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Abstract—The recently proposed HR-calculus has enabled
rigorous derivation of quaternion-valued adaptive filtering al-
gorithms, and has also introduced several equivalent forms of
the quaternion least mean square (QLMS). This work aims to
address the uniqueness of the solutions to the stochastic gradient
optimisation problems, and to provide a unified framework for
the derivation and analysis of quaternion least mean square
algorithms. In doing so, we assess and compare the properties
of the adaptive algorithms in the context of their convergence
and steady state performances. For generality, the convergence
properties of both QLMS and its widely linear extension, the
WL-QLMS are illuminated.

I. INTRODUCTION

The advances in the technology of vector sensors has lead
to the development of a new paradigm in signal processing:
operating in the multidimensional quaternion domain. Recent
advances in this direction have been in spectrum analysis
[1], algebraic matrix decompositions [2], augmented statistics
[3] and independent component analysis [4]. Similarly, the
quaternion least mean square (QLMS) was proposed for the
adaptive filtering of hypercomplex processes [5] and was used
in various applications such as renewable energy [6] and gait
recognition [7]; it has also undergone improvements in terms
of computational complexity [8] and functional simplicity [9].
In contrast to the real and complex domains, applications of
quaternions are not well understood. For instance, the fact that
quaternion gradients are still not well defined means that the
standard pseudogradient approach had to be borrowed from the
complex domain to derive QLMS. As a result, the derivation of
QLMS was lengthy and tedious; it involved the cumbersome
task of differentiating separately with respect to the real
and the three imaginary parts of the comprising quaternion
variables, and solutions which are not generic extensions of
the corresponding real- and complex-valued ones.

Only recently, theoretical developments in quaternion cal-
culus have been made to facilitate the derivation of adaptive
algorithms [9] [10]. In particular, the optimisation of real-
valued cost functions of quaternion variables are commonly
encountered in statistical signal processing; these functions
are not analytic and hence cannot be differentiated in the
‘quaternion’ sense. The HR-calculus was thus proposed to
offer a unified and elegant way to differentiate directly in
the hypercomplex division algebra [10]. More recently, the
HR-calculus was extended to cater specifically for functions

of quaternion involutions qη ∀η ∈ {ı, j, κ} (analogous to
the complex conjugate operator), resulting in the so-called i-
gradient [9]. In the sequel, it is shown how these advances in
quaternion calculus pave the way to the derivation of varying
forms of QLMS that exhibit different properties.

Our aim is to introduce a unifying framework to analyse
quaternion valued adaptive filters. This will not only allow us
to shed light on this emerging topic, but will also enable us
to make use of these adaptive filters in specific application
driven contexts. For completeness, we also demonstrate the
convergence properties of the QLMS based on the widely
linear model, given by

y = uHx + vHxı + gHxj + hHxκ (1)

in terms of the eigenvalues of the quaternion-valued covariance
matrices. These results confirm that the widely linear QLMS
reduces into the QLMS when processing a proper signal, that
is, a signal with equal powers in all the components of the
quaternion.

II. QUATERNIONS AND ITS INVOLUTIONS

For a quaternion q = qa + ıqb + jqc + κqd = �[q] + �[q],
the real (scalar) part is denoted by qa = �[q], whereas the
vector part (also called pure quaternion) �[q] = ıqb + jqc +
κqd comprises the three imaginary parts. The noncommutative
quaternion product is given by

�[q1q2] = �[q1]�[q2] −�[q1] · �[q2]

�[q1q2] = �[q2]�[q1] + �[q1]�[q2] + �[q1] ×�[q2] (2)

where the symbols ‘·’ and ‘×’ denote respectively the inner
and the outer product. The quaternion conjugate is given by
q∗ = �[q] − �[q], the norm by |q| =

√
qq∗, and hence the

inverse by q−1 = q∗

‖q‖2 , and η2 = −1, η ∀ {ı, j, κ}.
A. Quaternion Involutions

An involution is a similarity relation and represents as a
self-inverse mapping; a commonly encountered involution is
the quaternion conjugate, that is, (q∗)

∗
= q. In the context of

our work, however, similarity relations of particular interest
are the three orthogonal (⊥) quaternion involutions, given by

qı = qa + ıqb − jqc − κqd qj = qa − ıqb + jqc − κqd

qκ = qa − ıqb − jqc + κqd (3)
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The properties of these ⊥ quaternion involutions can be
summarised as

(pη)∗ = (p∗)η (p + q)η = pη + qη

(pq)η = pηqη (pq)η∗ = qη∗pη∗

(pδ)η = (pη)δ = pα ∀η �= δ �= α ∈ {ı, j, κ} (4)

The relationship between the involutions and the conjugate of
a quaternion variable is given by

q∗ =
1

2
(qı + qj + qκ − q) (5)

q =
1

2
(qı∗ + qj∗ + qκ∗ − q∗) (6)

The identities in (5) - (6) are important for the analysis of
quaternion gradients, as discussed below.

B. The HR-Calculus and Quaternion Differentiability

The HR-calculus provides a unifying framework for the
differentiation of both analytic and non-analytic functions of
quaternion variables. It was developed in [10] to overcome the
stringent Cauchy-Riemann-Fueter (CRF) conditions, which are
satisfied only for linear functions and constants. The HR and
HR

∗-derivatives within the HR-calculus are given respectively
as [10]

∂f(q, qı, qj, qκ)

∂q
=

1

4

[ ∂f

∂qa

− ı
∂f

∂qb

− j
∂f

∂qc

− κ
∂f

∂qd

]
(7)

∂f(q∗, qı∗, qj∗, qκ∗)

∂q∗
=

1

4

[ ∂f

∂qa

+ ı
∂f

∂qb

+ j
∂f

∂qc

+ κ
∂f

∂qd

]
(8)

For instance, to use the HR
∗-derivative, we first express a

quaternion valued the function f(·) in terms of the involutions
q∗, qı∗, qj∗, qκ∗ using (6) and then differentiate with respect
to q∗. Consider the function f(·) = q, its HR

∗-derivative is
∂f
∂q∗

= −1/2. In addition to the HR- and HR
∗-derivatives,

a new definition of quaternion gradient based on involutions
has been recently proposed [9] and is termed the involution-
or i-gradient, given by

∇wηf(q, qı, qj, qκ) =
∂f

∂qı
+

∂f

∂qj
+

∂f

∂qκ
(9)

∇wηf(q, qı, qj, qκ)=
1

4

[
3

∂

∂qa

+ ı
∂f

∂qb

+ j
∂f

∂qc

+ κ
∂f

∂qd

]

=
∂f

∂q∗
+

1

2

∂f

∂qa

(10)

where, for simplicity, η ∈ {ı, j, κ}. In addition to the stan-
dard HR

∗-derivative ∂f
∂q∗

, the additional gradient term in the
direction of the real variable ∂f/∂qa in (10) indicates a
potential faster convergence of the i-gradient, as compared to
the standard conjugate gradient using the HR

∗-derivative. For
more details on the i-gradient, see [9].

III. QUATERNION-VALUED ADAPTIVE FILTERS REVISITED

For convenience, the derivations1 of adaptive filtering algo-
rithms based on the HR−calculus are next revisited.

1For continuity with our work [5], the filter output y(k) = w
T (k)x(k).

A. iQuaternion Least Mean Square Algorithm

We first consider the derivation of the iQLMS, which is
based on the i-gradient for η ∈ {ı, j, κ}. The gradient of the
cost function J(k) = 1

2e(k)e∗(k) is given in the form

∇wηJ(k)=
1

2

∑
η={ı,j,κ}

e(k)
∂e∗(k)

∂wη(k)
+

∂e(k)

∂wη(k)
e∗(k) (11)

Using the rules of HR-calculus, we have [10]

∂e(k)

∂wη
= 0 ∀η ∈ {ı, j, κ} (12)

To derive ∂e∗(k)
∂w

η ∀ η ∈ {ı, j, κ}, use the identity in (5) to
substitute w∗ into the expression for e∗(k), to give

e∗(k) = d∗(k) − 1

2
xH(k)

(
wı(k) + wj(k) + wκ(k) − w(k)

)

The gradients ∂e(k)
∂w

ı , ∂e(k)
∂w

j and ∂e(k)
∂w

κ can now be calculated
by direct differentiation, yielding

∂e(k)

∂wη
= −1

2
x∗(k) ∀η ∈ {ı, j, κ} (13)

Substituting (12) and (13) into (11) and substituting the result
in the steepest descent w(k + 1) = w(k) − μ∇wηJ(k) gives
the weight update

w(k + 1) = w(k) +
3

4
μe(k)x∗(k) (14)

This stochastic gradient algorithm is termed the iQLMS (the
i-gradient based QLMS). Observe that it has the same form
as the LMS and complex LMS [11].

B. Quaternion Least Mean Square Algorithm

Similarly, the original QLMS algorithm [5] can now be
rederived based on the HR

∗-derivative. Its cost function is
given by J (k) = 1

2e(k)e∗(k) and its weight update expressed
as w(k + 1) = w(k) − μ∇w

∗J (k), where

∇w
∗J (k) = e(k)

∂e∗(k)

∂w∗(k)
+

∂e(k)

∂w∗(k)
e∗(k) (15)

Expanding the error expression, we obtain the terms e(k) =
d(k) − wT (k)x(k) and e∗(k) = d∗(k) − xH(k)w∗(k). The
relationship in (6) permits the use of HR

∗-calculus, yielding
∂w(k)/∂w∗(k) = −1/2. The error gradients thus become

∂e∗(k)

∂w∗(k)
= −x∗(k)

∂e(k)

∂w∗(k)
=

1

2
x(k) (16)

giving the update referred to as the “HR-QLMS” update

w(k + 1) = w(k) +
1

2
μ
(
e(k)x∗(k) − 1

2
x(k)e∗(k)

)
(17)

On the other hand, the QLMS originally proposed in [5]
involves a lengthy derivation, as it was based on the com-
ponentwise pseudogradient; for brevity, it is given by

w(k + 1) = w(k) +
1

2
μ
(
e(k)x∗(k) − 1

2
x∗(k)e∗(k)

)
(18)
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TABLE I
COMPARATIVE ANALYSIS OF QUATERNION ADAPTIVE FILTERS

Algorithms in their generic form (21) ν τ ρ ς
iQLMS in (14) 3/4 3/4 3/4 3/4

HR-QLMS in (17) 1/4 1/4 3/4 3/4
QLMS in (18) 1/4 3/4 3/4 1/4

IV. UNIFIED ANALYSIS OF QUATERNION ADAPTIVE

FILTERS

The three quaternion least mean square algorithms in (14),
(17), and (18) have been derived based on different gradient
definitions, leading to different updates. To have a unified
framework to perform a fair and comparative analysis of their
properties, we shall express all the updates in (14), (17), and
(18) in the same generic form.

For clarity, we start with the simplest functional expression,
the iQLMS, and separate its update into the real and imaginary
parts by using the identity x∗(k) = x(k) − 2�[x(k)], as
follows

�[w(k + 1)] = �[w(k)] +
3

4
μ�[e(k)x∗(k)]

= �[w(k)] +
3

4
μ�[e(k)(�[x(k)] −�[x(k)])]

= �[w(k)] +
3

4
μ�[

e(k)�[x(k)]
] − 3

4
μ�[

e(k)�[x(k)]
]
(19)

�[w(k + 1)] = �[w(k)] +
3

4
μ�[e(k)x∗(k)]

= �[w(k)] +
3

4
μ�[e(k)(�[x(k)] −�[x(k)])]

= �[w(k)] +
3

4
μ�[

e(k)�[x(k)]
]−3

4
μ�[

e(k)�[x(k)]
]
(20)

A more generic form of these equations can be rewritten as

�[Δw] = ν μ�
[
e(k)�[x(k)]

]
− τ μ�

[
e(k)�[x(k)]

]

�[Δw] = ρ μ�
[
e(k)�[x(k)]

]
− ς μ�

[
e(k)�[x(k)]

]
(21)

where Δw = w(k+1)−w(k). The updates for the HR-QLMS
and QLMS in (17) – (18) can also be expressed in the same
generic form as above. Observe that their weight updates only
differ in the weighting coefficients ν, τ , ρ and ς , as shown in
Table I.
Remark#1: The three QLMS algorithms in (14), (17), and
(18) are expected to exhibit similar performances at steady
state, as they essentially utilise the same information;
Remark#2: Each algorithm in (21) has different coefficients
ν, τ , ρ and ς , suggesting different rates of convergence. For
instance, the comparatively biggest coefficients of the iQLMS
indicates its fastest convergence rate.

These remarks have been confirmed the simulation studies
of our work in [9].

V. ON THE RELATIONSHIP BETWEEN QLMS AND WIDELY

LINEAR QLMS

Now that the relationship between the variants of the QLMS
has been established, we proceed to illuminate the relationship
between the QLMS and the widely linear QLMS. For sim-
plicity, we consider the iQLMS and its corresponding widely
linear counterpart, WL-iQLMS given by2

wa(k + 1) = wa(k) +
3

4
μxa(k)e∗(k) (22)

where xa = [xT xıT xjT xκT ]T is the augmented input vector
and wa = [uT vT gT hT ]T in the WL model (1). Notice
that the widely linear iQLMS degenerates into the iQLMS for
xa = x and wa = u, illustrating the obvious: the second
order statistics of the widely linear iQLMS is augmented with
the quaternion involutions as exemplified by its augmented
covariance matrix

Ca = E{xaxaH} =

⎡
⎢⎢⎣

C Cı Cj Cκ

(Cı)
ı Cı (Cκ)ı (Cj)

ı

(Cj)
j (Cκ)j Cj (Cı)

j

(Cκ)κ (Cj)
κ (Cı)

κ Cκ

⎤
⎥⎥⎦ (23)

where C = E{xxH}, Cı = E{xxıH}, Cj = E{xxjH},
Cκ = E{xxκH}. Upon adopting an approximate diagonali-
sation procedure [12], holds, the approximation ε = xHx ≈
(xHx)η ∀η ∈ {ı, j, κ} implying that one singular value
decomposition is adequate to diagonalise all the quaternion-
valued correlation matrices, that is, (see [12] and [2] for more
details)

C ≈ UΛUH Cı ≈ UΛıU
ıH

Cj ≈ UΛjU
jH Cκ ≈ UΛκU

κH (24)

In this spirit, the augmented covariance matrix in (23) can be
divided into four 2 × 2 submatrices

Ca =

[
Γ Σ

Σj Γj

]
(25)

Notice that Γ = ΓH and that Σ = ΣjH , and therefore they
can be factorised as

Γ = QΛγQ
H

Σ = QΛσQjH (26)

These factorisations (26) allow us to express Ca in terms of
the eigenvalues γ and σ of Γ and Σ, that is

Ca =

[
Q 0

0 Qj

] [
Λγ Λσ

Λσ Λγ

] [
QH 0

0 QjH

]
(27)

The middle term above can be therefore diagonalised as[
Λγ Λσ

Λσ Λγ

]
=

1

2

[
I −I

I I

] [
Λγ + Λσ 0

0 Λγ − Λσ

] [ −I I

I I

]

(28)
yielding the condition number of Ca

κ(Ca) =
max(λγ) + max(λσ)

min(λγ) − min(λσ)
(29)

2For mathematical tractability, the filter output y(k) = w
H(k)x(k).
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However, we experience an obstacle since κ(Ca) cannot be
expressed in terms of the covariance and complementary
covariance matrices. To this end, the same diagonalisation
procedure is recursively used to further decompose Γ and Σ

as

Γ=QΛγQ
H

=
1

2

[
U −U

Uı Uı

][
Λ + Λı 0

0 Λ − Λı

][
UH UıH

−UH UıH

]
(30)

Σ=QΛσQjH

=
1

2

[
U −U

Uı Uı

][
Λj + Λκ 0

0 Λj − Λκ

][
UjH UκH

−UjH UκH

]
(31)

This demonstrates that the augmented covariance in (25) can
be decomposed into Ca = VΛaV

H , where Λa is given by

Λa =

⎡
⎢⎢⎣

Λ1 0 0 0

0 Λ2 0 0

0 0 Λ3 0

0 0 0 Λ4

⎤
⎥⎥⎦ (32)

and

Λ1 = Λ + Λı + Λj + Λκ Λ2 = Λ − Λı + Λj − Λκ

Λ3 = Λ + Λı − Λj − Λκ Λ4 = Λ − Λı − Λj + Λκ (33)

A. Convergence analysis

We now demonstrate the usefulness of the diagonalisation in
(32) in adaptive filtering applications. From (29), the conver-
gence properties of the widely-linear iQLMS can be expressed
through the condition number of augmented covariance matrix

κ(Ca) =
max(λ + λı) + max(λj + λκ)

min(λ − λı) − min(λj − λκ)
(34)

=
max(λ) + max(λı) + max(λj) + max(λκ)

min(λ) − min(λı) − min(λj) + min(λκ)

Remark#3: The condition number of Ca can be expressed in
terms of the true eigenvalues of the original covariance matrix
Cx and the complementary covariance matrices Cη ∀ η ∈
{ı, j, κ}, instead of those of the augmented covariance matrix
Ca, which are less straightforward to physically interpret in
terms of e.g. the degree of circularity or signal power.
Remark#4: The generality of the expression in (34) allows us
to inspect special cases of component-wise impropreness. For
instance, for a Q−proper signal the complementary covariance
matrices vanish, implying that λη = 0, ∀ η ∈ {ı, j, κ}; in this
case the condition number degenerates into that of the standard
covariance matrix, i.e. κ(Ca) = max(λ)

min(λ) for the iQLMS.

B. Stability Bounds

As the stepsize parameter μ plays a prominent role in
the performance of adaptive filters, we shall now derive the
stability bounds as a function of the stepsize. Since the error
can be modelled as e(k) = (wa,opt − wa(k))Hxa(k), where

wa,opt denotes the Wiener solution, the update of the widely
linear iQLMS in (22) becomes3

wa(k + 1) − wa,opt = wa(k) − wa,opt

+μxa(k)xH
a (k)

(
wa(k) − wa,opt

)

w̌a(k + 1) =

(
I − μCa

)
w̌a(k) (35)

The evolution of (35) gives the stability bounds for the stepsize

0< μ <
2

max(λ) + max(λı) + max(λj) + max(λκ)
(36)

Remark#5: The corresponding stability bounds for the
iQLMS can be straightforwardly obtained as 0 < μ < 2

max(λ) .

VI. CONCLUSION

We have provided a unifying framework for the analysis of
quaternion-valued adaptive filtering algorithms, achieved by
expressing all the variants of Quaternion LMS in the same
generic form. This has enabled for the convergence and steady
state properties to be studied in a unifying way. Rigorous
analysis by making use of the eigenvalues of the covariance
and the complementary covariance matrices has shown how
the degree of impropriety of a signal affects the convergence
and stability of the widely linear QLMS. Similarly, the widely
linear QLMS has been shown to degenerate into the QLMS
when processing proper signals, illustrating the usefulness and
rigour of the proposed analysis framework.
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