QRLS algorithm is summarized below 

q(n) 
w(n) 

[xT(n) xiT(n) xjT(k) xkT(nW 
[uT(n) vT(n) gT(n) hT(nW 

e(n) = d(n) -wT(n - l)q 

C= 1+ 4� (xH(n)p) 

(37) 

(38) 

(39) 

(40) 

p [A(n - l)x(n) + Bi(n - l)xi(n) + Cj(n - l)xj(n) 
+Dk(n - l)xk(n)] (41) 

A(n) 

B(n) 

C(n) 

D(n) 

H A-I A(n -1) -A-2PP 
c 
i H A-1B(n -1) -A-2� 
c 

j H A-1C(n -1) -A-2� 
c 

k H A-1D(n -1) -A-2£..L 
c 

The updates of the augmented weight vector 
[u� v� g� h�]T of the WL-QRLS are given by 

_ 
\ -1 e(n)pH Un - Un-l + A ---

C 

"H \_le(n)p' Vn = Vn-l + A 
C 

(42) 
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hn = hn-1 + A-I e(n)pkH 
c 

VII. SIMULATIONS 

(43) 

The effectiveness of the WL-QRLS is demonstrated by comparing 
its performance to that of WL-QLMS algorithm in forecasting wind5. 
For the simulations, four signals (temperature reading and wind speed 
in the North, East and vertical directions6) were combined into one 
quatemion valued signal. 

For comparison purposes, the step size of the widely linear QLMS 
algorithm [9] was chosen to give the fastest convergence for the signal 
at hand, whereas for the widely linear QRLS, a forgetting factor 
A = 0.95 was employed. The quantitative performance measure was 
the prediction gain, given by 

(44) 

where a� and a: denote respectively the input signal power and error 
power. 

Fig. 1 compares the prediction gain of WL-QLMS and WL-QRLS 
for the prediction of a wind signal over a range of prediction horizons. 
Over all filter orders and prediction horizons, the performance of 
the WL-QRLS was approximately 20dB higher than that of the 
WL-QLMS. Fig. 2 shows the error curves for both the algorithms, 
illustrating the faster convergence rate of WL-QRLS. Fig. 3 compares 
the prediction gain when both the filters are at the steady state, 
illustrating the enhanced performance of the WL-QRLS. Finally, 
Fig. 4 visualizes the tracking performance of the WL-QRLS on the 
vertical wind speed component of the quatemion wind signal. 

VIII. CONCLUSION 

We have introduced the widely linear QRLS (WL-QRLS) al­
gorithm for the processing of circular and noncircular signals in 
the quatemion domain. This has been achieved by extending the 
widely linear model to the quatemion domain, and following the 
RLS algorithm's steps. The superiority of the WL-QRLS has been 
demonstrated on the forecasting of a 4D wind field (3D wind as a 
pure quatemion and air temperature as a real part). The WL-QRLS 
algorithm has found to have an increased convergence and superior 
steady state performance, as compared to other available widely linear 
adaptive algorithms in JHI, the WL-QLMS. 

5The quaternion toolbox was used to extend the capabilities of Matlab to 
the quaternion domain [18]. 

6The wind data were recorded by Prof. K. Aihara and his team at 
the University of Tokyo, in an urban environment, sampled at 5Hz. We 
considered the three wind speed components as a pure quaternion, with the 
air temperature being the real part. 
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Fig. I. Performance of WL-QLMS and WL-QRLS on the prediction of 4D 
wind field (3D wind speed and air temperature) 
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Fig. 3. Steady state performance of WL-QLMS and WL-QRLS on the 
prediction of 4D wind field (3D wind speed and air temperature) 
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