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ABSTRACT

A diffusion widely linear quaternion least mean square (D-
WLIQLMS) algorithm for the collaborative processing of
quaternion signals over distributed networks is proposed. We
show that the underlying quaternion division algebra and the
widely linear model allow for a unified processing of 3D
and 4D data, which can exhibit both circular and noncircu-
lar distributions. The analysis shows that the D-WLIQLMS
provides a solution that is robust to link and node failures
in sensor networks. Simulations on benchmark 4D signals
illustrate the advantages offered by the D-WLIQLMS.

Index Terms— Quaternions, widely linear models, dis-
tributed networks, diffusion algorithms.

1. INTRODUCTION

Advances in sensor technology and wireless communication
have led to a growing use of sensor networks in practical ap-
plications, ranging from environmental monitoring to target
localization. These networks typically comprise a number of
interconnected nodes which are able to communicate with one
another in order to estimate some parameter of interest from
noisy measurements. Within distributed solutions to estima-
tion problems, every node in the network communicates only
with a subset of the nodes, while processing is distributed
among all nodes in the network. This is opposed to a global
solution where every node in the network transmits data to a
central fusion center, where the processing is performed us-
ing all available information. The distributed solution, though
usually marginally underperforming compared to the global
solution, requires less power for communication between the
sensors and is more robust to faults in the networks or fusion
center [1] [2] [3] [4] . These properties are very desirable
given the growing use of low power wireless sensors.
Distributed least mean square algorithms (also called dif-
fusion LMS) have recently been proposed [1] for real-valued
data. This was soon followed by the development of diffu-
sion RLS [5] and diffusion Kalman algorithms [6] [2]. With
the development in augmented complex statistics, distributed

algorithms have recently been extended to the complex do-
main [7] allowing cooperative processing of two-dimensional
data using all available second order statistics.

Albeit better equipped to deal with multidimensional data
than real valued models, complex-valued signal processing
techniques are not adequate where the data is three- or four-
dimensional. Furthermore, a growing proportion of sensors
used in applications give three-dimensional outputs, for ex-
ample three-dimensional wind anemometers or inertial mo-
tion sensors. For such signals, quaternions (ordered pair of
complex numbers) can be used to obtain elegant and compact
solutions. Owing to their division algebra, quaternions too
have the advantage of providing accurate and efficient mod-
els for three-dimensional rotation and orientation tracking. In
these cases, real vectors are inadequate and may result in a
loss of one degree of freedom (gimbal lock).

In the complex domain, augmented statistics is needed
to capture all second order statistics and develop algorithms
that are second order optimal. In the same vain, the devel-
opment of the quaternion widely linear model, augmented
statistics [8] [9] [10] and HR-calculus [11] has recently re-
ceived plenty of attention. Numerous quaternion adaptive
filtering algorithms have been developed in the quaternion
domain, including the widely linear quaternion least mean
square (WLQLMS) [12] and widely linear quaternion affine
projection [13]. More recently, using involution gradients,
an efficient implementation of the WLQLMS (WLIQLMS)
has been introduced [14], requiring half the operations of the
QLMS. In this paper, the IQLMS will be used as a platform
for deriving the diffusion IQLMS (D-IQLMS) and diffusion
WLIQLMS (D-WLIQLMS), allowing cooperative adaptive
estimation of both circular and noncircular quaternion valued
signals. The advantage of the D-WLIQLMS over the strictly
linear D-IQLMS is illustrated over simulations on benchmark
signals.

We next review the quaternion algebra (Section 2) and
quaternion widely linear model (Section 3). In Section 4
we derive the D-IQLMS, while in Section 5 we employ the
widely linear model to obtain the D-WLIQLMS. Section 6
presents stability bounds, thus ensuring convergence in the



mean. We conclude the work with representative simulations.

2. QUATERNION ALGEBRA

Quaternions are an extension of complex numbers (forming
an ordered pair), comprising of a real part (denoted by a sub-
script a) and three imaginary parts (denoted by subscripts b, ¢
and d). A quaternion variable ¢ € H can be described as

QZQT'FZ'% +j%+kq.‘e (1)

The unit axis vectors ¢, j and k in the quaternion domain H
are also imaginary units, and obey the following rules
ij=k jk=1 ki=j

i’ ==k =ijk=-1

Note that quaternion multiplication is not commutative, that
is, ij =k # ji = —k.
A quaternion variable ¢ can be conveniently written in a
real-vector form as [15]
q=5Sq+Vq

where, Sq = ¢, (denotes the scalar part of ¢) and V¢ =
iq, + jg, + kg, (denotes the vector part of ¢). Then, the
quaternion product can be expressed as:

12 = (S +Vaq1)(Se2+ Vo)
Sq1S¢ — Vg1 e Vg + SV + SV
+Va1 x Vg

where the symbol ‘e’ denotes the dot-product and ‘X’ the
usual cross-product in vector analysis. The quaternion con-
jugate, denoted by ¢* is given by

¢ =5¢-Vq

The norm || ¢|| of a quaternion variable g, is defined as
lqll= vaq* = \/qf +@Z+qi+q?

The three-dimensional vector part V¢ is also called a pure
quaternion, whereas the inclusion of the real part Sq gives a
full quaternion. The special algebraic structure of quaternions
enables unified processing of three- and four-dimensional
multivariate processes. Therefore the distributed algorithm
developed here applies to both 3D and 4D data.

2.1. Quaternion Involutions

Involutions are self-inverse mappings and are defined as!

q' = —iqi = ¢y +1q, — Jqc) — Ky 2)
¢ = —jqj = ¢ — 14, + 9c) — K 3)
M= —kgk = g —1q, — 39c7 + K 4)

To verify that involutions represent self-inverse mappings,
consider for instance (¢*)* = ¢. The involution of a product

"'Note that the quaternion conjugate is also an involution.

is also a product of the individual involutions (i.e. (q1¢2)" =
qigs). Tt is important to realize that involutions can be seen
as a quaternion counterpart of the complex conjugate, as they
allow the components of a quaternion variable to be expressed
in terms Oif the actual Varlable and its mi/olutlons that is

@ = 4[q+q +¢+4" a= 4[q+q*q —q"]
1 . .
gt J_ .k ot
q 4j[q ¢ +¢ -4 q.= 4k[q q —q +q"

The above representation is a basis for the derivation of
quaternion valued widely-linear adaptive filtering models.

3. QUATERNION WIDELY LINEAR MODEL

The existing (strictly linear) estimation model in the quater-
nion domain is given by

j=w'x )
Observe from (2)-(4), and the above expressions forqg,...,qq
that for all the %uatermon components?

yn XTux’L?XJuxh] ne {T 2, .77'“"}

We can therefore express the components y;., 4., ¥;, ¥x of a
quaternion via its involutions, to yield

Yn = Ely, |x,x", %), x"] and § = E[y|x,x",x’,x"]

In other words, since every quaternion component is a func-
tion of its involutions, to capture the full second order infor-
mation avallalc)ple we can empl oy the wzdelz lmearTmodel

j=ulx+vix +glx/+h'x" =wTx (6)
where the augmented coefficient vector w® = [u”?, v?, g7 h7]T
and the augmented regressor vector x% = [x7,x'7, xIT x~T|T
for more detail see [8].

Current statistical signal processing in H is largely based
on strictly linear models, drawing upon the covariance ma-
trix R, = E[xx']. However, to model both the second or-
der circular (proper) and second order noncircular (improper)
signals, based on the widely linear model in (6) we need to
employ the augmented covariance matrix, given by [8]

R, P, S, T,

P R, T. S )
Ss?2 T2 R, P
T: Sr Pr RE

, X

R® = E[xaxaH]

X

where R, = E[xx], P, = E[xx*#], S, = E[xx’"] and
T, = E[xx"1].

For proper (second order circular) signals, all the pseudo-
covariance matrices P, S, and T, vanish, and such signals
have probability distributions that are rotation invariant with
respect to all the six possible pairs of axes (combinations of 1,
7 and k) [8], and thus equal powers in all the components.
Remark#1: The processing in R* requires ten covariance ma-
trices, as opposed to four in the quaternion domain (since only
R, P,,S; and T, are needed to fully describe R%).

2Throughout this paper, a vector x and its involutions are treated formally
as independent variables. This is a usual formalism inherited from the com-
plex domain, and in the CR-calculus.
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Fig. 1. Topology of a distributed network, highlighting the
neighbourhood of node i.

4. DERIVATION OF D-IQLMS

Consider a network of /N nodes distributed over some area,
as shown in Figure 1. At time instant k, each node ¢ has ac-
cess to the local teaching signal d;(k) and a regressor input
vector, defined as x;(k) = [z;(k — 1),...,z;(k — L)]T. In
addition to each node ¢ having access to their own data (d; (k)
and x; (k) and w(k)), nodes can also access to data from their
direct neighbours, where the neighbourhood N is defined as
the set of all nodes linking to node 7, including itself. A diffu-
sion protocol describes how data from the neighbourhood N;
is combined. For a global (where all data is available to all
nodes) least squares solution to the network in Figure 1, the
centralized IQLMS (c-IQLMS) weight update can be written

as [1]
+uZez ®)

where the e;(k) = d;(k) — yl(k) is the error between the
teaching signal d;(k) and output signal y;(k) at node i. In
a distributed system, only data from the neighbourhood of a
node is available and so the global weight update in (8) is
replaced by local weight updates
wilk+1) =wi(k)+p Y caaRxi (k) ©)
leN;

w(k+1)=

where the weighting coefficient ¢; ; is always greater than 0,
being equal to 0 when nodes [ and £ are not connected, and
satisfies ) len; Cli = 1. The weighting coefficient ¢; ; can be
conveniently described as a matrix C where 17C = 17" and
C1 = 1. The weight update at node ¢ can be interpreted as
a weighted linear combination of neighbouring estimates of
the local cost function gradient. The advantage of this local
weight update over the global weight update is that it is robust
to node and link failures. The local weight estimates w; (k) in
(9) can be further improved by combining the local weight
updates iteratively as follows
¢i(k+1) = wi(k—1)+pn Z ciel(k)x; (k)
leN;

> ai(k)gy (k) (10)

leEN;

where ), en, @ = 1 (more conveniently written asAl =1).

5. THE D-WLIQLMS

The D-IQLMS in (10) is only adequate when the underlying
model is strictly linear. To process a signal generated from a
widely linear system, or from noncircular statistics, we em-
ploy the widely linear model in (6) to augment the input vec-
tor. The D-WLIQLMS can then be compactly written as

Gi(k+1) =wik—1)+pn Y axi*(kek) (1)
lEN;
wik) = > a(k)ei (k) (12)

leN;

T
where x¢ = [x{7,x!7, x]" , xT.

6. STABILITY ANALYSIS OF D-WLIQLMS

To investigate the convergence in the mean of the D-WLIQLMS
algorithm, we rewrite the weight update in (12) as

&7 (k) = wT (k—1)+(d” — w*T (k — 1)X“(k)) X**MD
13
where )
¢ (k) = (o7 (K),..., 0N ()]
wik) = [wiT(k),..., wil (k)]"
X (k) = diag{[x{" (k),...,x% (k)]"}
d(k) = [d1<k>,.-.,dN<k)]T
D = diag{[mlir, .., unLir]}
M = C®Iy

and ® denotes the Kronecker product operator. To eval-
uate the performance of the D-WLIQLMS, without loss in
generality, consider an improper teaching signal d(k), given

by d(k) = wiT (k)X (k) + n(k) (14)

where w27 (k) is the optimal (but unknown) local augmented
weight vector, and n(k) is quadruply white Gaussian noise
with zero mean and variance o2, uncorrelated with X (k).
Substituting the teaching (14) into the weight update (13) and
multiplying through we obtain

¢ (k) =wT (k — 1) + (w7 (k)

—w*T(k —1))X*(k)X*“*MD + n(k)X**MD
while a further multiplication of both sides by -1 and addition
of w7 (k) yields
~aT
¢ (k) = wT(k—1)—wT (k-

+ n(k)X*"MD)

1) (X*(k)X“"MD

where the weight error vectors ¢ = w, (k) — ¢(k) and W =
w, (k) — w(k). Substituting for ¢ using (12) we have
wl(k—1)=wT(k - 1P —w*T(k - 1) (X*(k)X*"MD

+ n(k)X*"MD) P



where P = A®I, .. Upon applying the statistical expectation
operator we have

EwT(k-1)] = Ew7T(k-1)]I-R:MD)P

where

R?, = EX%(k)X] = diag{ E[x{x%1],..., E[x%x$]}

It then follows from (15) that to ensure that the power of the
weight error vector E[wT (k —1)] converges to 0 as k — 0o,

the following condition must hold
(I~ R%,MD)P|), <1

Since the 2-norm is sub-multiplicative and ||P|| = 1 (this
results from the fact that the rows and columns add to 1) we

can write
I|(I-R;MD)P|[z <[ (I-R;,MD)|

and obtain a more conservative condition for convergence in
the form (T~ Rg,MD) [|; <1

For the case where all nodes have the same step size, i.e. ma-
trix D is a scaled identity matrix, the above convergence con-
dition becomes ||{(I — uR%,M)}||2 < 1, yielding the fol-
lowing bound for the step size

o< (15)

Amaz (R, M)

T

7. SIMULATIONS

The one step ahead prediction performances of the proposed
D-WLIQLMS and D-IQLMS were compared to the global
IQLMS (where a centralized processing unit has access to all
nodes) and to the non-cooperative IQLMS, where nodes do
not share information with neighbouring nodes (i.e. where
M = I). The network topology consisted of 6 nodes and
is shown in Figure. Numerous methods exist to select the
combination coefficients ¢;;, such as the Metropolis [1],
Laplacian and nearest neighbour rule. For our simulations the
Metropolis rule was used, described by
L if [ # i are connected

if [ # i are not connected (16)
ifl =1

mazx(n;,ng)
;=4 0

1- ZlENi Clyi

where n; and n; are respectively the numbers of nodes in the
neighbourhood of nodes ¢ and [. Following the Metropolis
rule in (16), the combination matrix C for the network topol-
ogy in Fig. 2 becomes

Owim O O wl—wl—
O O wl—wl—= O wl—
O O wl—wl—wl—= O
O wi— O wl—wl—= O
W= Owim O Owl—
whwel—= O O O O

The simulations were carried out for two signals, one gen-
erated by a strictly linear AR(4) model and the other gener-
ated by the three dimensional Lorenz system.
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Fig. 2. Network topology.

20

distributed QLMS
global QLMS
No cooperation

2010gl O|e\

5

1000 1200 1400 1600 1800 2000
Sample

0 200 400 600 800

Fig. 3. Comparison of MSEs of the non-cooperative IQLMS,
global IQLMS and D-IQLMS on the circular AR(4) process.

7.1. A circular AR(4) process

The benchmark circular quaternion signal used in simulations
was generated by an AR(4) model described by

y(k) = 1.79y(k—1)—1.85y(k —2)+ 1.27y(k — 3)

—0.41y(k — 4) + n(k)

where the driving noise n(k) was quaternion valued circular
white Gaussian noise. Figure 3 shows the evolution of the
mean square error (MSE) for the one step ahead prediction of
the AR(4) process when the filter length is 4. Observe that as
expected the distributed QLMS achieves significantly better
steady state performance compared to the case where there is
no cooperation between the nodes. It is also worth noting that
the steady state performance of the distributed QLMS is only
marginally worse than that of the global QLMS, while being
more robust to failures in the network and requiring fewer
mathematical operations.
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Fig. 4. Comparison of MSEs of the D-WLIQLMS and
DIQLMS on the noncircular Lorenz signal.

7.2. Noncircular Lorenz attractor

The Lorenz signal, originally used to model atmospheric tur-
bulence, is the output of the three-dimensional nonlinear sys-

tgm 0 0

T oy — Y _ 9E -
S —aly—1) S = e
where «, 3, p > 0. Figure 4 shows the evolution of the MSE
for the D-IQLMS and D-WLIQLMS. Observe that due to the
widely linear nature of the Lorenz signal, the D-WLIQLMS
has significantly lower MSE at steady state.

8. CONCLUSION

We have introduced a diffusion WLQLMS (D-WLQLMS) al-
gorithm for the distributed processing of general quaternion
valued signals (both circular and noncircular) in a cooperative
fashion. The advantage of the diffusion topology over non-
cooperative and fully-cooperative (global-QLMS) networks
in terms of robustness, convergence speed and steady state
performance has been shown in analysis and simulations on
synthetic signals. The proposed strategy is particularly useful
for data coming from vector sensors, such as 3D anemometers
and 3D inertial body sensors.
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