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a b s t r a c t

The strictly linear quaternion valued affine projection algorithm (QAPA) and its widely

linear counterpart (WLQAPA) are introduced, in order to provide fast converging

stochastic gradient learning in the quaternion domain, for the processing of both second

order circular (proper) and second order noncircular (improper) signals. This is achieved

based on the recent advances in augmented quaternion statistics, which employs all

second order information available, together with the associated widely linear models

and through performing rigorous gradient calculation (HR-calculus). Further, mean

square error analysis is performed based on the energy conservation principle, which

provides a theoretical justification for the WLQAPA offering enhanced steady state

performance for quaternion noncircular (improper) signals, a typical case in real world

scenarios. Simulations on benchmark circular and noncircular signals, and on noncircular

real world 4D wind and 3D body motion data support the analysis.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Recent advances in sensing technology have brought
to light data sources which are almost invariably two-,
three-, and four-dimensional, such as measurements
from inertial bodysensors and ultrasonic anemometers.
The quaternion domain offers a convenient means to
process three- and four-dimensional signals under the
same umbrella, as a generalization of the complex domain
which is a natural choice for processing bivariate (two-
dimensional) signals. Several adaptive filtering algorithms
have recently emerged in the quaternion domain, taking
advantage of the power of its division algebra and the
convenience of data representation offered. In particular,
a number of applications involving rotations in three-
dimensional spaces have benefited, since quaternions
offer a simultaneous and accurate model of the axis of
. All rights reserved.

uk (C. Jahanchahi),
rotation and rotation angle [1,2]. Other areas where
quaternions have become prominent include color image
processing [3,4], robotics [5], renewable energy [6], and
blind source separation [7,8].

The quaternion least mean square (QLMS) [9] was
recently introduced for adaptive filtering of quaternion
valued data, however, it also highlighted the need for
faster converging practical algorithms. The stochastic
gradient based normalized QLMS can solve this issue
only partially whereas the fast converging Quaternion
Recursive Least Squares (QRLS) [10] is computationally
demanding. To that end, our aim is to introduce a fast
converging and computationally scalable affine projection
scheme for adaptive filtering of quaternion valued data.

Ozeki and Umeda [11] employed affine subspace
projections to develop the affine projection algorithm
(APA) for real valued finite impulse response (FIR) adap-
tive filters, thus ensuring fast convergence for colored
inputs. Structurally, the APA spans the range between the
normalized least mean square (NLMS) and recursive least
squares (RLS), both in terms of performance and compu-
tational requirements. In practical terms, whereas the

www.elsevier.com/locate/sigpro
www.elsevier.com/locate/sigpro
http://dx.doi.org/10.1016/j.sigpro.2012.12.019
http://dx.doi.org/10.1016/j.sigpro.2012.12.019
http://dx.doi.org/10.1016/j.sigpro.2012.12.019
mailto:cyrus.jahanchahi@imperial.ac.uk
mailto:c.cheongtook@surrey.ac.uk
mailto:d.mandic@ic.ac.uk
http://dx.doi.org/10.1016/j.sigpro.2012.12.019


C. Jahanchahi et al. / Signal Processing 93 (2013) 1712–1723 1713
NLMS updates the weight vector based only on the current
input vector, the APA employs N past input vectors, thus
making use of the history of weight update evolutions,
and achieving faster convergence than the NLMS. For
large N, the performance of APA compares with RLS,
which updates the weight vectors based on the cumula-
tive error powers calculated from all the past input
vectors, therefore exhibiting a high computational com-
plexity. These algorithms were developed for a single
channel (univariate) scenario, and were only recently
extended to the widely linear complex scenarios [12],
thus catering for the generality of complex signals, both
circular and noncircular.

The development of real time adaptive filtering algo-
rithms in the quaternion domain has long been hampered
by the lack of a rigorous definition of quaternion gradient.
This is not surprising, as the gradient calculation is critical
in division algebras (complex, quaternion), where stan-
dard differentiability conditions (e.g. Cauchy Riemann) do
not allow for the gradient of real function of complex and
quaternion variables to be calculated; yet typical cost
functions are real valued error power. For instance, it is
only the CR-calculus [13,14], that made it possible for the
real APA to be extended to the complex domain [12], and
for the augmented complex APA (AAPA) to be derived for
the processing of noncircular complex signals. Similarly,
until the recent development of the HR-calculus [15] and
the augmented quaternion statistics [16–18], stochastic
gradient algorithms in the quaternion domain lacked a
formal treatment of the gradient, while statistics were
only suited for the processing of second order circular
signals.1

Unlike the standard, strictly linear, quaternion valued
algorithms where the covariance matrix E½qqH� is assumed
to be sufficient to model second order quaternion statis-
tics, widely linear quaternion statistics use the additional
pseudocovariance matrices E½qqıH�, E½qqEH� and E½qqkH�

to fully describe second order information in H. This
offers more degrees of freedom in the modeling and the
possibility to perform optimal second order filtering of
noncircular (improper) signals, for which the powers in
the components of the quaternion signal are different, a
typical case in real world scenarios. Building upon those
advantages, the augmented statistics have recently been
used to derive the widely linear quaternion recursive least
squares (WLQRLS) [10] and the widely linear quaternion
least mean square (WLQLMS) [18], together with the
widely linear quaternion Kalman filter [19].

In this paper, we introduce a general class of quater-
nion APA algorithms comprising both the strictly linear
(QAPA) and widely linear (WLQAPA) cases, in order to
provide a rigorous framework for fast converging adaptive
filtering of the generality of quaternion valued signals.
Based on the principle of energy conservation [20],
expressions for the mean square error (MSE) of both the
QAPA and WLQAPA are also derived. Simulations show
that the WLQAPA offers lower MSE when processing
1 Second order circular signals (proper) have rotation invariant

distributions and equal powers in all the signal components.
noncircular data, and is thus second order optimal for
noncircular signals. These advantages are illustrated in
the context of renewable energy (wind modeling) and
human centered computing (inertial bodysensors).

The paper is organized as follows. We first provide an
overview of quaternion algebra. In Section 3 we give the
mathematical foundations for the gradient calculation
through the HR-calculus. Section 4 introduces the back-
ground necessary for the modeling of improper signals via
the quaternion widely linear model, both necessary for
the derivation of QAPA and WLQAPA. Sections 6 and 7
provide theoretical analysis for the MSE of the QAPA and
WLQAPA for noncircular inputs. In Section 8, the perfor-
mances of the QAPA and WLQAPA are illustrated on both
circular (proper) and second order noncircular (improper)
real world signals.

2. Elements of quaternion algebra

Quaternions are a skew field over R4 defined as

fqr ,qı,qE,qkg 2 R
4-qrþıqıþ EqEþkqk 2 H

The unit axis vectors ı, E and k are also the imaginary
units, and obey the following rules:

ıE¼ k, Ek¼ ı, kı¼ E

ı2 ¼ E2 ¼ k2 ¼ ıEk¼�1

Note that quaternion multiplication is not commutative,
that is, ıEaEı¼�k. The product of quaternions q1, q2 2 H is
given by

q1q2 ¼ ðSq1þVq1ÞðSq2þVq2Þ

¼ Sq1Sq2�Vq1�Vq2þSq2Vq1þSq1Vq2þVq1 � Vq2

where Sq¼ qr and Vq¼ ıqıþEqEþkqk are respectively the
scalar and vector part of a quaternion q, the symbol ‘�’
denotes the dot-product and ‘� ’ the cross-product. It is
the cross-product above that makes the quaternion multi-
plication noncommutative. The norm JqJ is defined as

JqJ¼
ffiffiffiffiffiffiffiffi
qqn

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

aþq2
bþq2

c þq2
d

q
while the quaternion conjugate, denoted by qn, is given by

qn ¼ Sq�Vq¼ qr�ıqı�EqE�kqk ð1Þ

In addition to the standard quaternion conjugate, we can
also define the three involutions (self-inverse mappings)
as [21]

qı ¼�ıqı¼ qrþıqı�EqE�kqk

qE ¼�EqE¼ qr�ıqıþEqE�kqk

qk ¼�kqk¼ qr�ıqı�EqEþkqk ð2Þ

These perpendicular involutions have the following prop-
erties (for inv3ainv2ainv1Þ:

P1: ðqinvÞ
inv
¼ q for inv 2 fı,E,kg ð3Þ

P2: ðq1q2Þ
inv
¼ qinv

1 qinv
2 ð4Þ

P3: ðq1þq2Þ
inv
¼ qinv

1 þqinv
2 ð5Þ
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P4: ðqinv1 Þ
inv2 ¼ ðqinv2 Þ

inv1 ¼ qinv3 ð6Þ

Involutions can be seen as a counterpart of the complex
conjugate, as they allow for the components of a quater-
nion variable q to be expressed in terms of the actual
variable q and its ‘partial conjugates’ qı, qE, qk, that is2

qr ¼
1

4
½qþqıþqEþqk�, qı ¼

1

4ı
½qþqı�qE�qk�

qE ¼
1

4E
½q�qıþqE�qk�, qk ¼

1

4k ½q�qı�qEþqk� ð7Þ

The above representation via the intrinsic elementary
involutions will be instrumental in introducing quater-
nion gradients, widely linear models, and the associated
adaptive filtering algorithms.

2.1. The advantages of quaternion algebra

To highlight some of the benefits offered by quaternion
algebra, consider a matrix R 2 R3�3 that maps a point x 2
R3 to a point y 2 R3 and a quaternion qR 2 H that relates a
pure quaternion qx 2 H with a pure quaternion qy 2 H,
that is

y¼Rx 2 R3
� qy ¼ qRqxqn

R 2 H ð8Þ

Remark 1. The mapping R is described by nine coeffi-
cients, although physically only four parameters are
needed (two for the axis of rotation, one for the angle of
rotation and one for the scaling factor). The four compo-
nents of a quaternion offer this physical insight, and
express straightforwardly the axis of rotation, angle of
rotation, and scaling factor.

Remark 2. For the mapping R that represents a succes-
sion of rotations in the x, y, z directions (using Euler
angles), a degree of freedom can be lost if any two axis are
aligned, resulting in the so called gimbal lock phenom-
enon. This cannot happen in the quaternion domain,
where the quaternion transformation in (8) is expressed
as qy ¼ qRqxq�1

R , where qR is a unit quaternion. This
property has made quaternions an invaluable tool in
computer graphics [1].

Remark 3. The quaternion rotation qR is better condi-
tioned than the real rotation matrix R, as qR is only
required to be a unit quaternion whereas R must satisfy
RT R¼ I and detðRÞ ¼ 1. Computer graphics often require
many rotations to be performed successively making it
necessary to re-normalize periodically to mitigate the
effect of finite precision and ensure that the conditions
RT R¼ I and detðRÞ ¼ 1 are satisfied. This is computation-
ally intensive and is much more efficiently achieved using
quaternions. This has led to the use of quaternions in e.g.
spacecraft orientation problems where they allow for
convenient closed form solutions [22–24].
2 Compare this with the complex domain where the real and

imaginary parts of the complex numbers z¼ xþıy are expressed by

x¼ 1
2 ðzþznÞ and y¼ ð1=2iÞðz�znÞ.
3. The HR-calculus

In gradient based optimization in adaptive filtering,
the goal is to minimize a measure of error power, typically
a real scalar function of quaternion variables, that is

J¼ een ¼ 9e92

However, the Cauchy–Riemann–Fueter (CRF) differentia-
bility condition

@J

@wn
¼

1

4

@J

@wr
þı

@J

@wı

þ E
@J

@wE
þk @J

@wk

� �
¼ 0 ð9Þ

where w is a vector parameter does not admit the
calculation of such gradients, as (9) is not defined for real
functions. Indeed, the CRF conditions are very restrictive
and only allow for the differentiation of linear functions; a
way to bypass this problem in nonlinear adaptive filtering
is given in [25].

Owing to the isomorphism between the fields H and
R4 a quaternion function f ðqÞ:H - H has its dual real
quadrivariate function gðqr ,qı,qE,qkÞ: R4-R4. This was
the basis for the development of the recently intro-
duced HR-calculus [26], which removed the restrictions
imposed by the CRF condition for the class of functions in
(9). Therefore, to calculate the gradients necessary to
derive the affine projection algorithm in the quaternion
domain, we resort to the HR

n-derivatives, given by

@f ðqn ,qın ,qEn ,qknÞ
@qn

@f ðqn ,qın ,qEn ,qknÞ
@qın

@f ðqn ,qın ,qEn ,qknÞ
@qEn

@f ðqn ,qın ,qEn ,qknÞ
@qkn

2
6666664

3
7777775
¼

1

4

1 ı E k
1 ı �E �k
1 �ı E �k
1 �ı �E k

2
66664

3
77775

@f ðqr ,qı ,qE ,qkÞ
@qr

@f ðqr ,qı ,qE ,qkÞ
@qı

@f ðqr ,qı ,qE ,qkÞ
@qE

@f ðqr ,qı ,qE ,qkÞ
@qk

2
666666664

3
777777775
ð10Þ

where the symbol qinvn ¼ ðqinvÞ
n for inv 2 fı,E,kg and f ð�Þ is

a general quaternion-valued function, linear or nonlinear.
For more detail on the HR-calculus, see [26].

Remark 4. The maximum rate of change of f with respect
to q occurs in the direction of @f=@qn, making the con-
jugate gradient @f=@qn a natural choice of gradient in the
optimization of real valued quaternion functions [26].

Remark 5. The HR
n-derivative @f ðqn,qın,qEn,qknÞ=@qınÞ is

equivalent to the quaternion derivative operator intro-
duced by Fueter [27], however, unlike the CRF derivative
in (9), the derivative @f ðqn,qın,qEn,qknÞ=@qınÞ also introduces
a condition on the argument of the function f ð�Þ.

Remark 6. The HR
n-derivatives in H are a natural gen-

eralization of the Rn-derivative within the CR-calculus in
the complex domain [14,28]. For instance, to perform a
direct HR

n differentiation of a function written in terms
of q, it must first be written in terms of qn, qın, qEn and qkn,
using the substitution

q¼ 1
2ðq

ınþqEnþqkn�qnÞ ð11Þ

This way, the HR-calculus in (10) provides a universal
tool for differentiating quaternion functions directly,
rather than employing partial derivatives with respect to
the real valued qr, qı, qE, qk, as is current practice (within
the pseudogradient). This also provides an opportunity to
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obtain closed form solutions of stochastic gradient learn-
ing algorithms.

4. Widely linear quaternion modeling

4.1. Quaternion widely linear model

Consider a real valued mean square error (MSE) estimator
given by

ŷ ¼ E½y9x�

where ŷ is the estimated process, x the observed variable
and E½�� the statistical expectation operator. For jointly
Gaussian x and y, the optimal solution is a linear estimator,
given by

ŷ ¼ hT x ð12Þ

where h and x are respectively the coefficient and
regressor vector. For the standard complex domain MSE
estimator it is also assumed that ŷ ¼ E½y9x�, leading to the
strictly linear model

ŷ ¼ hT x ð13Þ

However, observe that

ŷr ¼ E½yr9xr ,xi�, ŷi ¼ E½yi9xr ,xi�

and since

xr ¼
xþxn

2
and xı ¼

x�xn

2ı

we have e.g. ŷ ¼ E½y9x,xn�, and the complex widely linear

[29] model is given by [30]

ŷ ¼ E½y9x,xn� ) y¼ hT xþgT xn

and comprises both the strictly linear part hT x and the
conjugate part gT xn, where g is a coefficient vector.
Similarly, the existing strictly linear quaternion model is
given by

ŷ ¼ hT x ð14Þ

Observe, however, that for all the components, r, ı, E, k we
have

ŷZ ¼ E½yZ9xr ,xı,xE,xk�, Z 2 fr,ı,E,kg

and similarly to the complex domain, by using the
involutions in (2), we can express each element of a
quaternion variable as in (7). This gives, for instance, for
the real component of a quaternion xr ¼

1
4 ðxþxıþxEþxkÞ,

leading to the general expression for all the components

ŷZ ¼ E½yZ9x,xı,xE,xk� and ŷ ¼ E½y9x,xı,xE,xk�

In other words, to capture the full second order informa-
tion available we should use the original quaternion and
its ı, E, k involutions, allowing us to arrive at the widely

linear model

y¼ uT xþvT xıþgT xEþhT xk ¼waT xa ð15Þ

where the augmented coefficient vector wa ¼ ½uT ,
vT ,gT ,hT

�T and the augmented regressor vector xa ¼ ½xT ,
xıT ,xET ,xkT �T comprise all the relevant terms (for more
detail see [16]).
4.2. Augmented quaternion statistics

Unlike the real domain where complete second order
statistics of xðkÞ are described by the covariance matrix, in
the complex and quaternion domains the covariance
matrix is sufficient to describe only second order circular
(proper) signals. For the general second order non-
circular (improper) signals, which exhibit unequal powers
in the quaternion components, the additional pseudo-
covariance matrices E½xxıH�, E½xxEH� and E½xxkH� are needed
to describe complete second order statistics. This is
achieved based on the quaternion widely linear model
in (15), where the augmented vector xa ¼ ½xT ,xıH ,xEH ,xkH�T

is used to produce the augmented covariance matrix
Rxx ¼ E½xaxaH�, which comprises information from both
the covariance matrix and the three pseudocovariance
matrices, and is given by

Rxx ¼

R P S T

Pı Rı Tı Sı

SE TE RE PE

Tk Sk Pk Rk

2
6664

3
7775 ð16Þ

where R¼ E½xxH�, P¼ E½xxıH�, S¼ E½xxEH� and T¼ E½xxkH�.
Notice that for proper signals, the pseudocovariance

matrices P, S and T vanish—a signal that obeys this
structure has a probability distribution that is rotation
invariant with respect to all the six possible pairs of axes
[16,17]. In this case the scatter graphs for each of the six
pairs of axes fqr ,qıg, fqr ,qEg, fqr ,qkg, fqı,qEg, fqı,qkg, fqE,qkg
describe a rotation invariant (circular) distribution. How-
ever, in most real world applications, probability density
functions are rotation dependent, and require the use of
the augmented covariance matrix.

Remark 7. The processing in R4 requires 10 covariance
and cross-covariance matrices, as opposed to the four corre-
sponding matrices in the quaternion domain. Although
both representations convey the same information, the
quaternion representation offers a more compact notation,
enhanced physical insight, and more degrees of freedom
in estimation [31].

4.3. Augmented statistics and the quaternion affine

projection algorithm

To further illustrate that to process noncircular data,
an adaptive filtering algorithm should incorporate the
augmented statistics, consider the real APA which can be
seen as an approximation to the steepest descent weight
update [32], given by

wðkþ1Þ ¼wðkÞþmðE½xðkÞdðkÞ��E½xðkÞxT ðkÞ�wðkÞÞ ð17Þ

where w is the filter coefficient vector, m the stepsize, x
the input vector and d the teaching signal. The weight
update is a function of the second order statistics of the
input vector xðkÞ as exemplified by the term xxT . To deal
with both circular and noncircular signals the quaternion
valued APA must therefore employ the augmented statis-
tics based on the augmented covariance matrix in (16), a
subject of this work.
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5. A class of quaternion affine projection algorithms

To provide a unifying approach to the derivation of
both the QAPA and WLQAPA, we start by deriving an
expression for the WLQAPA and show that for circular
signals it simplifies into the QAPA. The aim of WLQAPA
class of algorithms is to minimize adaptively the squared
Euclidean norm of the change in the augmented weight
vector wa 2 HM�1, that is

minimize Jdwaðkþ1ÞJ2
¼ Jwaðkþ1Þ�waðkÞJ2

subject to dðk�nÞ ¼waHðkþ1Þxaðk�nÞ ð18Þ

for n¼ 0, . . . ,N�1, where the augmented weight vector
wa ¼ ½uT ,vT ,gT ,hT

�T 2 H4 M�1, the augmented input vector
xa ¼ ½xT ,xiT ,xjT ,xkT � 2H4M�1 and J � J2 is the Euclidean
norm.

Using the Lagrange multipliers to solve the constrained
optimization problem, the cost function to be minimized
can be written as

JðkÞ ¼ Juðkþ1Þ�uðkÞJ2
þJvðkþ1Þ�vðkÞJ2

þJgðkþ1Þ�gðkÞJ2

þJhðkþ1Þ�hðkÞJ2
þR½ðdT

ðkÞ�uHðkþ1ÞAðkÞ�vHðkþ1ÞAı
ðkÞ

�gHðkþ1ÞAEðkÞ�hH
ðkþ1ÞAk

ðkÞÞkn
�

where the symbol R½�� denotes the real part of a quater-
nion variable and

AðkÞ ¼ ½xðkÞ,xðk�1Þ, . . . ,xðk�Nþ1Þ�

dðkÞ ¼ ½dðkÞ,dðk�1Þ, . . . ,dðk�Nþ1Þ�T

k¼ ½l0,l1, . . . ,lk�Nþ1�
T

are past values in the filter memory. Standard quaternion
differentiation does not allow for the calculation of the
gradient of J(k), however, using the HR

n-gradient in (10),
the gradient of J(k) with respect to the augmented weight
vector wanðkþ1Þ can be obtained by employing the vector
derivatives

@JðkÞ

@unðkþ1Þ
¼ uðkþ1Þ�uðkÞ�

1

2
ðuðkþ1Þ�uðkÞÞn

þAðkÞkn
�

1

2
ðAðkÞkn

Þ
n

@JðkÞ

@vnðkþ1Þ
¼ vðkþ1Þ�vðkÞ�

1

2
ðvðkþ1Þ�vðkÞÞn

þAı
ðkÞkn
�

1

2
ðAı
ðkÞkn
Þ
n

@JðkÞ

@gnðkþ1Þ
¼ gðkþ1Þ�gðkÞ�

1

2
ðgðkþ1Þ�gðkÞÞn

þAEðkÞkn
�

1

2
ðAEðkÞkn

Þ
n

@JðkÞ

@hn
ðkþ1Þ

¼ hðkþ1Þ�hðkÞ�
1

2
ðhðkþ1Þ�hðkÞÞn

þAk
ðkÞkn
�

1

2
ðAk
ðkÞkn
Þ
n

where

@JðkÞ

@wn
¼

@JðkÞ

@wn

0

,
@JðkÞ

@wn

1

, . . . ,
@JðkÞ

@wn
M

� �T

for w¼ fu,v,g,hg. Setting the above derivatives to 0 and
solving for k gives the weight updates

wðkþ1Þ ¼wðkÞþAa
ðkÞðAaH

ðkÞAa
ðkÞÞ�1enðkÞ ð19Þ

where

Aa
¼ ½AT ,AiT ,AjT ,AkT

�T

eðkÞ ¼ dðkÞ�ðwaHðkþ1ÞAa
ðkÞÞT

To prevent the normalization matrix AðkÞaHAa
ðkÞ from

becoming singular, a small regularization term eI 2
H4N�4N is typically added, where I is the identity matrix.
A real step size m can also be incorporated to improve
steady state performance, giving the final weight update
of the widely linear quaternion valued affine projection
algorithm (WLQAPA) in the form

waðkþ1Þ ¼waðkÞþmAa
ðkÞðAaH

ðkÞAa
ðkÞþEIÞ�1enðkÞ ð20Þ

where e takes a small value, and for stability mo 2
(shown later).

When the input vector is strictly linear, then xa ¼ x,
and the WLQAPA simplifies into the strictly linear QAPA,
for which the weight update takes the form

wðkþ1Þ ¼wðkÞþmAðkÞðAH
ðkÞAðkÞþEIÞ�1enðkÞ ð21Þ

where the error term eðkÞ ¼ dðkÞ�ðwHðkþ1ÞAðkÞÞT and the
regularization term eI 2 HN�N .

6. Mean square error analysis of the strictly linear QAPA
on noncircular data

To investigate the MSE performance, we next evaluate
the MSE of the strictly linear QAPA, given by

MSE¼ lim
k-1

E½9eðkÞ92
� ð22Þ

where

eðkÞ ¼ dðkÞ�wHðkÞxðkÞ ð23Þ

For generality, the teaching signal d(k) is assumed to be
coming from a widely linear system, taking the form

dðkÞ ¼wH
o xðkÞþvH

o xıðkÞþgH
o xEðkÞþhH

o xkðkÞþvðkÞ ð24Þ

where v(k) is zero mean quadruply white Gaussian noise.
To evaluate the mean square error we substitute for

~wðkÞ ¼wo�wðkÞ into the weight update (21) to yield

~wðkþ1Þ ¼ ~wðkÞ�mAðkÞðAH
ðkÞAðkÞþEIÞ�1enðkÞ

Upon applying the Hermitian transpose operator to both
sides

~wH
ðkþ1Þ ¼ ~wH

ðkÞ�meT ðkÞðAH
ðkÞAðkÞþEIÞ�1AH

ðkÞ ð25Þ

and after post-multiplying by AðkÞ we obtain

~wH
ðkþ1ÞAðkÞ ¼ ~wH

ðkÞAðkÞ�meT ðkÞðAH
ðkÞAðkÞþEIÞ�1AH

ðkÞAðkÞ

ð26Þ



3 We make the usual ‘independence’ assumptions that eaðkÞ and vðkÞ
are statistically independent from AðkÞ.

4 The real part operator R½�� arises because although quaternion

multiplication is noncommutative, the real component of a quaternion

product is commutative for cyclic permutations of the product.
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The a priori error, eaðkÞ, and a posteriori error epðkÞ can
now be defined as

eT
a ðkÞ ¼wHðkÞAðkÞ, eT

pðkÞ ¼wHðkþ1ÞAðkÞ

which in combination with (26) gives

meT ðkÞðAH
ðkÞAðkÞþEIÞ�1

¼ ðeT
a ðkÞ�eT

pðkÞÞðA
H
ðkÞAðkÞÞ�1

allowing us to rewrite (25) in the form

~wH
ðkþ1Þ ¼ ~wH

ðkÞ�ðeT
a ðkÞ�eT

pðkÞÞðA
H
ðkÞAðkÞÞ�1AH

ðkÞ

and to re-arrange the above terms and evaluate the
energy (J � J2), to give

Jwðkþ1ÞJ2
þeT

a ðkÞðA
H
ðkÞAðkÞÞ�1en

aðkÞ

¼ JwðkÞJ2
þeT

pðkÞðA
H
ðkÞAðkÞÞ�1en

pðkÞ

This expression is known as the energy conservation
relationship [20]. Since we are interested in the mean
square error at the steady state, that is, in the limit as
k-1, upon application of the statistical expectation
operator we have

E½eT
a ðkÞðA

H
ðkÞAðkÞÞ�1en

aðkÞ� ¼ E½eT
pðkÞðA

H
ðkÞAðkÞÞ�1en

pðkÞ�

Substitute for eT
pðkÞ ¼ eT

a ðkÞ�meT ðkÞðAH
ðkÞAðkÞþEIÞ�1AH

ðkÞ

AðkÞ to arrive at

E½eT
a ðkÞðA

H
ðkÞAðkÞÞ�1en

aðkÞ� ¼ E½eT
a ðkÞðA

H
ðkÞAðkÞÞ�1en

aðkÞ�

�mE½eT
a ðkÞðA

H
ðkÞAðkÞþEIÞ�1enðkÞ�

�mE½eT ðkÞðAH
ðkÞAðkÞþEIÞ�1en

aðkÞ�þm
2E½eT ðkÞðAH

ðkÞAðkÞ

þEIÞ�1AH
ðkÞAðkÞðAH

ðkÞAðkÞþEIÞ�1enðkÞ�

For this to be satisfied, it must hold that

mE½eT ðkÞDðkÞenðkÞ� ¼ E½eT
a ðkÞCðkÞe

nðkÞ�þE½eT ðkÞCðkÞen

aðkÞ�

ð27Þ

where

CðkÞ ¼ ðAH
ðkÞAðkÞþEIÞ�1

DðkÞ ¼ ðAH
ðkÞAðkÞþEIÞ�1AH

ðkÞAðkÞðAH
ðkÞAðkÞþEIÞ�1

From (23), it can be shown that the MSE and the a priori error
eaðkÞ are related by

eT ðkÞ ¼ eT
a ðkÞþwcHðkÞAc

ðkÞþvT ðkÞ ð28Þ

where

Ac
ðkÞ ¼ ½AıT

ðkÞ,AET ðkÞ,AkT
ðkÞ�T ð29Þ

wcðkÞ ¼ ½vT
o ðkÞ,g

T
o ðkÞ,h

T
o ðkÞ�

T ð30Þ

From the definition of the error vector eðkÞ ¼ ½eðkÞ,
eðk�1Þ, . . . ,eðk�Nþ1Þ�T and using the symbol ð�Þ1 to define
the first element of the term in hand, the mean square error
can now be expressed as

MSE¼ lim
k-1

EJeðkÞJ¼ lim
k-1

EJeaðkÞþvðkÞþðwcHðkÞAc
ðkÞÞ1J

2

ð31Þ

Using the usual ‘independence assumptions’ and assuming
that limk-1E½eaðkÞ� ¼ E½vðkÞ� ¼ 0, we arrive at

MSE¼ lim
k-1

E½JeaðkÞJ
2
�þJðwcHðkÞAc

ðkÞÞ1J
2
þEJvðkÞJ ð32Þ
MSE¼ EMSEþJðwcHðkÞAc
ðkÞÞ1J

2
þs2

v ð33Þ

where the acronym EMSE is the excess mean square error,
that is, the deviation from the optimal theoretical MSE,
defined as

EMSE¼ lim
k-1

E½JeaðkÞJ
2
� ð34Þ

To find an expression for limk-1E½JeaðkÞJ
2
� using (27), we

proceed by simplifying the three components in (27). Using
(28) to substitute for eðkÞ in mE½eT ðkÞDðkÞenðkÞ� and taking
the limit as k-1 ðE½eaðkÞ� ¼ 0�Þ we have3

mE½eT ðkÞDðkÞenðkÞ� ¼ mE½eT
a ðkÞDðkÞe

n

aðkÞ�þmE½vT ðkÞDðkÞvnðkÞ�

þmE½wcHðkÞAc
ðkÞDðkÞAcH

ðkÞwcðkÞ�

Repeating this procedure for the other two terms in (27)
gives

E½eT
a ðkÞCðkÞe

nðkÞ� ¼ E½eT
a ðkÞCðkÞe

n

aðkÞ�

E½eT ðkÞCðkÞen

aðkÞ� ¼ E½eT
a ðkÞCðkÞe

n

aðkÞ�

allowing us to re-write (27) as

mE½eT
a ðkÞDðkÞe

n

aðkÞ�þmE½vT ðkÞDðkÞvnðkÞ�

þmE½wcHðkÞAc
ðkÞDðkÞAcH

ðkÞwc� ¼ 2E½eT
a ðkÞCðkÞe

n

aðkÞðkÞ�

ð35Þ

This form cannot be used to obtain an expression for
EMSE, and to this end, we shall now rewrite each of the
three terms in (35) in a more convenient form, starting
with E½eaðkÞDðkÞeH

a ðkÞ�.
The matrix DðkÞ is Hermitian and hence positive

definite, and therefore the above term is a positive scalar
and we therefore have4

mE½eT
a ðkÞDðkÞe

n

aðkÞ� ¼ mR TrðE en

aðkÞe
T
a ðkÞDðkÞ

� �
Þ

� �
¼ mR TrðE½en

aðkÞe
T
a ðkÞ�E½DðkÞ�Þ

� �
It can be easily shown that at high signal to noise ratio
(SNR), at steady state we have E½en

aðkÞeaðkÞ� ¼ E9eaðkÞ9
2
S,

where for a step size m close to unity, S� ½11T
�

where1¼ ½1,0, . . . ,0�T . Thus, for a step size approaching
zero S� I and using the property TrðcAÞ ¼ c TrðAÞ we have

mE½eT
a ðkÞDðkÞe

n

aðkÞ� ¼ mE9eaðkÞ9
2
R½TrðSE½DðkÞ�Þ�

Following the same approach for the other two terms in
(35) gives

E½eT
a ðkÞCðkÞðe

n

aðkÞ� ¼ E9eaðkÞ9
2
R½TrðSE½CðkÞ�Þ�

mE½vT ðkÞDðkÞvnðkÞ� ¼ ms2
vR½TrðE½DðkÞ�Þ�

allowing us to re-write (35) as

E9eaðkÞ9
2
ð2R½TrðSE½CðkÞ�Þ��mR½TrðSE½DðkÞ�Þ�Þ

¼ ms2
vR½TrðE½DðkÞ�Þ�þmE½wcHðkÞAc

ðkÞDðkÞAcH
ðkÞwcðkÞ�
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to give the expression for EMSE in the final form

EMSE¼
s2

vmR½TrðE½DðkÞ�Þ�þmE½wcHðkÞAc
ðkÞDðkÞAcH

ðkÞwcðkÞ�

2R½TrðSE½CðkÞ�Þ��mR½TrðSE½DðkÞ�Þ�

ð36Þ

Finally, for the theoretical MSE we have

MSE¼
s2

vmR½TrðE½DðkÞ�Þ�þmE½wcHðkÞAc
ðkÞDðkÞAcH

ðkÞwcðkÞ�

2R½TrðSE½CðkÞ�Þ��mR½TrðSE½DðkÞ�Þ�

þ9ðwcHðkÞAc
ðkÞÞ19

2
þs2

v ð37Þ

Remark 8. For a small value of the regularization para-
meter E, we can assume CðkÞ ¼DðkÞ and the EMSE sim-
plifies into

EMSE¼
s2

vmR½TrðE½CðkÞ�Þ�þmE½wcHðkÞAc
ðkÞCðkÞAcH

ðkÞwcðkÞ�

ð2�mÞR½TrðSE½CðkÞ�Þ�

ð38Þ

Observe that due to the term in the denominator the
EMSE diverges for m� 2, imposing a bound on the stepsize
0omo2. The analysis of APA class of methods is routi-
nely performed separately for the small and big stepsize
cases. The small stepsize cases are addressed in Remark 9
whereas the big stepsize case is addressed in Remark 10.

Remark 9 (Small stepsize analysis). For a small value of
the regularization parameter E and a small step size m, we
can assume CðkÞ ¼DðkÞ and S¼ I, allowing us to simplify
the EMSE as

EMSE¼
s2

vm
ð2�mÞ

þ
mE½wcHðkÞAc

ðkÞCðkÞAcH
ðkÞwcðkÞ�

ð2�mÞR½TrðE½CðkÞ�Þ
ð39Þ

Remark 10 (Large stepsize analysis). For a small value of
the regularization parameter E and a large step size m� 1,
we can assume CðkÞ ¼DðkÞ and S¼ 11T , allowing us to
simplify the EMSE into

EMSE¼
s2

vmR½TrðE½CðkÞ�Þ�þmE½wcHðkÞAc
ðkÞCðkÞAcH

ðkÞwcðkÞ�

ð2�mÞR½ðE½CðkÞ�Þ1,1�

ð40Þ

where ð�Þx,y is the element in the xth row and yth column
of the bracketed term.

Remark 11 (MSE for circular signals). The term E½wcHðkÞAc

ðkÞCðkÞAcH
ðkÞwcðkÞ� in (39) and (40) vanishes, giving the

EMSE of strictly linear QAPA for proper signals. For
improper data, however, this term can have a high value,
illustrating the inadequacy of the strictly linear QAPA for
the processing of second order noncircular signals.

7. Mean square error analysis of the widely linear
QAPA on noncircular data

Following the same approach as for the QAPA, we can
re-write the weight updates of the widely linear QAPA
based on the augmented weight error vector ~wa

ðkÞ

¼wa
o�waðkÞ, to give

~wa
ðkþ1Þ ¼ ~wa

ðkÞ�Aa
ðkÞðAaH

ðkÞAa
ðkÞþdIÞ�1enðkÞ
In this way, the expression for the conservation of energy
of the weight update takes the form

Jwaðkþ1ÞJ2
þeT

a ðkÞðA
aH
ðkÞAa

ðkÞÞ�1en

aðkÞ

¼ JwaðkÞJ2
þeT

pðkÞðA
aH
ðkÞAa

ðkÞÞ�1en

pðkÞ

where the a posteriori error epðkÞ and a priori error eaðkÞ

are defined as

eT
pðkÞ ¼ ~waH

ðkþ1ÞAa
ðkÞ ð41Þ

eT
a ðkÞ ¼ ~waH

ðkÞAa
ðkÞ ð42Þ

and

eðkÞ ¼ eaðkÞþvðkÞ ð43Þ

Comparing with the error in (28) for QAPA, we observe
that the expression for WLQAPA does not comprise the
term, wcHAc , and MSE takes the form

MSE¼ lim
k-1

E½JeaðkÞJ
2
�þEJvðkÞJ ð44Þ

MSE¼ EMSEþs2
v ð45Þ

Following on the analysis of EMSE for the strictly linear
QAPA in (34)–(36), we obtain the EMSE for WLQAPA in
the form

EMSE¼ E9eaðkÞ9
2
¼

s2
vmR½TrðE½DðkÞ�Þ�

2R½TrðSE½CðkÞ�Þ��mR½TrðSE½DðkÞ�Þ�

where

CðkÞ ¼ ðAaH
ðkÞAa

ðkÞþEIÞ�1
ð46Þ

DðkÞ ¼ ðAaH
ðkÞAa

ðkÞþEIÞ�1AaH
ðkÞAa

ðkÞðAaH
ðkÞAa

ðkÞþEIÞ�1

ð47Þ

Remark 12. For a small value of the regularization para-
meter E, we can assume that CðkÞ ¼DðkÞ, allowing us to
simplify the EMSE into

EMSE¼ E9eaðkÞ9
2
¼

s2
vmR½TrðE½CðkÞ�Þ�

ð2�mÞR½TrðSE½CðkÞ�Þ�
ð48Þ

Similarly to the QAPA, the bounds 0omo2 are imposed
on the step size m. Below we look at the cases with a small
and big stepsize.

Remark 13 (Small stepsize analysis). For a small value of
the regularization parameter E and a small step size m, we
can assume CðkÞ ¼DðkÞ and S¼ I, allowing us to simplify
the EMSE into

EMSE¼ E9eaðkÞ9
2
¼

s2
vm

ð2�mÞ
ð49Þ

Note that this expression conforms to that obtained in the
complex domain in [20].

Remark 14 (Large stepsize analysis). For a small value of
the regularization parameter E and a step size m� 1, we
can assume CðkÞ ¼DðkÞ and S¼ 11T , allowing us to
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simplify the EMSE into

EMSE¼ E9eaðkÞ9
2
¼
s2

vmR½TrðE½CðkÞ�Þ�

ð2�mÞðE½CðkÞ�Þ1,1
ð50Þ

When the cross-diagonal terms of E½CðkÞ� are small com-
pared to the diagonal terms (i.e. the regression vectors are
orthogonal or close to being orthogonal), we can further
assume that

1

ðE½CðkÞ�Þ1,1

� TrðRuuÞ, R½TrðE½CðkÞ�Þ� � E
N

JuðkÞJ2

" #
ð51Þ

where Ruu ¼ E½uðkÞuHðkÞ�, allowing us to simplify the
expression for EMSE as

EMSE¼
s2

vm
ð2�mÞTrðRuuÞE

N

JuðkÞJ2

" #
ð52Þ

Notice that, similarly to the complex domain [20], the
EMSE is proportional to the number of constraints N.

Remark 15. Compared to the EMSE expression in (40),
the EMSE of WLQAPA in (50) does not depend on the
noncircularity of the signal, and is second order optimal
for the generality of quaternion signals, both proper and
improper. WLQAPA therefore achieves the same MSE as
the strictly linear QAPA for proper signals and greatly
enhanced performance for improper signals. The QAPA
offers a lower computational cost and faster convergence
for circular signals due to the fewer weights that are
to be adjusted but is inadequate for general noncircular
signals.
8. Simulations

The quaternion affine projection algorithm and its
widely linear extension are next validated by comprehen-
sive simulations over a number of scenarios. All the simu-
lations were conducted in the prediction setting (one step
ahead), with filter length M¼10 and the regularization
parameter E¼ 0:01. The test signals employed in the
simulations were:
�
 The circular AR(1) process driven by both quadruply
white circular Gaussian noise given by

yðkÞ ¼ 0:9yðk�1ÞþnðkÞ ð53Þ
�

5 The wind speed measurement in the North, East and vertical

direction formed the imaginary part of the full quaternion while the

temperature was incorporated in the real part to form a full quaternion.

The dataset was recorded using the WindMaster, a 3D Gill Instruments

ultrasonic anemometer, which was resampled at 5 Hz for simulation

purposes.
The noncircular MA(3) process driven by quadruply
white noncircular Gaussian noise

yðkÞ ¼ axðk�1Þþbxı
ðk�2Þþcxkðk�3ÞþnðkÞ ð54Þ

where fa,b,cg are quaternion valued coefficients.

6 The motion data was recorded using the XSense MTx 3DOF
�
Orientation Tracker.
The widely linear autoregressive moving average
process driven by quadruply white circular Gaussian
noise, giving the noncircular signal

yðkÞ ¼ yðk�1Þþ2nðkÞþ0:5nıðkÞþnðk�1Þþ0:9nEðk�1Þ

ð55Þ
�
 The 4D noncircular wind signal5 with three diffe-
rent dynamic regions, identified as low, medium and
high dynamics, based on the changes in the wind
intensity.

�
 The 3D noncircular body motion signal. Two gyro-

scopes were placed on the left hand and right hand of
an athlete performing Tai Chi movements, recording
two three-dimensional signals.6
Fig. 1 illustrates a geometric notion of noncircularity, by
showing the scatter plots of the quaternion-valued signals
considered. Observe that only the AR(1) signal had a
rotation invariant distribution (circular) and that all the
real world signals (wind, body motion) were noncircular.

In the first experiment we addressed by simulations
the theoretical stability bound on the learning rate m for
the class of APA algorithms derived in Sections 6 and 7.
Figs. 2 and 3 show that both QAPA and WLQAPA have a
stability bound of mo2 for all values of the constraint N,
conforming with the corresponding bound in the complex
domain [33] and Remarks 8 and 12. Fig. 4 shows the
learning curves of QAPA and WLQAPA for the circular
AR(1) process. Observe that, for the second order circular
(proper) process both the strictly linear QAPA and the
widely linear WLQAPA algorithms offered the same
steady state performance and that QAPA exhibited faster
initial convergence due to having fewer coefficients to
adjust, conforming with Remark 15.

Fig. 5 repeats the previous experiment for the non-
circular MA process; the WLQAPA was able to track the
underlying dynamics of the signal in a second order
optimal manner and therefore offered better steady state
performance compared to the QAPA, validating the
analysis in Section 7. In Fig. 6 we show how the perfor-
mance of the WLQAPA on the noncircular MA process
varies as the number of constraints N is increased, when
the driving noise in (54) was colored. This is inline with
the analysis in (52) (see Remark 14). The steady state
performance decreased as the number of constraints N

increased from N¼1 (where the filter is equivalent to the
normalized QLMS) to N¼4. Also, as is the case with all
APA algorithms [11] the convergence rate was faster as
the number of constraints increased; this is expected as
the driving noise to the model (54) was colored. Fig. 7
shows the learning curves for the noncircular ARMA
process, with WLQAPA being able to better track the
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underlying dynamics of the signal, therefore offering
enhanced steady state performance.

In order to verify the theoretical result in (52) for the
steady state performance of WLQAPA, we next performed
one step ahead prediction of the improper ARMA signal in
(55) and improper MA(3) process in (54) and compared
the measured MSEs to the theoretical MSEs in (52). Fig. 8
compares the theoretical MSE derived in (52) to the
simulated MSE for a step size in the range m 2 ½0:05�1�.



0 50 100 150 200 250
−30

−20

−10

0

10

20

30

40

Sample

10
lo

g 1
0|

e|
2

N=1

N=4

Fig. 6. Learning curves of WLQAPA for the noncircular MA process in

(54), for N¼1 and N¼4.

0 1000 2000 3000 4000 5000
−20

−15

−10

−5

0

5

10

15

20

Sample

10
lo

g 1
0|

e|
2

QAPA WLQAPA

Fig. 7. Learning curves of QAPA and WLQAPA for the noncircular ARMA

process in (55), with m¼ 1 and N¼2.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−34

−33

−32

−31

−30

−29

−28

−27

−26

Step size

10
lo

g 1
0|

e|
2

N=1 (simulation)
N=1 (theory)
N=2 (simulation)
N=2 (theory)
N=3 (simulation)
N=3 (theory)
N=4 (simulation)
N=4 (theory)

Fig. 8. Comparison of the theoretical bound in (50) and simulated

steady state MSEs for WLQAPA, based on noncircular ARMA signal in

(55), when N ¼ 1,2,3 and 4.
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Fig. 9. Comparison of the theoretical bound in (50) and simulated

steady state MSE of WLQAPA, on noncircular MA signal in (54) when

N¼ 1,2,3 and 4.
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This allows us to make two observations. First, the
theoretical MSE closely matches the simulated MSE when
the number of constraints N¼1. Second, for large step-
sizes (m40:5), as the number of constraints increases, the
theoretical bound in (52) is no longer an accurate esti-
mate of MSE. We can explain the discrepancy that exists
for N41 by the assumptions made in deriving the
theoretical MSE expression in (52) as elaborated in
Appendix.

In Fig. 9 we compare the theoretical MSE to the
simulated MSE for the MA signal in (54). Observe that in
this case the theoretical MSE closely matches the simu-
lated MSE for every value of the constraint N. Note also
that as the step size approaches 0 the performance
difference between the number of constraints N¼1 and
N¼4 decreases. This is expected from Eq. (49) which
shows that for a small step size the MSE is independent of
the number of constraints.

Table 1 illustrates the average MSE of the proposed
algorithms in all the scenarios considered. Columns 2–4
show the results for the synthetic data. For the proper
AR(1) model the performances of QAPA and WLQAPA
were nearly identical, illustrating the ability of WLQAPA
to deal with both proper and improper data. The MA(3)
model had by design a very high degree of noncircularity
(improper noise driving a widely linear model) and
consequently the strictly linear QAPA was inadequate,
the fact also confirmed in Fig. 5. The behavior for the
improper ARMA process was along the same lines.
Columns 5–9 show the MSE for both the QAPA and
WLQAPA for the one step ahead prediction of the real
world 4D wind signal and two 3D Tai Chi body motion
signals, for M¼10, N¼4 and m¼ 1. For the three wind
regimes (low, medium, high) of different dynamics, due to
the noncircular nature of wind (see Fig. 1), the WLQAPA
offered better steady state performance for all the three
wind regimes considered. As shown in Fig. 1 the Tai Chi
body motion signal for both the left hand and right hand
was also highly noncircular, consequently, the WLQAPA
offered better tracking performance than the QAPA.



Table 1
MSE of QAPA and WLQAPA for different processes. Key: 1. AR(1), 2. MA(3), 3. ARMA, 4. Tai Chi (left), 5. Tai Chi

(right), 6. Wind (low), 7. Wind (medium), and 8. Wind (high).

MSE (dB) 1 2 3 4 5 6 7 8

QAPA �12.48 �4.19 �16.11 �20.38 �20.86 �13.72 �13.90 �11.13

WLQAPA �12.49 �45.86 �17.39 �22.31 �23.26 �15.24 �15.31 �12.49

C. Jahanchahi et al. / Signal Processing 93 (2013) 1712–17231722
9. Conclusion

A class of quaternion affine projection algorithms
(QAPA) have been introduced in order to provide a unified
platform for fast and accurate adaptive filtering of both
second order circular (proper) and noncircular (improper)
real world signals. This has been achieved using the
recent advances in the quaternion statistics (augmented
quaternion statistics) and the emergence of the HR-
calculus for gradient calculation. Expressions for the
MSE of the QAPA and WLQAPA have been obtained for
the general case of improper signals, highlighting the
advantage offered by the widely linear WLQAPA over
the strictly linear QAPA in real world scenarios. Simula-
tions on both circular and noncircular signals support the
analysis.
Appendix A. The discrepancy between the measured
MSE of the ARMA process in (55) and theoretical MSE
in (52)

Because the affine projection algorithm operates on an
adaptive FIR filter, it was assumed that the signal is
generated by an FIR filter. This then allowed us to assume
that the noise vector vðkÞ in (28) is independent of the
data matrix AðkÞ in the analysis (see footnote 3). While
this assumption is valid for an FIR filter when vðkÞ is white
noise, it is only valid for an AR model (and also ARMA
model) when N¼1. To illustrate this, take the simple
AR(1) model

xðkÞ ¼ 0:9xðk�1ÞþvðkÞ ð56Þ

where v(k) is white Gaussian noise. When the filter length
M¼3 and the number of constraints N¼1, then the data
matrix AðkÞ ¼ ½xðk�1Þ,xðk�2Þ,xðk�3Þ�T and vðkÞ ¼ ½vðkÞ�. In
this case we see that it is accurate to assume that v(k) is
independent from AðkÞ. However, For N¼2 we have

AðkÞ ¼

xðk�1Þ xðk�2Þ

xðk�2Þ xðk�3Þ

xðk�3Þ xðk�4Þ

2
64

3
75

and vðkÞ ¼ ½vðkÞ,vðk�1Þ�. In this case vðkÞ and AðkÞ are
correlated because of the presence of the term vðk�1Þ in
vðkÞ and xðk�1Þ in AðkÞ. As the number of constraints N

increases there are more and more terms in AðkÞ that are
correlated with vðkÞ and so the assumption of indepen-
dence between the noise vector vðkÞ and data matrix AðkÞ
is no longer valid.
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