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ABSTRACT

The recently proposed quaternion least-mean-square (QLMS)
algorithm for adaptive filtering of three- and four-dimensional
signals has been analysed in the context of multi-step ahead
prediction. For rigour, the relationship between multichannel
LMS (MLMS) and QLMS is examined, and their differences
are highlighted. This is achieved both in terms of the input-
output relationship and in terms of the dynamics of weight
updates. The convergence of QLMS is investigated and sta-
bility bounds confirm that QLMS and MLMS are fundamen-
tally different. Simulations on both synthetic and real world
multidimensional signals support the analysis.

Index Terms— Quaternion adaptive filtering, multi-
dimensional systems, multistep prediction, wind modelling.

1. INTRODUCTION

The advance in the theory of multiple-input and multiple-
output (MIMO) systems, such as in acoustic echo cancella-
tion, has brought to light the corresponding adaptive filter-
ing algorithms, such as the multi-channel Least-Mean-Square
(MLMS) and its derivatives [1]. In particular, for a 4 × 4
case addressed in this paper, the output of the adaptive filter
is given by

y(n) = HT (n)x(n) (1)

=

⎡
⎢⎢⎣

h11(n) h12(n) h13(n) h14(n)
h21(n) h22(n) h23(n) h24(n)
h31(n) h32(n) h33(n) h34(n)
h41(n) h42(n) h43(n) h44(n)

⎤
⎥⎥⎦

T ⎡
⎢⎢⎣

x1(n)
x2(n)
x3(n)
x4(n)

⎤
⎥⎥⎦

where the output y(n) = [y1(n), . . . , y4(n)]T , and the pth
input vector xi(n) = [xi(n), . . . , xi(n − L)]T . The update
for each coefficient vector hij(n) is given by [1]

hij(n + 1) = hij(n) + Δhij(n) (2)
= hij(n) + μej(n)xi(n) i, j = 1, . . . , 4

where μ is a stepsize parameter that controls the stability of
the algorithm. The error ej(n) = dj(n) − yj(n) is a scalar
instantaneous output error corresponding to the jth channel.

Prior to performing multidimensional signal processing, it
is important to establish whether the direct multidimensional
adaptive filtering has advantages over multichannel mod-
elling. For instance, complex signal processing enables the
exploitation of the phase information; its augmented statis-
tics [2] and the fully complex model [3] has led to improved
algorithms through the coupling of the two dimensions. The
benefit of processing in C over that in R

2 also includes a
compact representation of “directional” processes (radar,
sonar and wind).

A thorough study of the duality between complex LMS and
two-channel MLMS is given in [4]. However, as complex
signal processing is restricted to at most two channels1, the
quaternion (hypercomplex) domain provides a higher di-
mensional alternative. This paper examines the differences
between QLMS with its counterpart MLMS; this is achieved
for both the input/output relationship and the dynamics of
weight updates.

The organisation of this paper is as follows: section 2 pro-
vides an overview of the algebraic properties of quaternions.
Section 3.1 examines the static models of both QLMS and
MLMS. This is followed by an analysis on their dynamics in
section 3.2. Next, the QLMS stepsize range for convergence
is derived and compared with that of MLMS in section 3.3.
Simulation studies are given in section 4, complemented by
the conclusion in section 5.

2. BACKGROUND

Quaternions can be considered as non-commutative exten-
sions of complex numbers, and comprise of at most four vari-
ables [6]. A quaternion variable q ∈ H has a real part (de-
noted with subscript a), and three imaginary parts (denoted

1Except when Nehorai and Paldi adopted a long vector model, in which
the three or four components are concatenated in a long vector [5].
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with subscripts b, c, d), and can be expressed as:

q = [qa,q]

= [qa, (qb, qc, qd)]

= qa + qbı + qcj + qdκ {qa, qb, qc, qd ∈ R} (3)

The relationship between ı, j, κ describing the three imagi-
nary dimensions (the vector part) of a quaternion are

ıj = κ jκ = ı κı = j

ıjκ = ı2 = j2 = κ2 = − 1 (4)

Due to the non-commutativity of the quaternion, for example,
jı �= ıj, instead jı = −κ. Likewise, the product of quater-
nions p and q is given by

pq = [pa,p][qa,q]

= [paqa − p · q, paq + qap + p× q] (5)

where symbols “·” and “×” denote respectively the dot-
product and the cross-product. It is evident that the quaternion
product is non-commutative, due to the outer product. On the
other hand, similarly to the complex numbers, the conjugate
of a quaternion is given by q∗ = [qa,q]∗ = [qa,−q] and the
norm ||q||22 = qq∗. It is crucial to appreciate the difference
between the real norm and the quaternion norm; for more
detail, see [7].

Recently, the quaternion LMS (QLMS) was introduced for
four dimensional adaptive filtering [8], and the heteroge-
neous fusion of three- four-dimensional signals [9]. The
QLMS minimises the real valued cost function

J (n) = ẽ(n)ẽ∗(n) = ẽa
2(n) + ẽb

2(n) + ẽc
2(n) + ẽd

2(n)
(6)

which is a function of the quaternion-valued error ẽ(n).
Mathematically, the QLMS can be expressed as

w(n + 1) = w(n) + Δw(n)

= w(n) + μ
(
2ẽ(n)x̃∗(n)− x̃∗(n)ẽ∗(n)

)
(7)

where the superscript (·)∗ denotes the quaternion conjugation
operator,w(n) = wa + wbı + wcj + wdκ and x̃(n) = x̃a +
x̃bı + x̃cj + x̃dκ are quaternion vectors of length L. Based
on (5) and ỹ(n) = wT (n)x̃(n), the outputs of the quaternion
valued linear filter are given by

ỹa(n) = wT
a (n)x̃a(n)−wT

b (n)x̃b(n)

−wT
c (n)x̃c(n)−wT

d (n)x̃d(n)

ỹb(n) = wT
b (n)x̃a(n) + wT

a (n)x̃b(n)

−wT
d (n)x̃c(n) + wT

c (n)x̃d(n)

ỹc(n) = wT
c (n)x̃a(n) + wT

d (n)x̃b(n)

+wT
a (n)x̃c(n)−wT

b (n)x̃d(n)

ỹd(n) = wT
d (n)x̃a(n)−wT

c (n)x̃b(n)

+wT
b (n)x̃c(n) + wT

a (n)x̃d(n) (8)

3. ADAPTIVE FILTERING IN H AND R
4

To compare the operation of adaptive filters inR
4 andH, con-

sider their functional-valued progression given respectively in
(8) and (1). Observe that the corresponding channels

x1(n) = x̃a(n) x2(n) = x̃b(n)

x3(n) = x̃c(n) x4(n) = x̃d(n) (9)

and the errors,

e1(n) = ẽa(n) e2(n) = ẽb(n)

e3(n) = ẽc(n) e4(n) = ẽd(n) (10)

3.1. The input-output relationship

A comparison between the two sets of equations (1) and (8)
shows that MLMS can be regarded as a constrained version
of QLMS, provided the adaptive coefficient matrix of MLMS
in (1) satisfies

H(n) =

⎡
⎢⎢⎣

wa(n) wb(n) wc(n) wd(n)
−wb(n) wa(n) wd(n) −wc(n)
−wc(n) −wd(n) wa(n) wb(n)
−wd(n) wc(n) −wb(n) wa(n)

⎤
⎥⎥⎦ (11)

This constraint is, however, very stringent. For detailed in-
sight, we proceed with examining the dynamic characteristics
of these multidimensional algorithms via their coefficient up-
dates and their convergence bounds.

3.2. The dynamics of weight updates

We next investigate the relationship between the dynamics of
QLMS and MLMS updates. In other words, each compo-
nent of Δw(n) will be related to corresponding components
of Δh(n). To this end, from (7) Δw(n) can be expanded
dimension-wise as

Δwa(n) = ẽa(n)x̃a(n)+3[ẽb(n)x̃b(n)+ẽc(n)x̃c(n)+ẽd(n)x̃d(n)]

Δwb(n) = 3ẽb(n)x̃a(n)−ẽa(n)x̃b(n)+ẽd(n)x̃c(n)−ẽc(n)x̃d(n)

Δwc(n) = 3ẽc(n)x̃a(n)−ẽd(n)x̃b(n)−ẽa(n)x̃c(n)+ẽb(n)x̃d(n)

Δwd(n) = 3ẽd(n)x̃a(n)+ẽc(n)x̃b(n)−ẽb(n)x̃c(n)−ẽa(n)x̃d(n)
(12)

For space, the multiplicative factor μ has been omitted. From
(2) and (12), Δw(n) can be related toΔh(n) as

Δwa(n) = Δh11(n) + 3[Δh22(n) + Δh33(n) + Δh44(n)]

Δwb(n) = 3Δh12(n)−Δh21(n)+Δh34(n)−Δh43(n)

Δwc(n) = 3Δh13(n)−Δh24(n)−Δh31(n)+Δh42(n)

Δwd(n) = 3Δh14(n) + Δh23(n)−Δh32(n)−Δh41(n)
(13)

Observe that the dynamics of QLMS and MLMS are differ-
ent. To provide further insight, we next examine another fac-
tor that influences the dynamics of these algorithms, that is,
the stepsize.

3110



3.3. On the bounds of the stepsize

The stepsize parameter plays a key role in stability and con-
vergence of adaptive filters. In particular, the stepsize bounds
are an important issue for convergence, both from a theoreti-
cal and practical point of view. According to Huang and Ben-
esty, the stepsize range of the MLMS is given by [1]

0 < μ <
2∑4

p=1 ||xp(n)||22
(14)

On the other hand, it is not straightforward to derive the
QLMS stepsize range, due to the non-commutativity of the
quaternion product. However, similarly to the case of adap-
tive IIR filters [10], it is possible to obtain an approximate
range by local linearisation using the Taylor series expansion.

To introduce stability bounds for QLMS, consider the fol-
lowing a priori ẽ(n) and a posteriori ē(n) errors

ẽ(n) = d(n)−wT (n)x̃(n) (15)
ē(n) = d(n)−wT (n + 1)x̃(n) (16)

The task is to estimate the range of values for μ, such that
||ē(n)|| < ||ẽ(n)||. Following the approach from [10],
||ē(n)||2 can be expressed in terms of ||ẽ(n)||2 via first-order
Taylor series

||ē(n)||2 = ||ẽ(n)||2 + ΔwH(n)
∂||ẽ(n)||2

∂w(n)
(17)

whereΔw(n) can be readily obtained from (7), and ∂||ẽ(n)||2

∂w(n)

can be shown to be [9]

∂||ẽ(n)||2

∂w(n)
= −2

(
2ẽ(n)x̃∗(n)− x̃∗(n)ẽ∗(n)

)
(18)

Substituting (18) and Δw(n) from (7) into (17), the a poste-
riori error ||ē(n)||2 can be expanded as

||ē(n)||2 = ||ẽ(n)||2−2μ

(
5||ẽ(n)||2

L∑
�=1

||x̃(n−�)||2

−2
(
x̃T (n)ẽ∗(n)x̃∗(n)ẽ∗(n) + ẽ(n)x̃T (n)ẽ(n)x̃∗(n)

))

(19)
Due to the non-commutativity of the quaternion product, it is
difficult to express the terms x̃T (n)ẽ∗(n)x̃∗(n)ẽ∗(n) and
ẽ(n)x̃T (n)ẽ(n)x̃∗(n) in terms of ||ẽ(n)||2. However, when
the QLMS has converged to the optimal solution, the orthog-
onality assumption between the error and the input allows us
to drop these two terms, and (19) becomes

||ē(n)||2 = ||ẽ(n)||2 − 2μ(5||ẽ(n)||2
L∑

�=1

||x̃(n− �)||2)

=

(
1− 10μ

L∑
�=1

||x̃(n− �)||2
)
||ẽ(n)||2 (20)

which gives bounds for the stepsize parameter as

0 < μ <
1

10
∑L

�=1 ||x̃(n− �)||2
(21)

Notice that ||x̃(n − �)||2 is the quaternion norm, and there-
fore it caters for all the four dimensions. This means that∑4

p=1 ||xp(n)||22 in the denominator of (14) is equivalent to∑L
�=1 ||x̃(n− �)||2 in the quaternion case (21).

The convergence analysis in (14) and (21) shows again that
QLMS and MLMS do not have the same dynamic charac-
teristics. Therefore, it is expected that QLMS and MLMS
perform differently when the same parameters such as the
filter length L, the stepsize μ, or the prediction horizonM are
used. We shall next investigate their performance dependence
of the performance of QLMS andMLMS on those parameters
on both synthetic and real-world data.

4. SIMULATIONS

The performances of the multidimensional QLMS andMLMS
algorithms were compared in a prediction setting. In the first
experiment, the input was the 3D Lorenz system which is
expressed mathematically as [11]

∂x

∂t
= α(y − x)

∂y

∂t
= x(ρ− z)− y

∂z

∂t
= xy − βz (22)

where α, ρ, β > 0. For a chaotic behavior of Lorenz attrac-
tor, the parameters were selected as: α = 10, ρ = 28, and
β = 8/3.

The performance index was the standard prediction gain
given by

Rp = 10 log(σ2
x
(n)/σ2

e
(n)) (23)

where σ2
x
(n) and σ2

e
(n) denote respectively the variance of

the input and the error. Fig. 1 illustrates the performances
and confirms that the two algorithms do not exhibit similar
performances, with QLMS outperforming MLMS. We next
proceed to examining the performances of these algorithms
on a 4D real-world wind data fusion model (3D wind field
augmented with the fourth dimension as the wind tempera-
ture). Again, QLMS outperformed MLMS (see Fig. 2), over
a range of parameters and prediction horizonM .

As our aim was to illustrate the difference between adaptive
filtering in R

4 and H, the simulations were run on examples
which, by design, facilitate QLMS. For space constraints,
simulations for example, multichannel speech processing
setting are omitted.
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Fig. 1. The performance of Quaternion LMS and multi-
channel LMS on the prediction of 3D Lorenz signal.

5. CONCLUSIONS

We have provided a comparative analysis of the recently
introduced quaternion LMS (QLMS) and the multichannel
LMS (MLMS) algorithms. This has been achieved by both
analysing the input/output mapping performed by the two
filters and the dynamics of their updates. To this end, sta-
bility bounds for QLMS have been derived, and are valid
for any QLMS formulation. It has been shown that the two
algorithms are fundamentally different. MLMS has been de-
rived for generic multichannel processes, whereas QLMS has
been designed specifically for four dimensional processes.
Simulation on four dimensional signals support the analysis.
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