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ABSTRACT
A split quaternion learning algorithm for the training of nonlinear fi-
nite impulse response filters for the modelling of hypercomplex sig-
nals is proposed. A rigorous derivation takes into account the non-
commutativity of the quaternion product, an aspect not taken into
account in the existing nonlinear architectures, such as the Quater-
nion Multilayer Perceptron (QMLP). It is shown that the additional
information present within the proposed algorithm provides an im-
proved performance over QMLP. Simulation on both benchmark and
real-world signals support the approach.

Index Terms— Machine Learning, Quaternion Multilayer Per-
ceptron, Cauchy-Riemann-Fueter equation.

1. INTRODUCTION

Recent advances in sensor technology, and their applications (sen-
sor networks, data fusions) have highlighted the need for multidi-
mensional learning algorithm to process such multiple channels ef-
ficiently. Instead of treating each dimension separately, the signal
needs to be processed as a whole, thus fully exploiting the multidi-
mensional statistics. A number of machine learning algorithms have
been developed in order to fulfill this objective [1, 2, 3].

The early approaches were based on the representation of multidi-
mensional signals and the network parameters as vectors in R

n. One
of the first such learning algorithms is the Three-Dimensional Vec-
tors Back-Propagation (3DV-BP) for neural networks [1]. However,
its matrix operation does not exploit the coupling between the three
dimensions. One improvement was the Vector Product Back Propa-
gation (VP-BP), which addressed this issue through the use of vector
products [2]. However, this algorithm encountered a problem of a
zero weight adaptation term in the presence of non-zero error.

In order to overcome these issues for four dimensional signals, it
is natural to consider the processing in the quaternion domain, H.
Quaternions were first conceived by W. Hamilton in 1843, and have
found applications in robotics [4], molecular modeling [5], and com-
puter graphics [6]. The dilemma of quaternion modelling versus the
modelling in R

4 has been long present [7], and quaternion based
analysis in machine learning has not been as prominent as vector
analysis.

In the area of neural networks, the Quaternion Multilayer Perceptron
(QMLP) has been introduced and benefits from the algebraic proper-
ties of the quaternion domain resulting in an enhanced performance
over previous algorithms of this kind [3]. One of the applications
of QMLP algorithm is in polarized signal classification [8]. Despite
the satisfactory results obtained, the performance of QMLP could be

improved as it ignores the non-commutativity aspect of the quater-
nion product.

The aim of this paper is to introduce a quaternion valued nonlin-
ear finite impulse response (FIR) adaptive filter. Due to a number of
open issues in nonlinear quaternion functions, it is difficult to find
an equivalent to a “fully” complex approach in C. Hence, we resort
to “split” quaternion nonlinear functions. A new learning algorithm,
the Split Quaternion Nonlinear Adaptive Filter (SQAF), is derived in
order to explicitly address the non-commutativity of the quaternion
product. Simulation studies support the analysis on both benchmark
and real-world multidimensional data.

2. QUATERNION ALGEBRA

A basic quaternion variable q ∈ H has a real part and three imaginary
parts, which can be represented as

q = [qa, q]
= qa + qbı + qcj + qdκ (1)

where qa, qb, qc, qd ∈ R and ı, j, κ, are orthogonal unit vectors.

The relationship between the orthogonal unit vectors ı, j, κ are

ıj = κ; jκ = ı; κı = j;

ıjκ = ı2 = j2 = κ2 = −1 (2)

Another quaternion operation crucial to this study is the multiplica-
tion, given by

wx = [wa,w][xa, x]
= [waxa − w · x, wax+ xaw+ w× x] (3)

where the symbols “·” and “×” denote respectively to the dot-product
and cross-product. It is clear that wx �= xw, due to the presence of
the outer product.

Similar to the complex case, the conjugate of a quaternion q is q∗ =
[qa, q]∗ = [qa,−q], and the norm ‖ q ‖22= qq∗. In this paper, all
quantities are quaternion valued, unless stated otherwise.

3. NONLINEAR FUNCTIONS IN H

The choice of a quaternion valued nonlinearity is still an open issue.
In order for a nonlinear function to be “fully” quaternion, it must
satisfy the Cauchy-Riemann-Fueter equation, which is an extension
of the Cauchy-Riemann equation from C to H [9].
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(a) Lorenz Attractor (b) Wind Signal

Fig. 1. Left: The 3D Lorenz attractor with parameter α = 10, ρ =
28 and β = 8/3 in (22) . Right: The 3D wind signal.

Cauchy-Riemann equations state that for a function f(z)

∂f

∂x
+

∂f

∂y
ı = 0 (4)

where z = x + yı. Given that f(z) = u(x, y) + v(x, y)ı, the
Cauchy-Riemann conditions can be shown to be

∂u

∂x
=

∂v

∂y
;

∂v

∂x
= −

∂u

∂y
(5)

In practice, conditions (5) are very convenient and simplify the deriva-
tion of learning algorithms for nonlinear adaptive filtering in C. The
nonlinear functions which satisfy these conditions (5) are known as
fully complex functions; Kim and Adali have proposed three classes
of fully complex nonlinear functions to be used as approximations
in Complex Multilayer Perceptron [10].

On the other hand, the Cauchy-Riemann-Fueter conditions inH state
that for a function f(q) [9]

∂f

∂t
+

∂f

∂x
ı +

∂f

∂y
j +

∂f

∂z
κ = 0 (6)

where q = t + xı + yj + zκ.

At present, no results are available addressing “elementary transcen-
dental” functions that satisfy the Cauchy-Riemann-Fueter conditions,
making the fully quaternion nonlinear adaptive filtering a discipline
in its infancy. For example, applying Cauchy-Riemann-Fueter equa-
tion (6) to the elementary transcendental tanh function yields
∂tanh(q)

∂q
= sech2(q)+(sech2(q)ı)ı+(sech2(q)j)j+(sech2(q)κ)κ

= −2sech2(q) �= 0 (7)
Hence, analogously to the split complex filtering in C, we propose
to use split quaternion nonlinear function, where each component of
the quaternion valued signal is processed independently.

4. QMLP AND SQAF

The standard cost function to be minimized is given by

E(n) = e2
a(n) + e2

b(n) + e2
c(n) + e2

d(n) (8)
= e(n)e∗(n) (9)

where e(n) = d(n) − y(n) and y(n) = σ(s(n)), with d(n), y(n), and
σ(·) denoting respectively the desired signal, output signal and split
quaternion nonlinear function. The “net input” s(n) is defined as
s(n) = wT (n)x(n) where w(n) and x(n) correspond to the adaptive
weight vector and the filter input, and symbols (·)T and (·)∗ denote
the transpose and quaternion conjugate operator. The split quater-
nion nonlinear function is given by

σ(q) = σ(qa) + σ(qb)ı + σ(qc)j + σ(qd)κ (10)

4.1. Derivation of the learning algorithm for QMLP

The QMLP algorithm minimizes the cost function (8), whereby a
gradient descent update of the coefficients, is given by w(n + 1) =
w(n)−μ∇wE(n). The error gradient for the outer layer of a neural
network is given by [3]

∇wE(n) =
∂E

∂wa

+
∂E

∂wb

ı +
∂E

∂wc

j +
∂E

∂wd

κ (11)

= e(n) σ
′�
wT (n)x(n)

��
− 2x∗(n)

�
� �� �

∇wy(n)

(12)

where σ
′

denotes the derivative with respect to s(n). From (12), it is
clear that ∇wE(n) is a function of ∇wy(n) [the derivation is given
in the Appendix], that is

∇wy(n) = σ
′�
wT (n)x(n)

��
− 2x∗(n)

�
(13)

However, if the gradient of (8) is derived based on e(n)e∗(n), it is
evident that

∇wE(n) = e(n)
de∗(n)

dw(n)
+

de(n)

dw(n)
e∗(n)

= −

�
e(n)∇wy

∗(n) +∇wy(n)e∗(n)

�
(14)

which clearly demonstrates that∇wE(n) is also a function of∇wy
∗(n).

Similarly, it can be shown that

∇wy
∗(n) = σ

′�
xH(n)w∗(n)

��
4x∗(n)

�
(15)

This is why it is crucial to consider (9) instead of (8), such that the
non-commutativity quaternion product is highlighted.

4.2. Derivation of SQAF

Based on the properties of quaternion algebra and nonlinear gra-
dient descent, the SQAF for FIR adaptive filters is now derived.
Since the nonlinear tanh function is employed as the nonlinear func-
tion, the properties of odd-symmetric functions apply so that σ

�
−

wT (n)x(n)
�

= −σ
�
wT (n)x(n)

�
. This odd-symmetric property is

exploited explicitly as follows

σ
′
∗
�
wT (n)x(n)

�
= σ

′�
xH(n)w∗(n)

�
(16)
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Fig. 2. The performance of SQAF and QMLP on the prediction of
3D Lorenz signal.

This is possible due to the split quaternion nature of the filter where
the nonlinearity is applied elementwise.

The cost function (9) can be further expressed as

E(n) =

�
d(n)− y(n)

��
d∗(n)− y∗(n)

�

= d(n)d∗(n)− d(n)y∗(n)

−y(n)d∗(n) + y(n)y∗(n) (17)

The error gradient of (17) can be calculated as

∇wE(n) = −d(n)∇wy
∗(n)−∇wy(n)d∗(n)

+y(n)∇wy
∗(n) +∇wy(n)y∗(n) (18)

Replacing (13) and (15) into (18) yields

∇wE(n) = −4e(n)σ
′�
xH(n)w∗(n)

�
x∗(n)

+2σ
′�
wT (n)x(n)

�
x∗(n)e∗(n) (19)

Finally, the weight update for the SQAF for the training of quater-
nion valued nonlinear adaptive filters can be expressed as

w(n + 1) = w(n) + μ

�
2e(n)σ

′�
xH(n)w∗(n)

�
x∗(n)

−σ
′�
wT (n)x(n)

�
x∗(n)e∗(n)

�
(20)

where μ is the real-valued learning rate.

5. SIMULATIONS

Simulations were performed in an M-step prediction setting as to
compare SQAF with QMLP. The SQAF was implemented with a fil-
ter length L whereas the QMLP had one hidden layer comprising L
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Fig. 3. The performance of SQAF and QMLP on the prediction of
3D wind signal.

inputs, three hidden neurons and one output neuron. Both algorithms
were fed with an input x(n) = [x(n), x(n − 1), · · · , x(n − L)]T .
The nonlinear function used was the tanh function.

The prediction gain Rp was used as a quantitative measure of per-
formance, and is defined as

Rp = 10 log10

σ2
x

σ2
e

(21)

where σ2
x and σ2

e denote respectively the estimated variance of the
input and error. Two three-dimensional (3D) processes were consid-
ered (pure quaternion): the Lorenz attractor and a 3D wind field.

5.1. Lorenz Attractor

The Lorenz attractor is governed by coupled partial differential equa-
tions

∂x

∂t
= α(y − x);

∂y

∂t
= x(ρ− z)− y;

∂z

∂t
= xy − βz (22)

where α, ρ and β >0. The Lorenz system was initialized with the
following parameters: α = 10, ρ = 28 and β = 8/3. The three-
dimensional plot of the Lorenz attractor is shown in Figure 1(a). Fig-
ure 2 shows the performance of both algorithms as a function of the
prediction horizon M, with μ = 10−2 and as a function of the step-
size μ, with M=1.

It can be seen that the prediction gain for SQAF was generally higher
than that of QMLP.

5.2. Wind Forecasting

In the next simulation, a 3D wind field was used as an input. Fig-
ure 1(b) shows the 3D wind data dimension-wise. Figure 3 depicts
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the performance of SQAF and QMLP as a function of the prediction
horizon M and stepsize μ.

The prediction gain for the SQAF was always better than that of
QMLP in both case studies (varying learning rate and prediction
horizon), thus indicating the benefits of fully exploiting the quater-
nion algebra .

6. DISCUSSIONS

In both the Lorenz attractor and wind forecasting simulations, as M
increased, the prediction gain deteriorated as the algorithm needed
to predict more steps into the future. On the other hand, the incre-
ment of learning rate from 10−3 to the optimum value of 10−2 in-
creased the prediction gain for both algorithms. The performance of
the SQAF was generally better than that for QMLP, as it takes into
account a more complete information about the multidimensional
signal. It was noted that the QMLP was less affected by the size
of prediction horizon as compared to the SQAF. The deterioration
of the QMLP prediction gain (Figure 2 and Figure 3) with the in-
crease of prediction horizon is almost negligible due to the structural
richness of the neural network compared to the single layer FIR ar-
chitecture of SQAF. Another aspect that needs to be addressed is
the computational complexity of the algorithms. The SQAF requires
68L+24 multiplications and 60L+18 additions, whereas 108L+216
multiplications and 96L+168 additions are needed for QMLP. For
instance, the computational complexity of QMLP is more than dou-
ble that of SQAF even when L=1.

In summary, the advantages SQAF has over QMLP are

• Taking into account the non-commutativity of the quaternion
product leads to an improved performance;

• The simple architecture of SQAF allows for easier implemen-
tation;

• Computational complexity is much lower, making SQAFmore
suitable for real-time processing.

7. CONCLUSIONS

A split quaternion stochastic gradient algorithm for the training of
quaternion valued nonlinear adaptive filters has been proposed. This
has been achieved by employing the odd-symmetry of some elemen-
tary transcendental functions based on the non-commutativity of the
quaternion product. It has also been shown that there are no “fully-
complex” extensions of elementary transcendental functions in C,
as these do not satisfy the Cauchy-Riemann-Fueter conditions in H.
The proposed algorithm has been shown to exhibit excellent perfor-
mance for the prediction of real-world vector fields.
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A. APPENDIX

To calculate ∇wy(n) , wT (n)x(n) is first expanded into

wT (n)x(n) =

�
���
wT

a xa − wT
b xb − wT

c xc − wT
d xd

wT
a xb + wT

b xa + wT
c xd − wT

d xc

wT
a xc + wT

c xa + wT
d xb − wT

b xd

wT
a xd + wT

d xa + wT
b xc − wT

c xb

�
��� (23)

The gradient∇wy(n) can be further defined as

∇wy(n) = ∇wa
y(n)+∇wb

y(n)ı+∇wc
y(n)j+∇wd

y(n)κ (24)

Using (23), the derivatives on the righthand side of (24) can be com-
puted as

∇wa
y(n) = σ

′�
wT (n)x(n)

�
(xa + xbı + xcj + xdκ) (25)

∇wb
y(n)ı = σ

′�
wT (n)x(n)

�
(−xb + xaı− xdj + xcκ)ı

= σ
′�
wT (n)x(n)

�
(−xa − xbı + xcj + xdκ) (26)

∇wc
y(n)j = σ

′�
wT (n)x(n)

�
(−xc + xdı + xaj− xbκ)j

= σ
′�
wT (n)x(n)

�
(−xa + xbı− xcj + xdκ) (27)

∇wd
y(n)κ = σ

′�
wT (n)x(n)

�
(−xd − xcı + xbj + xaκ)κ

= σ
′�
wT (n)x(n)

�
(−xa + xbı + xcj− xdκ) (28)

Finally, substituting (25) -(28) into (24) yields

∇wy(n) = σ
′�
wT (n)x(n)

�	
− 2x∗(n)



(29)
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