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Abstract— Data-adaptive optimal modeling and identification
of real-world vector sensor data is provided by combining the
fractional tap-length (FT) approach with model order selection in
the quaternion domain. To account rigorously for the generality
of such processes, both second-order circular (proper) and
noncircular (improper), the proposed approach in this paper
combines the FT length optimization with both the strictly linear
quaternion least mean square (QLMS) and widely linear QLMS
(WL-QLMS). A collaborative approach based on QLMS and
WL-QLMS is shown to both identify the type of processes (proper
or improper) and to track their optimal parameters in real
time. Analysis shows that monitoring the evolution of the convex
mixing parameter within the collaborative approach allows us
to track the improperness in real time. Further insight into
the properties of those algorithms is provided by establishing a
relationship between the steady-state error and optimal model
order. The approach is supported by simulations on model
order selection and identification of both strictly linear and
widely linear quaternion-valued systems, such as those routinely
used in renewable energy (wind) and human-centered computing
(biomechanics).

Index Terms— Augmented quaternion statistics, fractional
tap length, model order selection, noncircularity detection,
nonstationarity, quaternion noncircularity, widely linear model-
ing, widely linear quaternion least mean square (WL-QLMS).

I. INTRODUCTION

THE RECENT interest in quaternion-valued statistical
signal processing stems from the enhanced accuracy,

physical insight, mathematical rigor, and the convenience of
representation that it provides in the modeling of three- and
four-dimensional real-world data. Indeed, many 3-D phenom-
ena (inertial body motor sensors, wind field) in our 3-D world
are best represented as quaternion-valued, yet the algorithms
for their identification are still lacking. These data sources are
almost invariably nonstationary and with a time-varying model
of the signal generating system. The progress in quaternion
learning systems has been enabled by the developments in the
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theory of quaternion gradient [1], nonlinear analytic quaternion
function analysis [2], augmented quaternion statistics [3],
[4], and the advances in quaternion independent component
analysis [5], [6]. Model order selection for quaternion-valued
systems underpins the identification of signals and systems but
is still an open problem made even more complex by the need
to differentiate between circular (those with rotation-invariant
distributions) and various forms of noncircular signals (those
with rotation-dependent distributions).

Model order identification is a routine procedure for sta-
tionary circular signals, whereas for systems with time-varying
parameters it has been shown that a convenient and rigorous
way to identify the model order of any univariate and mul-
tivariate system is by using a combination of adaptive filters
and variable tap-length algorithms, making it possible to both
operate in nonstationary environments and to optimize for the
optimal model order online [7], [8]. The variable tap-length
algorithm considered in this paper is of the fractional tap-
length (FT) type because of its simplicity and robustness [8].
Notice that the FT algorithm was designed specifically for
real-valued learning systems and was only recently extended
to the widely linear complex-valued case in order to cater for
both circular and noncircular data and linear and widely linear
systems [9].

Real vectors in R
3 are not a division algebra and therefore

have a number of mathematical shortcomings (gimbal lock for
rotation) when modeling real-world data. Quaternions form a
division algebra and are thus ideal for 3-D processes with
high dynamics, such as 3-D wind modeling in renewable
energy or 3-D body motion in human-centered computing.
To deal with evolving environments, we here introduce a
class of quaternion-valued FT algorithms; for rigor, this is
achieved by considering the full second-order (augmented)
quaternion statistics of the signal. The quaternion-valued algo-
rithms considered are the recently introduced quaternion least
mean square (QLMS) [10] and widely linear QLMS (WL-
QLMS) [11], which cater, respectively, for strictly linear and
widely linear quaternion-valued processes. We also consider a
collaborative architecture comprising QLMS and WL-QLMS,
which equips us with the ability to identify both the model
order and the second-order circular (proper) or noncircular
(improper) nature of general quaternion-valued systems and
processes. The WL-QLMS is based on the widely linear model
which captures the full second-order statistics of the quater-
nion signal, characterized by the standard covariance matrix
Cq and three complementary covariance matrices termed the ı -
covariance Cqı , j -covariance Cqj , and κ-covariance Cqκ [3], [4]
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and is optimal for second-order noncircular (improper),
whereas QLMS is optimal only for second-order circular
(proper) data but is faster. The collaborative combination of
QLMS (CCQLMS) and WL-QLMS, therefore, promises a
flexible tool for modeling the generality quaternion-valued
processes. We also show that the evolution of the convex
mixing parameter within the proposed architecture indicates
the nature of the underlying linear model of a given system.

The rest of this paper is organized as follows. Section II
provides the basics of quaternion algebra. This is followed by
an overview of augmented quaternion statistics in Section III.
Section IV describes the operation of the proposed model
order identification algorithms. The convergence of the convex
mixing parameter is presented in Section V, followed by the
steady-state analysis in Section VI. In Section VII, simulations
supporting the proposed approaches are shown. This paper
concludes in Section VIII.

II. QUATERNION ALGEBRA

A quaternion variable q can be expressed as q = [qa, q̄] =
qa +qbı +qcj +qdκ , where qa, qb, qc, qd ∈ R, q̄ is the vector
part and ı , j , κ are both orthogonal unit vectors and imaginary
units. Quaternion algebra is a division algebra, and its unique
property is the noncommutativity of multiplication, defined as

wx = [wa, w̄][xa, x̄] = [waxa − w̄ · x̄, wa x̄ + xaw̄ + w̄ × x̄]
where the symbols “·” and “×” denote, respectively, the
dot-product and cross-product. Observe that the quaternion
multiplication is noncommutative because of the existence of
the outer product between w̄ and x̄ .

Operators of crucial importance to this paper are the three
quaternion involutions given by

qı = −ıqı = qa + qbı − qcj − qdκ,

qj = −jqj = qa − qbı + qcj − qdκ,

qκ = −κqκ = qa − qbı − qcj + qdκ.

Fig. 1 illustrates the κ-involution; it can be seen that the
κ-involution reflects the vector ξ with respect to the imaginary
axes defined by ı and j . Similar visualizations can also be
produced for the ı - and j -involutions.

Two other operators used in this paper are the quaternion
conjugate and the norm square, given by q∗ = [qa, q̄]∗ =
[qa,−q̄] and ‖ q ‖2

2= qq∗ = q∗q . In the sequel, all the
constants and variables are assumed quaternion-valued, unless
stated otherwise.

III. AUGMENTED QUATERNION STATISTICS

A real-valued mean square error (MSE) estimator is given
by

ŷ = E[y|x]
where ŷ is the estimated process, x the observed variable, and
E[·] is the expectation operator.

For a jointly Gaussian x and y, the optimal solution is a
linear estimator given by

ŷ = wT x

Fig. 1. Geometry of the κ-involution. The dotted line represents a plane in
the opposite direction.

where w and x are, respectively, the real-valued coefficient and
regressor vector. The symbol (·)T denotes the vector transpose
operator.

For the MSE estimator in the complex domain C, the
standard solution is also the linear estimator given by

ŷ = wT x

where w and x are the complex-valued coefficient and regres-
sor vector, respectively. For insight, we can rewrite the com-
plex domain MSE estimator componentwise, to yield

ŷη = E[yη|xr , xi ] η ∈ {r, i}
and exploit the relationship between xr and xi given by

xr = x + x∗

2
; xi = x − x∗

2

to arrive at the complex-valued MSE estimator, given by

ŷ = E[yr |x, x∗] + ı E[yi |x, x∗].
The optimal linear estimator becomes the widely linear
model [12], [13]

ŷ = E[y|x, x∗] ⇒ y = hT x + gT x∗

where g and h are complex-valued regressor vectors.
Similarly, the current strictly linear quaternion-valued esti-

mator is given by

ŷ = wT x.

Upon expanding it componentwise, we have

ŷη = E[yη|xa, xb, xc, xd ] η ∈ {a, b, c, d}.
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Using the involutions in (1), the relationship between the input
components xa, xb, xc, xd and x, xı , x j , xκ becomes

xa = 1

4
(x + xı + x j + xκ),

xb = 1

4
(x + xı − x j − xκ),

xc = 1

4
(x − xı + x j − xκ),

xd = 1

4
(x − xı − x j + xκ).

A full capture of the second-order quaternion statistics avail-
able, following the same steps as in the complex case, results
in the quaternion widely linear model given by [3], [4] and
[14]

ŷ = E[y|x, xı , x j , xκ ] = waTxa = gT x+hT xı +uT xj +vT xκ

where g, h, u, and v are the quaternion-valued regressor vec-
tors and wa = [gT hT uT vT ]T , xa = [xT xıT xjT xκT ]T

are the augmented weight vector and the augmented input
vector.

Statistics based on the augmented input vector xa indicate
that both the covariance matrix Cxx = E{xxH } and three other
complementary covariance matrices need to be employed to
fully describe a second-order noncircular signal in the quater-
nion domain H. These complementary covariance matrices
are termed the ı -covariance Cxı = E{xxı H }, j -covariance
Cxj = E{xxj H }, and κ-covariance Cxκ = E{xxκ H } [3], [4].

Thus, the complete second-order characteristics of a
quaternion random vector can be described by the
augmented covariance matrix Ca

x of an augmented vector
xa = [xT xıT xjT xκT ]T , given by

Ca
x = E{xaxaH} =

⎡
⎢⎢⎣
Cxx Cxı Cxj Cxκ

CH
xı Cxı xı Cxı xj Cxı xκ

CH
xj Cxj xı Cxj xj Cxj xκ

CH
xκ Cxκxı Cxκxj Cxκxκ

⎤
⎥⎥⎦ (1)

where the submatrices in (1) are calculated according to

Cδ = E{xδH } Cαβ = E{αβH}
δ ∈ {xı , xj , xκ} α,β ∈ {x, xı , xj , xκ}.

IV. MODEL ORDER IDENTIFICATION

The proposed algorithms for the identification of the widely
linear systems (and noncircularity of a signal) comprise two
parts: an adaptive finite impulse response (FIR) filter which
optimizes the adaptive weight coefficients, followed by the FT
algorithm that adapts the tap length of the filter to an optimal
length, all performed for any given time k. We first review the
FIR filter weight updates and proceed to illustrate how the FT
algorithm can be exploited within quaternion-valued adaptive
systems.

A. Filter Weight Updates

Quaternion-valued adaptive filtering algorithms are based
on optimizing a real-valued cost function of quaternion vari-
ables [15]

E(k) = e2
a(k) + e2

b(k) + e2
c(k) + e2

d(k)

= e(k)e∗(k) = ‖e(k)‖2
2 (2)

where the error e(k) = d(k) − y(k), and d(k) and y(k),
respectively, are the desired and output signal. The terms
ea(k), eb(k), ec(k) and ed (k) denote, respectively, the error
component in the real part, ı part, j part, and κ part of a
quaternion variable.

Quaternion-valued adaptive filtering algorithms minimize
the cost function (2) through a gradient descent weight update
specified by

w(k + 1) = w(k) − μ∇w E(k) (3)

where μ is a real-valued learning rate and the gradient ∇w E(k)
is given by [1], [16]

∇w E(k) = ∂ E(k)

∂w∗ = ∂ E(k)

∂wa
+∂ E(k)

∂wb
ı+∂ E(k)

∂wc
j+∂ E(k)

∂wd
κ.

An alternative is to utilize HR-calculus to directly calculate
the gradient [1]. Because of the noncommutativity aspect of
quaternion algebra, the HR-calculus is a nontrivial extension
of the complex Wirtinger’s calculus [17], [18] to the quater-
nion domain H.

The strictly linear QLMS and WL-QLMS are based on
gradient descent (3) described by [10] and [11], respectively.
Both algorithms are described in Algorithm 1.

The collaborative adaptive estimator, shown in Fig. 2,
consists of two independent subfilters sharing the common
input x(k) and desired signal d(k). In [19], it was shown that a
hybrid combination of a collaborative strictly linear and widely
linear estimators has the ability to identify in real time both
the system order and the identification of widely linearity of
the systems, in the context of complex-valued widely linear
modeling. Following that approach, we here employ a convex
combination of QLMS and WL-QLMS, termed the convex
combination QLMS (CC-QLMS), to form the overall output
ycc(k) given by

ycc(k) = λ(k)yl(k) + (
1 − λ(k)

)
yw(k)

where λ(k) is a real-valued convex mixing parameter, whose
update is governed by

λ(k + 1) = λ(k) − μλ∇λ E(k)

where μλ and ∇λ E(k) represent the real-valued step size and
the error gradient.

The error gradient ∇λ E(k) can be evaluated as

∇λ E(k) = ecc(k)
∂e∗

cc(k)

∂λ(k)
+ ∂ecc(k)

∂λ(k)
e∗

cc(k)

= ecc(k)
(
yl(k) − yw(k)

)∗
+(

yl(k) − yw(k)
)
e∗

cc(k)

= 2R
{
ecc(k)

(
yl(k) − yw(k)

)∗}

where ecc(k) = d(k) − ycc(k) is the error of the CC-QLMS
algorithm, and symbol R{·} denotes the real part of a quater-
nion variable. Finally, the weight update of the convex mixing
parameter λ(k) has the form

λ(k + 1) = λ(k) − μλ

(
2R

{
ecc(k)

(
yl(k) − yw(k)

)∗})
.

The convex nature of the CC-QLMS increases the robust-
ness of the collaborative filter by allowing the filter to have
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fast convergence for the processing of proper signals and
enhanced steady-state performance for improper signals. The
mixing parameter λ is maintained real-valued, to reflect the
identification of the strictly and widely linear filter, and their
combination matches the data, and also, physically, to ensure
convexity of the mixing λ ∈ [0, 1] ⊂ R. Because of the convex
nature of the CC-QLMS and given the range of the mixing
parameter λ(k) (within [0, 1]), the CC-QLMS converges as
long as one of the subsystems in Fig. 2 converges [20]; with
this in mind, in the simulations the value of λ(k) is hard
bounded to λ ∈ [0, 1].

B. Tap-Length Adaptation

The adaptation of model order in real time, also termed “tap-
length adaptation,” is enabled by the adaptive nature of the
models considered and has the ability to identify the evolving
changes in the nature of the signal for time-varying system
parameters.

Based on the tap-length adaptation, the filter length is
extended or truncated at every time instant. The tap-length
adaptation is governed by the FT algorithm given by [8]

η f (k + 1) = (η f (k) − α) − γ ·
[(

E p(k)

)
−

(
E p−
(k)

)]

where η f is the pseudo-fractional tap length which can take
only a positive real value, α and γ are the leaky factor and
tap-length learning rate and small positive real parameters
that satisfy α � γ . Symbols E p(k) and E p−
(k) denote,
respectively, the instantaneous square errors for the tap lengths
of order p and

(
p −


)
, the symbol p(k) denotes the true tap

length at a discrete time instant k, and 
 is a real positive
integer such that min{p(k) − 
} > 0.

The instantaneous square output errors for filters of lengths
p and (p − 
) are given by

E p(k) = (
ep(k)

)(
ep(k)

)∗
,

E p−
(k) = (
ep−
(k)

)(
ep−
(k)

)∗ (4)

and are based on the errors ep(k) and ep−
(k). These errors
can be evaluated as

eq(k) = d(k) − yq(k) = d(k) − wT
q (k)xq(k)

where 1 ≤ q ≤ p, while wq(k) and xq(k) are the vectors
consisting of the first q coefficients of w(k) and x(k), respec-
tively.

To calculate the optimal model length, the tap-length para-
meter p(k) is made adaptive according to [8]

p(k + 1) =
{ 
η f (k)�, |p(k) − η f (k)| ≥ δ

p(k), otherwise

where δ is a predefined integer threshold and the symbol

·� denotes the floor operator. The coefficient adaptation for
the FT collaborative architecture in Fig. 2 is summarized in
Algorithm 1.

Algorithm 1: Adaptation of the Collaborative Adaptive
System Identification Architecture
—————————————————————————
Filter Weight Algorithms
CC-QLMS, QLMS:

w(k + 1) = w(k) + μ

(
2el(k)x∗(k) − x∗(k)e∗

l (k)

)

CC-QLMS, WL-QLMS:

wa(k + 1) = wa(k) + μ

(
2ew(k)xa∗(k) − xa∗(k)e∗

w(k)

)

CC-QLMS:

λ(k + 1) = λ(k) − μλ

(
2R

{
ecc(k)

(
yl(k) − yw(k)

)∗})

FT Algorithm

η f (k + 1) = (η f (k) − α) − γ ·
[(

E p(k)

)
−

(
E p−
(k)

)]

p(k + 1) =
{ 
η f (k)�, |p(k) − η f (k)| ≥ δ

p(k), otherwise

Fig. 2. Hybrid filter structure.

V. CONVERGENCE OF THE MIXING PARAMETER

To address the convergence of the mixing parameter λ
within CC-QLMS when processing both strictly proper and
improper signals, consider first a strictly linear model given
by

d(k) = woT x(k) + v(k)

where wo the optimal weight coefficients and v is a H-circular
quaternion-valued quadruply white Gaussian noise (WGN).

At the steady state, we employ the standard assumptions that
wo = w = g and, due to circularity, h = u = v = 0, which
will lead to ecc(k) = v(k). The expression for the evolution
of the mixing parameter λ can be rewritten as

λ(k + 1) = λ(k) − μλ

(
2R{

ecc(k)
(
yl(k) − yw(k)

)∗})

= λ(k)

where the symbol R{·} denotes the real part of a quater-
nion variable. Since the QLMS converges faster than the
WL-QLMS (due to the smaller number of weight terms), the
CC-QLMS will favor the QLMS-trained subfilter leading to
λ(k) → 1.

Remark 1: The mixing parameter λ → 1 within the
CC-QLMS indicates a strictly linear quaternion-valued model,
for which the power in all the components are equal. Current
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models all assume properness, but this is not justified for real-
world data (3-D inertial body sensors, wind).

Consider next the improper teaching signal (model) given
by

d(k) = goT x(k) + hoT xı (k) + uoT xj (k) + voT (k)xκ(k) + v(k)

where go, ho, uo, and vo are the optimal weight coefficients.
At the steady state, g = go �= w and h = ho, u = uo. v = vo,
leading to ecc(k) �= λ(k).

To simplify the analysis, we shall employ the following
standard independence assumptions [21]:

1) the filter weights are independent of one another;
2) the error and the input vector are statistically indepen-

dent of one another.
Enforcing these assumptions and applying the statistical
expectation operator, the final expression is given as

E{λ(k + 1)} = E{λ(k)}
(

1 − 2μλ‖g‖2σ 2
x + ‖h‖2σ 2

x

+ ‖u‖2σ 2
x + ‖v‖2σ 2

x + ‖w‖2σ 2
x

)

= E{λ(k)}
(

1 − 2μλ
e2
)

where σ 2
x is the variance of the signal and 
e2 denotes the

performance advantage of the widely linear model over the
standard linear model. Since both the learning rate μλ and 
e2

are positive, for the widely linear model or improper signal,
the mixing parameter λ(k) converges towards zero, favoring
the WL-QLMS subfilter within the collaborative architecture
in Fig. 1.

Remark 2: The convergence of the mixing parameter within
CC-QLMS to λ → 0 indicates a quaternion-valued widely
linear model or equivalently a noncircular signal.

The above two remarks hold when the signal is stationary,
the underlying system generating the signal is linear in the
parameters, and no noise is present in the system. In the event
that the first condition is violated, the mixing parameter λ
does not have time to reach steady state and so λ can take
any value between 0 and 1. Under this scenario, λ cannot be
used to indicate whether the system is widely linear, as steady
state is never reached. Therefore, we need to ensure that λ
has enough time to converge, which is usually the case in
practice. If the second or third condition is violated, λ will
also lie between 0 and 1, lying closer to either extreme as the
noise level approaches 0. In this case, the presence of noise
brings closer together the learning curves of the QLMS and
WL-QLMS, thus making it difficult for the CC-QLMS to
identify with certainty which filter performs better. The further
λ is from 0 or 1, the greater the uncertainty about the
underlying model.

VI. STEADY-STATE ANALYSIS OF

FT-BASED ALGORITHMS

To illustrate the robustness of the proposed approach, and
to convey the information about both the second-order model
order and its linear or widely linear nature, we next provide
a rigorous steady-state analysis of the of the FT-QLMS,

FT-WLQLMS, and FT-CCQLMS algorithms for two cases:
1) the desired system is widely linear, and 2) the desired
system is strictly linear. We first consider the case of widely
linear teaching signal and the FT-WLQLMS algorithm, where
the desired (teaching) signal d(k) is defined as

d(k) = goT
Loptx Lopt(k) + hoT

Loptx
ı
Lopt(k) + uoT

Loptx
j
Lopt(k)

+voT
Lopt(k)xκ

Lopt(k) + v(k)

where go
Lopt, ho

Lopt, uo
Lopt, and vo

Lopt are the optimal weight
coefficients of the optimal tap lengths Lopt of the widely linear
model, and v(k) is a H-circular quaternion-valued quadruply
WGN.

The output of the FT-WLQLMS algorithm is then given as

yw(k) = gT (k)x(k)︸ ︷︷ ︸
standard part

+ hT (k)xı (k) + uT (k)xj (k) + vT (k)xκ(k)︸ ︷︷ ︸
augmented part

. (5)

Proceeding in a manner similar to the analysis in [22], the
optimal weight vector coefficients can be split into three parts

go
Lopt =

⎡
⎣

g′o
g′′o
g′′′o

⎤
⎦ ho

Lopt =
⎡
⎣

h′o
h′′o
h′′′o

⎤
⎦

uo
Lopt =

⎡
⎣

u′o
u′′o
u′′′o

⎤
⎦ vo

Lopt =
⎡
⎣

v′o
v′′o
v′′′o

⎤
⎦ (6)

where g′o, h′o, u′o, and v′o are the coefficients modeled by tap
length 1 to ( p −
); g′′o, h′′o, u′′o, and v′′o are the coefficients
modeled by the tap length (p − 
 + 1) to p; and g′′′o, h′′′o,
u′′′o, and v′′′o are the undermodeled coefficients.

For convenience, we denote the coefficient error vectors of
the FT-WLQLMS as

g̃(k) = go − gp(k); h̃(k) = ho − hp(k),

ũ(k) = uo − up(k); ṽ(k) = vo − vp(k)

where gp(k), hp(k), up(k), and vp(k) are the weight vectors
of length p.

Similar to (6), the weight error vectors can also be split up
into three parts

g̃(k) =
⎡
⎣

g̃′(k)
g̃′′(k)
g̃′′′(k)

⎤
⎦ h̃(k) =

⎡
⎣

h̃′(k)

h̃′′(k)

h̃′′′(k)

⎤
⎦

ũ(k) =
⎡
⎣

ũ′(k)
ũ′′(k)
ũ′′′(k)

⎤
⎦ ṽ(k) =

⎡
⎣

ṽ′(k)
ṽ′′(k)
ṽ′′′(k)

⎤
⎦.

In order to ensure mathematical tractability, we shall employ
the following usual independence assumptions [22].

1) Both the input signal x(k) and the noise v(k) are i.i.d.
zero-mean white jointly Gaussian with the respective
variances σ 2

x and σ 2
v .

2) At the steady state, the input signal x(k) is independent
of the weight vectors.
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3) The tap-length parameter has converged at steady state,
hence E{η f (k + 1)} = E{η f (k)}, leading to the under-
modeled error vectors vanishing.

We proceed by applying the statistical expectation operator
to the steady-state MSE to yield

E

{(
E p(k)

)
−

(
E p−
(k)

)}
<

∣∣∣∣
α

γ

∣∣∣∣. (7)

Following the definition in (4), we can rewrite (7) to give

E

{
‖g̃′′T (k)x′′(k)‖2

2 + ‖h̃′′T (k)x′′ı (k)‖2
2

+‖ũ′′T (k)x′′j (k)‖2
2 + ‖ṽ′′T (k)x′′κ(k)‖2

2

−‖g′′oT (k)x′′(k)‖2
2 − ‖h′′oT (k)x′′ı (k)‖2

2

−‖u′′oT (k)x′′j (k)‖2
2 − ‖v′′oT (k)x′′κ(k)‖2

2

}
<

∣∣∣∣
α

γ

∣∣∣∣. (8)

Remark 3: The FT-WLQLMS incorporates the errors from
both the standard and augmented parts of the quaternion
widely linear model in adapting the tap length, thus ensuring
efficient modeling of the general widely linear quaternion-
valued systems, i.e., incorporating both those with strictly and
widely linear system dynamics.

In order to obtain the steady state of the FT-QLMS algo-
rithm, we first set the augmented part in (5) to zero, which
gives

yl(k) = wT (k)x(k).

Proceeding in a similar fashion to obtain the steady state of
FT-WLQLMS yields

E

{
‖w′′T (k)x̃′′(k)‖2

2 − ‖g′′oT (k)x′′(k)‖2
2

}
<

∣∣∣∣
α

γ

∣∣∣∣.

Remark 4: The FT-QLMS only considers the error from
the standard part of the quaternion widely linear model in
adapting the tap length, proving to be inadequate for the
modeling of widely linear quaternion-valued systems and
improper quaternion-valued processes, i.e., those with differ-
ent powers in the components, a typical case in real-world
scenarios.

To derive the steady state of the FT-CCQLMS algorithm,
consider the output of FT-CCQLMS, given by

ycc(k) = λ(k)wT (k)x(k) +
(

1 − λ(k)

)

×
(

gT (k)x(k) + hT (k)xı (k) + uT (k)xj (k)

+ vT (k)xκ(k)

)
.

Proceeding in a similar manner as above to obtain

FT-WLQLMS and FT-QLMS, the final steady state becomes

E

{(
1 − λ(k)

)(
‖g̃′′T (k)x′′(k)‖2

2 + ‖h̃′′T (k)x′′ı (k)‖2
2

+ ‖ũ′′T (k)x′′j (k)‖2
2 + ‖ṽ′′T (k)x′′κ(k)‖2

2

)

+λ(k) · ‖w̃′′T (k)x′′(k)‖2
2 − ‖g′′oT (k)x′′(k)‖2

2

−‖h′′oT (k)x′′ı (k)‖2
2 − ‖u′′oT (k)x′′j (k)‖2

2

−‖v′′oT (k)x′′κ(k)‖2
2

}
<

∣∣∣∣
α

γ

∣∣∣∣ . (9)

As stated in Remark 2, for the processing of widely linear
systems, λ → 0, simplifying (9) to an expression similar to
the steady state of FT-WLQLMS in (8).

Remark 5: For widely linear systems (improper signals), as
λ → 0, the steady state of FT-CCQLMS is similar to that of
the FT-WLQLMS when identifying widely linear systems.

Consider next a strictly linear model given by

d(k) = woT
LoptxLopt(k) + v(k)

which gives a similar steady-state expression for FT-QLMS
and FT-WLQLMS, given by

FT-QLMS : E

{
‖w̃′′T (k)x′′(k)‖2

2

− ‖w′′oT (k)x′′(k)‖2
2

}
<

∣∣∣∣
α

γ

∣∣∣∣

FT-WLQLMS : E

{
‖g̃′′T (k)x′′(k)‖2

2

− ‖w′′oT (k)x′′(k)‖2
2

}
<

∣∣∣∣
α

γ

∣∣∣∣.
Remark 6: Both the FT-QLMS and FT-WLQLMS take into

account the error from the standard (strictly linear) part of
the quaternion linear model in adapting their tap lengths,
demonstrating their suitability for the modeling of strictly
linear quaternion-valued systems.

Similarly, the steady-state expression for FT-CCQLMS
becomes

E

{
λ(k)‖w̃′′T (k)x′′(k)‖2

2 +
(

1 − λ(k)

)

·
(

‖g̃′′T (k)x′′(k)‖2
2 + ‖h̃′′T (k)x′′ı (k)‖2

2

+ ‖ũ′′T (k)x′′j (k)‖2
2 + ‖ṽ′′T (k)x′′κ(k)‖2

2

)

− ‖w′′oT (k)x′′(k)‖2
2

}
<

∣∣∣∣
α

γ

∣∣∣∣.
For optimal processing of the linear model, λ ≈ 1 (as stated
by Remark 1), resulting in a similar expression to the steady
state of FT-QLMS in (10).

Remark 7: The FT-CCQLMS will have similar behavior as
FT-QLMS in (9) for the modeling of strictly linear quaternion-
valued systems, when λ → 1.

The analysis sets the scene for the assessment of the changes
in some fundamental parameters of quaternion-valued systems
and signals in real time and in time-varying environments, a
typical case in real-world applications.
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Fig. 3. Steady-state MSE for the circular process W1 and the noncircular process W2 with respect to the tap length (model order). (a) Steady-state MSE for
the proper process W1. (b) Steady-state MSE for the proper process W1 in dB. (c) Steady-state MSE for the improper process W2. (d) Steady-state MSE for
the improper process W2 in dB.

VII. SIMULATIONS

Simulations were conducted in the system identification
setting, and performances of FT-QLMS, FT-WLQLMS, and
FT-CCQLMS were evaluated for a range of both bench-
mark and real-world systems. For benchmark systems, the
quaternion quadruply white circular Gaussian noise (QWGN)
defined by

ε(k) = εa(k) + εb(k)ı + εc(k)j + εd(k)κ

served as the driving input, where εa , εb , εc, and εd are
realizations of real-valued independent WGNs.

The QWGN was first fed through a filter defined by A(k) =
0.35ε(k) + ε(k − 1) + 0.35ε(k − 2), which slows down the
convergence of the algorithms. The output of A(k) was then
fed into the systems defined by

W1(k) = 1.79W1(k − 1) − 1.85W1(k − 2)

+1.27W1(k − 3) − 0.41W1(k − 4) + A(k),

W2(k) = 1.79W2(k − 1) − 1.85W2(k − 2)

+1.27W2(k − 3) − 0.41W2(k − 4) + A(k)

+0.5A∗(k) + 0.9A∗(k − 1)

where W1 is a strictly linear autoregressive (AR)(4) sys-
tem [23] and W2 a widely linear WLAR(4) system [9], [24].

This way, the system W1 was linear (circular) and W2
widely linear (improper). The real-world process were D wind
and 3-D inertial body motion data.

A. Optimal Tap Length

The optimal tap lengths for both systems were determined
by the steady-state MSE criterion [8]

ε̄(k) = λMSEε̄(k − 1) + (1 − λMSE)E(k)

where ε̄ is the estimated steady-state MSE and λMSE = 0.9.
Fig. 3 depicts the steady-state MSE for both the strictly

linear system W1 and widely linear system W2, using the
QLMS, WLQLMS, and CCQLMS algorithms with μ = 10−3.
From Fig. 3(a), it can be seen that all the three MSE curves
were monotonically nonincreasing functions of the tap length,
and as such the optimal tap lengths for all algorithms were
found to be p0 = {15, 16}. This is supported by Fig. 3(b),
where the dB plot shows that the steady-state MSE values
for all algorithms are decreasing with increasing tap length.
Fig. 3(c) shows that the shape of the MSE curve for QLMS did
not asymptotically converge, thus proving the inability of the
strictly linear QLMS to model the widely linear system W2.
The standard linear QLMS is unable to process optimally W2
because of the widely linear nature of the system. Therefore,
the CC-QLMS takes advantage of the WL-QLMS to accu-
rately predict W2, exhibiting a better performance than the
linear QLMS. On the other hand, the MSE curves for the
WL-QLMS and CC-QLMS converged, indicating their ability
to model W2 for which the optimal tap length was found to be
p0 = {21, 22}. This can also be observed from Fig. 3(d), as
the QLMS steady state remains almost constant at 40 dB. The
optimal tap lengths for both systems were not a single integer
because of the use of feedforward filters, which can only give
approximations of the considered AR infinite impulse response
(IIR) system.
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Fig. 4. Evolution of the optimal filter length parameter p and the mixing
parameter λ for the modeling of the strictly linear system W1. (a) Modelling
of the strictly linear system W1. (b) Modelling of the strictly linear system
W1.
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Fig. 5. Evolution of the optimal filter length parameter p and mixing
parameter λ for the modeling of the widely linear system W2. (a) Modelling
of the widely linear system W2. (b) Mixing Parameter l of the widely linear
system W2.

B. Modeling of Quaternion-Valued Systems

Fig. 4 depicts the evolution of the optimal tap length para-
meter p for the FT-QLMS, FT-WLQLMS, and FT-CCQLMS
algorithms when employed for the modeling of strictly linear
AR(4) system W1 along with the evolution of the mixing para-
meter λ of FT-CCQLMS. These algorithms were initialized
with the following parameters: α = 0.03, γ = 1, δ = 1,

 = 4, μ = 1 × 10−5, μl = 5 × 10−4, the initial mixing
parameter λ(0) = 0.5, and the initial tap length p(0) = 10.
From Fig. 4(a), it is evident that the performances of all three
algorithms considered were similar, as they converged to the
optimal tap length at around the same number of iterations.
This is in conformity with Remarks 6 and 7, which gives
justification for their similar performances. Fig. 4(b) shows
that the mixing parameter λ of FT-CCQLMS λ → 1 for the
modeling of linear system W1, conforming with Remark 1.

Similarly, Fig. 5 shows the results for the widely lin-
ear system W2. Fig. 5(a) illustrates that the strictly linear
FT-QLMS was unable to model the widely linear system W2,
whereas FT-WLQLMS and FT-CCQLMS converged to the
optimal tap length. This is justified by Remarks 3–5. Fig. 5(b)
illustrates that for the modeling of widely linear systems, value
of λ → 0, conforming with Remark 2.

TABLE I

NONCIRCULAR QUADRUPLY WHITE QUATERNION

GAUSSIAN NOISE USED

WGN Noncircular

εa N (0, 1)

εb −0.6εa + N (0, 1)

εc 0.8εb + N (0, 1)

εd 0.8εa − 0.4εb + N (0, 1)
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Fig. 6. Steady-state MSE for the process noncircular W1 with respect to tap
length. (a) Steady-state MSE for the noncircular process W1. (b) Steady-state
MSE in dB for the noncircular process W1.

C. Evolution of Model Parameters in Nonstationary Systems

To illustrate the real-time tracking ability of the proposed
algorithms, we next considered a system consisting of three
separate subsystems of different natures. The first subsystem
was the linear system W1 for the intervals of 1 ≤ k ≤ 3000,
followed by widely linear system W2 for 3001 ≤ k ≤ 6000,
and a linear noncircular W1 for the interval of 6001 ≤ k ≤
9000. The linear noncircular W1 was the original system W1
(10) fed with a noncircular QWGN as the driving input. The
noncircular QWGN was constructed by referring to Table I.

Fig. 6 shows the steady-state MSE for the so-produced
noncircular linear process W1 using the QLMS, WL-QLMS,
and CCQLMS algorithms with μ = 10−4. As desired, all
three of the MSE curves were monotonically nonincreasing
functions of the tap length and the optimal tap length was
found to be po = {21, 22}, illustrating the learning ability
of the proposed architecture. In Fig. 6(a), for the process-
ing of noncircular linear W1 process, both the QLMS and
CC-QLMS performances were identical at tap lengths around
the optimal value p0. This is because, despite the process being
noncircular, its generating mechanism is still strictly linear,
thus allowing the optimal processing using the linear QLMS.
The CC-QLMS curve in Fig. 6(a) shows an error spike at the
tap length p = 5. This is because the value p = 4 is a local
minimum and the CC-QLMS is struggling to escape from it.
This can also be observed from the reduced slope of the QLMS
and WL-QLMS learning curves for tap lengths 4 ≤ p ≤ 6.
In Fig. 6(b), it can be seen that at larger tap lengths, the
steady-state MSE for the CC-QLMS is lower than the QLMS
despite sharing the same optimal tap length. This is because,
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for a noncircular linear process W1, although the QLMS is
dominant, the contribution from the WL-QLMS could not be
completely neglected, as the value of the mixing parameter λ
converges slightly below 1.

Fig. 7 shows the evolution of the optimal filter length para-
meter p for the FT-QLMS, FT-WLQLMS, and FT-CCQLMS
employed for the modeling of the system W1 (interval of
1 ≤ k ≤ 3000), W2 (interval of 3001 ≤ k ≤ 6000), and
the noncircular W1 (interval of 6001 ≤ k ≤ 9000). These
algorithms were initialized as follows: α = 0.03, γ = 1,
δ = 1, 
 = 4, μ = 1 × 10−5, μl = 5 × 10−4, the
initial mixing parameter λ(0) = 0.5, and the initial tap length
p(0) = 25. From the figure, the FT-WLQLMS was able to
converge to the optimal tap length of the system W1 for the
interval 1 ≤ k ≤ 3000 and adapts to the system W2 for
3001 ≤ k ≤ 6000. The FT-WLQLMS was unable to model
efficiently the noncircular W1 for interval 6001 ≤ k ≤ 9000.
As for the FT-QLMS, it was incapable of adapting to the
system W2 during the interval of 3001 ≤ k ≤ 6000, but was
able to model W1 and W2. FT-CCQLMS was able to model
all three systems owing to its theoretical advantages and the
robust adaptation of the mixing parameter λ.

Fig. 8 depicts the evolution of the mixing parameter λ of
FT-CCQLMS for the modeling of subsystems W1, W2, and
noncircular W1. For the modeling of the linear system W1,

the parameter λ → 1 for the interval of 1 ≤ k ≤ 3000,
making FT-QLMS dominant over FT-WLQLMS. As for the
widely linear system W2 in the interval 3001 ≤ k ≤ 6000, the
parameter λ → 0, resulting in FT-WLQLMS to be superior.
For the processing of the noncircular linear system W1, the
parameter λ → 1, favoring the linear model. This corroborates
with earlier findings in [25] and [26].

D. Evolution of the Circular Nature of Real-World 3-D Wind
Field

In this simulation, a 3-D wind field was used as an input.1

The wind data was initially sampled at 32 Hz and resampled
at 10 Hz for simulation purposes. This wind data was divided
into 80 sliding windows of length 1000 each. The motivation
wind nonstationarity makes the circularity assessment difficult.
However, by considering a segment of the wind, we can
assume local stationarity, leading to the feasibility of measur-
ing the circularity. The absolute complementary covariances
were measured and normalized with respect the covariance
for each window segment, as shown in Fig. 9(a). According
to [3], [4], [14], the complementary covariances vanish for
circular region. Based on this understanding, we defined the
low noncircularity region to be from window number 60 to 75
and the high noncircularity region from 30 to 45.

Fig. 9(b) shows the evolution of the mixing parameter λ for
the high noncircularity region. Conforming with the analysis,
λ converged to 0.2, favoring the WL-QLMS over the QLMS.
The evolution of λ for the low noncircularity region is depicted
in Fig. 9(c). Since the signal is predominantly circular in
this region, λ approaches 0.8, signifying the dominance of
the QLMS. These results corroborate with Remarks 1 and 2.
This proves that the mixing parameter λ is able to track the
underlying mechanisms of real-world signals. The values of λ
do not take either extreme value since the three complementary
covariances are never perfectly 0 or 1, hence the wind data
is neither strictly linear nor widely linear. This is because
parameter λ is inversely proportional to the absolute values
of the complementary covariances.

E. Modeling of Real-World Inertial Motion Data

Five 3-D inertial body sensors were placed on the left arm,
left hand, right arm, right hand, and the waist of an athlete
performing Tai Chi movements and 3-D motion data were
recorded using the XSense MTx 3DOF Orientation Tracker.
The movement of the left arm was used as a pure quaternion
input for this simulation. The optimal tap length cannot be
determined through standard steady-state methods due to the
nonstationary nature of human movements.

Fig. 10 shows the evolution of the optimal tap-length para-
meter p for the FT-QLMS, FT-WLQLMS, and FT-CCQLMS
algorithms employed for the modeling of Tai Chi motion and
the evolution of the mixing parameter λ of FT-CCQLMS.
These algorithms were initialized as follows: α = 0.03, γ = 1,
δ = 1, 
 = 4, μ = 1×10−6, μl = 5×10−4, the initial mixing

1The wind data were sampled at 32 Hz and recorded by the 3-D windmaster
anemometer provided by Gill instruments.
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Fig. 9. Complementary covariances and the evolution of the mixing parameter λ for the modeling of a real-world wind field. (a) Normalized absolute
complementary covariances of the 3-D wind data. (b) Mixing parameter l of the high noncircularity region. (c) Mixing parameter l of the low noncircularity
region.

0 1000 2000 3000
5

10

15

20

25

30

35

40

45

50

Number of iterations (k)

Ta
p 

Le
ng

th
 p

0 1000 2000 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of iterations (k)

M
ixi

ng
 P

ar
am

et
er

 λFT−WLQLMS

FT−CCQLMS
FT−QLMS

(b)(a)

Fig. 10. Evolution of the optimal filter length parameter p and mixing
parameter λ for the modelling of real-world Tai Chi motion. (a) Modelling
of the real-world TaiChi motion. (b) Mixing Parameter l of the real-world
TaiChi motion.

parameter λ(0) = 0.5, and the initial tap length p(0) = 10.
It is apparent from Fig. 10(a) that the optimal tap length for
the three algorithms fluctuates because of the nonstationary
nature of the signal. The FT-WLQLMS had the largest tap-
length value, FT-QLMS the smallest, and FT-CCQLMS was
in between. To support the results, the mixing parameter λ
of the FT-CCQLMS was analyzed, as shown in Fig. 10(b).
The values of λ converged to around 0.6, which means that
the Tai Chi motion is neither strictly linear nor overly widely
linear in nature. Hence, we can deduce that the expected

optimal tap length should be in between those estimated by
the linear model (FT-QLMS) and the widely linear model
(FT-WLQLMS), which is in agreement with the results
obtained by FT-CCQLMS.

VIII. CONCLUSION

We introduced an FT optimization into quaternion-valued
adaptive modeling and demonstrated the advantages in model
order selection and the identification of linear or widely
linear nature of the system. The collaborative adaptive
FT-CCQLMS showed to be able to model efficiently both
widely linear and strictly linear quaternion-valued systems and
to have a number of theoretical and practical advantages. The
analysis of the convergence of the mixing parameter and the
relationship between the steady-state error and tap length was
established, giving a mathematical justification to the modeling
capabilities of all algorithms. Simulations on model order
selection and the identification of quaternion-valued circular
natures for the problems in renewable energy and human-
centered computing support the approach.
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