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Abstract—The quaternion widely linear model was recently
introduced for optimal second order estimation of noncircular
3D and 4D data. Its superiority over the standard strictly linear
model was shown experimentally, however, a rigorous proof
giving performance bounds has been lacking. To this end, we
here present a mathematical proof for the degree of performance
benefits obtained when using the widely linear model in the
context of minimum mean square error estimation.

Index Terms—Quaternion widely linear model, QLMS,
WLQLMS, mean square error, quaternion noncircularity.

I. INTRODUCTION

Standard real-valued algorithms used in multichannel statis-

tical signal processing do cater for the ‘coupled’ nature of the

available information across data channels, but the information

in the correlation matrices in not easy to use, due to their

multiple, and scattered block structures. In practice, we are

largely dealing with three- and four-dimensional signals; when

modelled using real vectors these produce e.g. 10 correlation

matrices for 4D data. Also, accuracy may be compromised due

to the deficiencies of the non-division vector algebra (gimbal

lock). These problem, are largely mitigated when modeling

three- and four-dimensional signals in the quaternion domain,

since its division algebra naturally accounts for the coupling

between the data channels and also provides parsimonious

representation, e.g. with only four covariance matrices needed.

For this reason, quaternion valued algorithms are rapidly

gaining popularity in applications involving vector sensors

(wind modeling, inertial body sensors, array processing [1].

The majority of minimum mean square error (MSE) esti-

mators developed thus far in the quaternion domain are based

on the so-called strictly linear model

ŷ = E[y|x] = wHx (1)

where x is the observation vector and w coefficients. The

minimum MSE solution for the optimum weight vector w is

well known and takes the same form as the complex valued

Wiener filter. Although optimal for second order circular sig-

nals that have probability density functions invariant to rotation

(like in the complex domain [2]), to capture the complete

second order statistics of noncircular signals it is not sufficient

to consider only the covariance matrix (as is the case with

the Wiener solution). Indeed, recent advances in quaternion

statistics have shown that for noncircular signals, three pseudo-

covariance matrices must also be employed and incorporated

into minimum mean square error estimation solutions. This

is achieved through the widely linear quaternion model [3] ,

given by

ŷ = uHx+ vHxı + gHx + hHxκ (2)

Recently, several articles have demonstrated either implicitly

or experimentally the superiority of the widely linear algo-

rithms over the standard strictly linear ones, in modeling real

world data [3] [4] . However, a mathematical proof for the

performance bound that would facilitate a more widespread

use of the widely linear model for quaternion estimators is still

lacking. Using Picinbono’s original proof for the advantage of

complex widely linear model [5] as a basis for the analysis,

we provide a formal proof for the benefits obtained in using

the quaternion widely linear model.

II. QUATERNION ALGEBRA

Quaternions are an associative but noncommutative algebra

over R, defined as

H = {qa + ıqb + qc + κqd | qa, qb, qc, qd ∈ R}

where the imaginary units ı,  and κ are also unit axis vectors,

for which ı2 = 2 = κ2 = ıκ = −1. For any quaternion

q = qa + ıqb + qc + κqd = Sq + V q (3)

the scalar (real) part is denoted by Sq = ℜ(q), whereas the

vector part (also called pure quaternion) V q = ℑ(q) = ıqb +
qc+κqd comprises the three imaginary parts. The quaternion

product is given by

q1q2 = Sq1Sq2−V q1 ·V q2+Sq2V q1+Sq1V q2+V q1×V q2
(4)

where the symbol ‘·’ denotes the scalar product and ‘×’ the

vector product. Due to the vector product in (4), the quaternion

product is non-commutative, that is, q1q2 6= q2q1 and e.g.

ı = −ı = κ, κ = −κ = ı, κı = −ıκ = . The scalar

product q1 · q2 =< q1, q2 >, q1, q2 ∈ H is defined as

q1·q2 = q1aq2a+q1bq2b+q1cq2c+q1dq2d = ℜ
(
q1q

∗
2

)
= ℜ

(
q∗1q2

)
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The quaternion conjugate is given by q∗ = Sq − V q, and the

norm by ‖ q ‖= √
< q, q > =

√
qq∗, and thus q−1 = q∗

qq∗
=

q∗

‖q‖2 = q∗

<q,q>
, and ı−1 = −ı, −1 = −, κ−1 = −κ.

A. Equivalence Relations and Involutions

The similarity relation, denoted by ‘∼’, between quaternions

q1 and q2 implies that ∃µ ∈ H, such that

q1 ∼ q2 ⇔ q1 = µq2µ
−1, µ 6= 0 (5)

Similarity is an equivalence relation, and e.g. q1 ∼ q2 implies

‖ q1 ‖=‖ q2 ‖ and q1a = q2a. Also, the three imaginary units

are similar, that is, ı ∼  ∼ κ, and also q ∼ q∗.

Equivalence relations of importance to this work are the

quaternion involutions (self-inverse mappings) [6]

qı = −ıqı = qa + ıqb − qc − κqd

q = −q = qa − ıqb + qc − κqd

qκ = −κqκ = qa − ıqb − qc + κqd (6)

Notice that the quaternion conjugate is also an involution1,

that is, (q∗)
∗
= q. The four real components of a quaternion

q can now be expressed based on its involutions as

qa =
1

4
[q + qı + q + qκ] qc =

1

4
[q − qı + q − qκ]

qb =
1

4ı
[q + qı − q − qκ] qd =

1

4κ
[q − qı − q + qκ] (7)

allowing any (either quadrivariate or quaternion-valued) func-

tion g(qa, qb, qc, qd) of the four real variables qa, qb, qc, qd to

be expressed as a function of the quaternion variable q and its

perpendicular involutions.

III. THE QUATERNION WIDELY LINEAR MODEL

Consider a real valued mean square error (MSE) estimator

ŷ = E[y | x]

where ŷ is the estimated process and x the observed variable

(regressor). For jointly Gaussian x and y, the optimal solution

is a linear estimator, given by

ŷ = wTx (8)

where w is the coefficient vector. For the standard, strictly

linear, complex domain MSE estimator it is also assumed that

ŷ = E[y |x], leading to the so called strictly linear model

ŷ = wHx (9)

However, observe that

ŷr = E[yr |xr,xı] ŷı = E[yı |xr,xı]

and since xr = x+x
∗

2
and xi = x−x

∗

2ı
, the complex widely

linear model is given by [7] [8] [9]

ŷ = E[y |x,x∗] ⇒ ŷ = hHx+ gHx∗

1Involutions can be considered as generalisations of the complex conjugate
operator, when applied to every imaginary component of a quaternion.

that is, it comprises both the ‘strictly linear’ part hHx and

the ‘conjugate’ part gHx∗, where g is a coefficient vector.

Similarly, the existing (strictly linear) estimation model in the

quaternion domain is given by

ŷ = wHx (10)

However, the quaternion components can be expressed as2

ŷη = E[yη |xr,xı,x,xκ] η ∈ {r, ı, , κ}
and using (7), these are readily re-written via the involutions,

e.g. xr = 1

4
(x+ xı + x + xκ), leading to the estimator

ŷη = E[yη |x,xı,x,xκ] and ŷ = E[y |x,xı,x,xκ]

Therefore, since every quaternion component is a function of

the involutions, to capture the full second order information

available we require the quaternion widely linear model

ŷ = uHx+ vHxı + gHx + hHxκ = waHxa (11)

where wa = [uT ,vT ,gT ,hT ]T is the augmented coef-

ficient vector and the augmented regressor vector xa =
[xT ,xıT ,xT ,xκT ]T . It should be mentioned that an al-

ternative widely linear model could be equally obtained

using a conjugate augmented regressor vector xa =
[xH ,xıH ,xH ,xκH ]T , for more detail see [3].

Current statistical signal processing in H is largely based

on strictly linear models, drawing upon the covariance matrix

Rx = E[xxH ]. However, based on 11 the modelling of both

the second order circular (proper) and noncircular (improper)

signals, is only possible using the augmented covariance

matrix, given by [3]

Ra
x = E[xaxaH ] =







Rx Px Sx Tx

Pı
x Rı

x Tı
x Sı

x

S
x T

x R
x P

x

Tκ
x Sκ

x Pκ
x Rκ

x







(12)

where Rx = E[xxH ], and the three pseudocovariances Px =
E[xxıH ], Sx = E[xxH ] and Tx = E[xxκH ].

Proper (second order circular) signals, have probability

distributions that are rotation invariant with respect to all the

six possible pairs of axes (combinations of ı,  and κ) [3],

and thus equal powers in all the components, so that the three

pseudocovariance matrices Px, Sx and Tx vanish.

Remark#1: The processing in R
4 requires ten covariance

matrices, as opposed to four in the quaternion domain since

only Rx, Px, Sx and Tx are needed to fully describe Ra
x.

IV. MSE ANALYSIS OF THE WIDELY LINEAR MODEL

To establish the extent to which the quaternion minimum

MSE estimator based on the widely linear (WL) model yields

superior performance over the strictly linear (SL) model, we

adopt a two step approach. First we show that the semi-widely

linear (SWL) model, given by (c, d are coefficients)

ŷ = cHx+ dHxi (13)

2Throughout this paper, a vector x and its involutions are treated formally
as independent variables. This is a usual formalism inherited from the complex
domain, and the CR-calculus.
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attains a MSE than is smaller or equal to that of the strictly

linear model ŷ = wHx. We then show that for improper

signals the fully-widely linear model in (11) offers better

steady state performance than the semi-widely linear model

in (13), hence outperforming the strictly linear model too.

A. Semi-Widely Linear Model vs Strictly Linear Model

To obtain expressions for the MSE and thus compare the

minimum mean square error of the semi-widely linear model

to that of the strictly linear model we must first obtain the

optimum filter weight coefficients c,d and w. Similar to [7],

starting from the orthogonality condition within the semi-

widely linear model, we have

E[x(y − ŷ)∗] = 0 → E[xy∗] = E[xŷ∗] (14)

E[xı(y − ŷ)∗] = 0 → E[xıy∗] = E[xıŷ∗] (15)

Substituting the estimator ŷ in (13) into the above, we have

r = Rc+Pd p = Pıc+Rıd (16)

where r = E[xy∗] and p = E[xıy∗], while R, and

P are respectively the covariance matrix E[xxH ] and i-

pseudocovarince matrix E[xxıH ]. Solving for c and d we have

c = [R−PR−ıPi]−1[r−PR−ıp] (17)

d = [Rı −PıR−1P]−1[p−PıR−1r] (18)

For the strictly linear model, the optimum filter weight w is

given by the Wiener solution

w = R−1r (19)

and the respective strictly linear and semi widely linear mean

square errors, e2l and e2swl, as

e2l = E[|y − ŷ|2] = E[e(y −wHx)H ]

= E[|y|2]− rHR−1r

e2swl = E[|y − ŷ|2] = E[e(y − cHx− dHxı)H ]

= E[|y|2]− cHr− dHp

The squared error difference between the MSEs for the SL

and SWL can then be written as (this also conforms with the

complex case in [5])

δe2swl = e2l − e2swl = −rHR−1 (20)

+ [r−PR−ıp]
H
[R−PR−ıPi]−1r

+ [p−PıR−1r]H [Rı −PıR−1P]−1p

The Appendix shows that δe2swl above can be written in the

following compact form

δe2swl = [p−PıR−1r]H [Rı −PıR−1P]−1[p−PıR−1r]
(21)

Remark#2: Observe that the term Rı − PıR−1P is the

Schur complement [10] of the semi-widely linear augmented

covariance matrix

E[xaxaH ] =

[
R P

Pı Rı

]

where xa = [xT ,xıT ]T . Since the augmented covariance

matrix is positive semi-definite and Pı = PH , so too is its

Schur complement Rı −PıR−1P, and its inverse and hence

δe2swl ≥ 0.

Remark#3: The MSE of the SL model is always greater or

equal to that of the SWL model, the equality only holds when

p−PıR−1r = 0, that is, when the statistics of x is ı−circular3

and the input xı is uncorrelated to the output y.

B. Widely Linear Model vs Semi-Widely Linear Model

To evaluate the MSE performance of the semi-widely linear

model in (13)against the widely linear model in (11), we shall

rewrite them as

ŷswl = fxa (22)

ŷwl = oxa + lxb (23)

where xa = [xT ,xıT ]T , xb = [xT ,xκT ]T and f =
[cT ,dT ]T , o = [uT ,vT ]T , and l = [gT ,hT ]T are coefficient

vectors. Written in this form, it is straightforward to follow the

approach taken in the previous section to obtain the optimal

weights g and h, as

o = [N−MN−M]−1[n−MN−m] (24)

l = [N −MN−1M]−1[m−MN−1n] (25)

where N = E[xaxaH ] and M = E[xaxbH ] are the corre-

sponding augmented covariance matrices, and n = E[xay∗]
and m = E[xby∗] augmented cross-correlations. The term

’augmented’ is used because the input vectors xa and xb are

each made up of two components, the involutions of x. From

the previous section, the difference in the MSE between the

widely linear and semi widely linear models can be written as

δe2wl= e2swl − e2wl (26)

δe2wl=[m−MN−1m]H [N−MN−1M]−1[m−MN−1m]

From Remark 2, [N −MR−1M]−1 is positive semidefinite

and hence δewl ≥ 0.

Remark#4: The MSE of the semi-widely linear model is

always greater or equal to that of the widely linear model,

the equality holds only when m − MN−1m = 0, that is,

when the statistics of x is − and κ−circular and the input

xb is uncorrelated to the output y.

V. SIMULATIONS

To demonstrate experimentally the findings, we compared

the MSEs of the quaternion LMS [11] and widely linear

quaternion LMS [12] on one step ahead prediction of a process

generated by the following AR(4) model

x(k) = 1.79x(k − 1)− 1.85x(k − 2) + 1.27x(k − 3)

−0.41x(k − 4) + r(k)

where r(k) = n(k) + 0.9n∗(k− 1) and n(k) is circular white

Gaussian noise. Due to the presence of n∗(k−1) in the noise

3The term ı−circular refers to the fact that the pseudocovariance
E[xxiH ] = 0.
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Fig. 1. Steady state performance of WLQLMS and QLMS for the prediction
of an AR(4) process driven by noncircular white noise.
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Fig. 2. Steady state performance of WLQLMS and QLMS for the prediction
of an AR(4) process driven by circular white noise.

term r(k), the widely linear model is needed to fully capture

the cross-correlation between the output x(k) and the input

vector [x(k−1), x(k−2), x(k−3), x(k−4)]. Figure 1 shows

the learning curves for the WLQLMS, SWLQLMS (semi-

widely linear QLMS) and QLMS - as expected the widely

linear WLQLMS achieved lower MSE than SWLQLMS,

which itself achieved lower MSE than QLMS. We next

investigated the prediction performance when the driving noise

r(k) = n(k) was circular. Figure 2 shows the evolution of

the MSE for the QLMS and WLQLMS. Observe that since

the driving noise is circular, the WLQLMS, SWLQLMS and

QLMS achieved the same steady state performance. Table I

compares the simulated e2l , e2swl and δe2wl to the theoretical

value as measured by (21) and (27).

Note the close match between both the theoretical and

experimental measures and how, as desired, the simulated

MSE is a sum of the theoretical MSE and the excess MSE

of the filter which is approximately Jex ≈ 1

2
µJmintr(R),

where µ is the step size, tr(R) is the trace of the input vector

TABLE I
THEORETICAL AND SIMULATED e2 AND δe2 FOR THE CIRCULAR AND

NONCIRCULAR AR(4) MODEL

e2
l

e2
swl

e2
wl

δe2
swl

δe2
wl

Noncircular AR(4)
simulated 7.58 7.27 6.23 0.31 1.04
theoretical 6.57 6.23 5.22 0.34 1.01
excess MSE 0.98 1.01 1.09 - -

Circular AR(4)
theoretical 7.67 7.67 7.68 0.00 0.00
simulated 6.54 6.54 6.54 0.00 0.00
excess MSE 1.12 1.11 1.10 - -

covariance matrix and Jmin is the theoretical MSE.

VI. CONCLUSIONS

We have proved that the MSE achieved by using the strictly

linear model is always greater than or equal to that achieved

by the widely linear model. A theoretical performance bound

for noncircular signals is also established and the validity of

the result is demonstrated on illustrative simulations.

APPENDIX: QUATERNION LINEAR MODEL

Apply the Woodbury matrix identity to (21) to give

δe2swl = −rHR−1 (27)

+[r−PR−ıp]
H
[R−1−R−1P(Rı −PıR−1P)−1PıR−1]r

︸ ︷︷ ︸

α

+[p−PıR−1r]H [R−ı−R−ıPı(R−PR−ıPı)−1PR−ı]p
︸ ︷︷ ︸

β

Expanding the term α above we have

α=(PR−ıp)HR−1p(Rı −PıR−1p)−1PıR−1r
︸ ︷︷ ︸

θ

−(PR−ıp)HR−1r
︸ ︷︷ ︸

φ

− rHR−1P(Rı −PıR−1P)−1PıR−1r
︸ ︷︷ ︸

ω

Using Pı = PH we can rewrite the terms θ, φ and ω as

θ = pH [R−ıPR−1p(Rı −PıR−1p)]PıR−1r

φ = pHR−ıPıR−1

ω = (PıR−1r)H(Rı −PıR−1P)−1(PıR−1r)

which allows us to express the term α as

[pH − (PıR−1r)H ][R−ı −R−ıPı(R−PR−ıPı)−1PR−ı]

×[−PıR−1r]

Making use of the common factor between α above and β in

(27), we can rewrite (27) as

δe2swl = [p−PıR−1r]H [Rı −PıR−1P]−1[p−PıR−1r]
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