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a b s t r a c t 

Quaternion and tensor-based signal processing benefits from exploiting higher dimensional structure 

in data to outperform the corresponding approaches using multivariate real algebras. Along with the 

extended range of processing options, these methods produce opportunities for a physically-meaningful 

interpretation. In this paper, we propose a class of novel partial least squares (PLS) algorithms for tensor- 

and quaternion-valued data, the widely linear quaternion PL S (WL-QPL S), the higher order nonlinear 

iterative PL S (HONIPAL S) and the generalised higher order PL S (GHOPL S). This enables a regularised 

regression solution along with a latent variable decomposition of the original data based on the mutual 

information in the input and output block. The performance of the proposed algorithms is verified 

through analysis, together with a detailed comparison between quaternions and tensors and their 

application for image classification. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Multidimensional signal processing deals with higher dimen-

sion variables. The rich structure in direct multidimensional pro-

cessing offers a better treatment for many types of recorded data

compared to interpreting them as separate variables in a multi-

variate system. Two such techniques are given by quaternions and

tensors. The quaternion number system offers a 4D algebra with

which to treat data, whereas tensors consider a generic, multilin-

ear approach. Each technology has arose separately, whereby the

quaternions are an extension of complex numbers and tensors are

an extension of linear algebra concepts. However, there are clear

links between the two, a concept we explore in this paper. So far,

these methods have found many applications, such as: (i) power

grid frequency estimation [1,2] , (ii) image classification [3,4] and

(iii) sensor network data [5,6] . These types of application are be-

coming more prevalent due to recent technological advances [7] . 

One such application, at the core of many data science and sig-

nal processing applications, is that of estimation. Specifically, it is

desired to predict one dataset from another. In the case of linear

regression, the problem is to predict the dependent variables (re-

sponses) as a linear combination of the independent variables (pre-

dictors). For an extension of this concept with tensor-variate and

quaternion-valued data it is necessary to account for the degrees
∗ Corresponding author. 
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f freedom in the prediction. In this work, this has been achieved

hrough the tensor formalism [8] and by using the widely lin-

ar regression for quaternions, which caters for full second-order

tatistics of a quaternion-valued variable [9] . 

The standard solution for linear regression, ordinary least

quares (OLS), requires that the measured independent variables

re full-rank in order to calculate the regression coefficients. Al-

hough it is extremely powerful, this is especially problematic for

odern problems where data are collected from highly correlated

r colinear data channels [7] . 

The method of partial least squares (PLS) has been developed

o tackle the issues of ill-posedness in linear regression, with the

onlinear iterative PL S (NIPAL S) algorithm proposed in [10] . This

pproach implements a dimensionality reduction framework which

xpresses the independent variables in an orthogonal basis which

enders the problem tractable [11] . In contrast to other component

nalysis methods such as principal component regression (PCR)

12] , the decomposition performed through the PLS algorithm is

ased on the maximal cross-covariance between the input and out-

ut blocks [12] . The result, therefore, takes advantage of the nat-

ral structure within the data and can be used for further data

nalysis. These properties have found several applications [13] and

ecent developments have extended the idea for online data [14] . 

The PLS has already been extended for multidimensional do-

ains including complex data [15] and tensors [16,17] . These de-

elopments have led to new applications in power grid frequency

stimation [15] , and the processing of batch data [18] . 

https://doi.org/10.1016/j.sigpro.2019.03.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2019.03.002&domain=pdf
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In this paper, we re-examine PLS-regression for multidimen-

ional data. This is achieved through a critical account of tensor

nd quaternion signal processing methods for each step of the

IPALS algorithm. The required background on PLS-regression,

ensors and quaternion algebra is described in Section 2 . This is

ollowed by the introduction of the higher order NIPALS (HONI-

ALS) and the generalised higher order PLS (GHOPLS) algorithms

or tensor-variate data and the widely linear quaternion PLS

WL-QPLS) algorithm for quaternion-valued data in Section 3 .

he comparison and analysis of these algorithms is given in

ection 4 using a derived isomorphism between the quaternion

nd tensor domains and by contrasting the cross-covariance data

tructures used in each algorithm. In Section 5 the proposed

lgorithms are implemented for a regression simulation on syn-

hetic data. The WL-QPLS is then shown to be applicable for

he problem of quaternion covariance matrix diagonalisation.

inally, the utility of the introduced class of multidimensional PLS

MD-PLS) algorithms is demonstrated through an application for

mage classification in Section 5.3 , which shows their usefulness

or subspace identification beyond classical regression applications.

Unless stated otherwise, we use uppercase boldface calligraphic

etters for tensors, X , uppercase and lowercase boldface letters for

atrices, X , and vectors, x , and lightface, lowercase italic letters, x ,

or scalars. 

. Background: PLS-regression and multidimensional methods 

.1. Linear regression 

Linear regression is a common paradigm in signal processing

nd can be described by 

ˆ 
 = XB (1) 

here ˆ Y ∈ R 

N×p denotes an estimate of the output data matrix, Y ∈
 

N×p , which is formed from a linear combination of the columns

f the input data matrix X ∈ R 

N×m and is determined by the re-

ression coefficients B ∈ R 

m ×p . Note that the data matrices X and

 consist of N samples of a vector variate process. The task is then

o find the matrix B , and the solution is given by 

 = X 

+ Y (2) 

here (·) + denotes the matrix pseudoinverse. The solution is typ-

cally obtained through the ordinary least squares as 

 

+ = (X 

T X ) −1 X 

T (3)

hich aims to minimise the squared error between the predicted

utput variables, ˆ Y , and the original output matrix Y . Note that

his requires the inverse of the input covariance matrix X 

T X . 

.2. The two-way NIPALS algorithm 

The OLS solution (3) encounters a problem when the data ma-

rix X is sub-rank and so the matrix inverse (X 

T X ) −1 cannot be

alculated. To address this issue, Wold et al. [10] introduced the

LS algorithm which produces a regression solution for such ill-

osed cases. Specifically, the NIPALS algorithm counteracts the ill-

osedness of the OLS solution by representing the data matrix X

n a form such that a generalised inverse can straightforwardly be

btained, owing to its factorised structure. This is achieved by cal-

ulating successive rank-1 approximations of X as 

 = tp 

T (4) 

here t is a “score” vector component of X and p is its regression

ack to the inputs, X , known as the “loadings”. This component is
elected by first calculating the maximal projection of the cross-

ovariance matrix X 

T Y summarised by the optimisation problem

 = arg max 
|| w || =1 

|| w 

T X 

T Y || 2 2 (5)

he resultant vector, w , is then used to find the score, t , as 

 = Xw 

s a result, the PLS algorithm determines a basis (described by the

ector w ) that describes the most significant cross-covariance com-

onents between the inputs, X , and the outputs, Y , denoted by the

ector t [19] . As such, it is suitable to also give a rank-1 approxi-

ation for Y as 

 = tc T (6) 

hich is known as the “inner-relation” where c is the regression

f t to Y . An analogous score vector in Y can be found 

 = Yc 

his leads to a further rank-1 approximation of Y as 

 = uq 

T (7) 

At the end of the iteration the impact of the current score, t , is

emoved (known as deflation) as 

 i +1 = X i − t i p 

T 
i Y i +1 = Y i − t i c 

T 
i (8)

here i indicates the number of iterations. This means that the

core computed on the following iteration, t i +1 , will be orthogonal

o that obtained on the current iteration, t i . This form is known as

LS2. It is also possible to use the relation Y = uq 

T to deflate the

ata matrix Y which is known as PLS Mode-A. However, in this

orm the scores are not generally orthogonal [19] . 

At the completion of the iteration the vectors, t, u, p, c and q

re stored into the respective columns of the matrices, T ∈ R 

N×r ,

 ∈ R 

N×r , P ∈ R 

m ×r , C ∈ R 

p×r and Q ∈ R 

p×r where r is the number

f iterations to be computed. The value of r for a given implemen-

ation is obtained through experimental cross-validation. 

The data matrices are now expressed with the PLS approxima-

ion as 

˜ 
 = TP 

T ˜ Y = TC 

T (9) 

urthermore, the input block X can be approximated as 

˜ 
 = T (P 

T W ) W 

T 

here T is orthogonal, P 

T W is upper-triangular and W is also or-

hogonal. Therefore, the calculation of ˜ X 

+ is straightforward and

ives a regularised regression solution (2) as 

 PLS = 

˜ X 

+ Y = W (P 

T W ) −1 T 

T Y (10)

he full NIPALS PLS is summarised in Algorithm 1 . 

.3. Tensor notation and preliminaries 

A tensor is a multi-dimensional array that is a natural extension

f a two-way matrix to a general M-way case, e.g. X ∈ R 

I 1 ×I 2 ×···×I M ,

here M specifies the number of its dimensions, also known as

odes , and is referred to as the order of a tensor. Consequently,

ach element of X has M indices. For instance, the third-order ten-

or X ∈ R 

I×J×K is composed of scalars x ijk . By fixing all but two in-

ices in X , we obtain a matrix substructure that is called a slice ,

.g., X (: , : ,k ) = X :: k . Likewise, a vector substructure, or fibre , requires

xing all but one index, e.g., for a third-order tensor is extracted

s X (: , j,k ) = x : jk . An operation called mode-n unfolding can be used

o reshape a tensor into a matrix. This is performed by grouping
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Algorithm 1 The two-way NIPALS algorithm [10] . 

1: Input: X , Y , r 

2: for i = 1 , . . . , r do 

3: S i = X 

T 
i 
Y i 

4: w i = first left singular vector of S i 
5: t i = X i w i 

6: p i = X 

T 
i 
t i / t 

T 
i 
t i 

7: c i = Y 

T 
i 
t i / t 

T 
i 
t i 

8: u i = Y i c i 
9: q i = Y 

T 
i 
u i / u 

T 
i 
u i 

10: X i +1 = X i − t i p 

T 
i 

11: Y i +1 = Y i − t i c 
T 
i 

12: Store t i , p i , c i , u i , q i and w i 

13: end for 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Quaternion multiplication. 

× 1 i j k 

1 1 i j k 

i i −1 k − j

j j −k −1 i 

k k j −i −1 
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mode-n fibres of a tensor X as the columns of the unfolded ver-

sion X ( n ) . For example, the mode-n unfoldings of a third order ten-

sor X ∈ R 

I×J×K are given as 

X (1) = [ X (: , 1 , 1) X (: , 1 , 2) · · · X (: , 1 ,K) · · · X (: ,J,K) ] , 

X (2) = [ X (1 , : , 1) X (1 , : , 2) · · · X (1 , : ,K) · · · X (I, : ,K) ] , 

X (3) = [ X (1 , 1 , :) X (1 , 2 , :) · · · X (1 ,J, :) · · · X (I,J, :) ] . 

(11)

Mode-n unfolding permits the multiplication between a tensor X 

and a matrix A . This operation is called a mode-n product and is

defined as follows 

Y = X ×n A ⇔ Y (n ) = AX (n ) . (12)

A tensor by tensor type product is performed by the mode-n

to mode-q contraction product . For the tensors X ∈ R 

I 1 ×I 2 ×···×I n ×···×I M 

and Y ∈ R 

J 1 ×J 2 ×···×J q ×···×J P this is defined as 

S = 〈 X , Y 〉 { n,q } , (13)

where S ∈ R 

I 1 ×···×I n −1 ×I n +1 ×···×I M ×J 1 ×···×J q −1 ×J q +1 ×···×J P has the en-

tries 

s (i 1 , ... ,i n −1 ,i n +1 , ... ,i M , j 1 , ... , j q −1 , j q +1 , ... , j P ) (14)

= 

I n ∑ 

i n =1 

x (i 1 , ... ,i n −1 ,i n ,i n +1 , ... ,i M ) y ( j 1 , ... , j q −1 ,i n , j q +1 , ... , j P ) . 

Note that I n = J q . 

Another kind of unfolding operation is given by the canonical

matrix unfolding of a tensor X ∈ R 

I 1 ×···×I n ×···×I M . This is denoted as

X 〈 n 〉 ∈ R 

I 1 I 2 ···I n ×I n +1 ···I M , which has entries 1 [7,20] 

X 〈 n 〉 (i 1 i 2 ···i n ,i n +1 ···i M ) = X (i 1 ,i 2 , ... ,i M ) . (15)

Note that this is not equivalent to the mode-n unfolding in (11) .

2.3.1. Tucker decomposition 

The Tucker decomposition of an order M tensor X ∈ R 

I 1 ×I 2 ×···×I M 

is defined as 

X = G ×1 A 

(1) ×2 A 

(2) ×3 · · · ×M 

A 

(M) (16)

where G ∈ R 

J 1 ×J 2 ×···×J M is the core tensor and A 

(i ) ∈ R 

I i ×J i are the

factor matrices [21] . This gives rise to a new form of rank for ten-

sors known as the multilinear rank. The Tucker decomposition de-

composes a tensor into a low multilinear rank form, for the exam-

ple above this is given as the M-tuple rank- (J 1 , J 2 , . . . , J M 

) , where

each entry is defined as the number of non-zero eigenvalues in

each factor matrix. This decomposition provides a compression of

the original tensor into a smaller core tensor and can be computed
1 This uses a little endian ordering where the index i 1 i 2 · · · i n = i 1 + (i 2 − 1) I 1 + 

(i 3 − 1) I 1 I 2 · · · (i n − 1) I 1 · · · I n −1 [7] . 

T  

n

x

y several algorithms, including the higher order SVD (HOSVD) and

igher order orthogonal iteration (HOOI) [21] . 

The mode-n unfolding for a Tucker decomposition is expressed

n terms of the core tensor and factor matrices as 

 (n ) = A 

(n ) G (n ) (A 

(M) 
� A 

(M−1) 
� · · · � A 

(n +1) 
� A 

(n −1) 
� · · · � A 

(1) ) T

(17)

bserve that this unfolding has a Kronecker product structure

hich is an important constraint of tensor decompositions. 

.3.2. Tensor regression 

A tensor regression can be expressed [8] 

 = f ( X ;B ) (18)

here the input X ∈ R 

N×I 1 ×I 2 ×···×I M and output Y ∈ R 

N×J 1 ×J 2 ×···×J P 

ensors are related through a tensor B ∈ R 

I 1 ×I 2 ×... ×I M ×J 1 ×J 2 ×···×J P [8] .

ote that the tensors X and Y are considered to be N samples

f the tensor variate processes. To predict a single, scalar, reali-

ation y from a single tensor observation X the function f ( · ; · )

s given in the form of an inner product 〈 X , B 〉 computed as y =
 ec T ( X ) v ec( B ) . The general tensor-variate regression (where the

utput is a tensor) is then expressed compactly through a mode-1

atrix unfolding of the tensors as 

 (1) = X (1) B 〈 M〉 (19)

he regression coefficients, B 〈 M 〉 , are computed through 

 〈 M〉 = X 

+ 
(1) 

Y (1) (20)

hich is akin to two-way multivariate regression in (2) and re-

uires the generalised inverse of X (1) . The resultant matrices are

hen folded back into their tensor form. 

.4. Quaternion algebra and notation 

Quaternions, H , are both a skew-field over the real numbers,

 , whereby every element g ∈ H is a quadrivariate vector and an

rdered pair of two complex numbers [22,23] . A quaternion scalar,

 ∈ H , is represented as 

x = x r + x i i + x j j + x k k 
Re (x ) = x r 
m (x ) = x i i + x j j + x k k 

here i, j and k are the imaginary units governed by the multipli-

ation scheme in Table 1 . Observe that i j = k � = ji = −k, and as a

esult, the multiplication of two quaternion numbers, x and y , is in

eneral not commutative, that is 

y � = yx 

he modulus of a quaternion, x , is defined as 

 x | = 

√ 

x 2 r + x 2 
i 

+ x 2 
j 
+ x 2 

k 

he quaternion conjugate operator negates the imaginary compo-

ents 

 = x r + x i i + x j j + x k k x ∗ = x r − x i i − x j j − x k k 
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nalogous to the complex conjugate operator. The involution oper-

tors are unique to quaternions and are described as x α = −αxα
hich represents a rotation by π of x around α, where α is a pure

nit quaternion, that is, a three-dimensional quaternion with a unit

orm and has no real component [24] . These involutions have the

roperty (x α) α = x . Special instances of the quaternion involution

round the imaginary axes, where α ∈ { i, j, k }, are given as 

x = x r + x i i + x j j + x k k x i = x r + x i i − x j j − x k k 

 

j = x r − x i i + x j j − x k k x k = x r − x i i − x j j + x k k 

nd are referred to as i -, j - and k -involutions. These lead to the

-conjugate operations frequently used in quaternion augmented

tatistics [22] . 

x = x r + x i i + x j j + x k k x i ∗ = x r − x i i + x j j + x k k 

 

j∗ = x r + x i i − x j j + x k k x k ∗ = x r + x i i + x j j − x k 

The complete second-order statistics of a real vector-variate

andom process, x ∈ R 

m , are captured by its mean, E [ x ], and its

ovariance matrix, E[ xx T ] . However, the mean and the direct

xtension of the covariance matrix, E[ xx H ] , are not sufficient for a

ull second-order description of a quaternion-valued vector-variate

andom process, x ∈ H 

m [22,23] . Instead, the consideration of the

 -, j - and k -complementary covariance matrices E [ xx i H ] , E [ xx jH ]

nd E[ xx k H ] is also required in order to capture the full augmented

uaternion statistics. This is an extension of augmented statistics

or complex-valued data (where the complementary pseudoco-

ariance matrix E[ xx T ] is required in addition to the standard

ovariance) which is now well understood in the literature [25] .

n order to conveniently account for the full second-order statis-

ics, a quaternion-valued vector process can be represented in

ugmented form as 

 = [ x , x 

i , x 

j , x 

k ] (21)

An important feature of Quaternion statistics is the notion of

ircularity which indicates whether all the four components are in-

ependent and have balanced powers [22] . Quaternion propriety

pecifically accounts for up to second-order moments/circularity

23] . The degree of properness is then given by the three circu-

arity measures [26] 

i = 

E[ xx i ∗] 

E[ xx ∗] 
ρ j = 

E[ xx j∗] 

E[ xx ∗] 
ρk = 

E[ xx k ∗] 

E[ xx ∗] 
(22) 

hich are generalisations of the circularity quotient for complex-

alued data [27] . 

.4.1. Quaternion widely linear estimation 

In quaternion estimation, it is desired to estimate the output

 ∈ H 

N×p from the input X ∈ H 

N×m in the same way as the real-

alued estimation problem in (1) . For the quaternion case, how-

ver, the minimum mean square error (MMSE) estimate of the pro-

ess in Y is instead linear in terms of X, X 

i , X 

j and X 

k expressed as

22] 

ˆ 
 = XG 1 + X 

i G 2 + X 

j G 3 + X 

k G 4 (23)

n this way full second-order statistics are described. The above

odel is referred to as widely linear quaternion regression [23] . 

A compact form of the widely linear estimation in (23) can be

btained by representing the quaternion variable X in augmented

orm, X ∈ H 

N×4 m , which yields 

ˆ 
 = X B (24) 

here B ∈ H 

4 m ×p is the vector of the regression coefficients. This

nables the calculation of the regression coefficients analogously

o the real-valued case in (2) as 

 = X 

+ Y 
Note that if the data are circular then only the covariance ma-

rix, E[ xx H ] , needs to be considered for processing and so the esti-

ation (23) degenerates to the strictly linear form 

ˆ Y = XB . 

.4.2. The isomorphism between quaternion and R 

4 

A quaternion data matrix, X ∈ H 

N×m is described as X = X r +
 X i + jX j + k X k where X η ∈ R 

N×m η = { r, i, j, k } . The isomorphism

etween the quaternion domain and a four-dimensional real vec-

or space has been established, given through the transform matrix

22,23] 

m 

= 

⎡ 

⎢ ⎣ 

I m 

i I m 

jI m 

k I m 

I m 

i I m 

− jI m 

−k I m 

I m 

−i I m 

jI m 

−k I m 

I m 

−i I m 

− jI m 

k I m 

⎤ 

⎥ ⎦ 

∈ H 

4 m ×4 m , (25) 

hich provides a link between the augmented data matrix,

 = [ X , X 

i , X 

j , X 

k ] ∈ H 

N×4 m , and the real-valued matrix X Re =
 X r , X i , X j , X k ] ∈ R 

N×4 m , given by the relations 

 Re = 

1 

4 

X �∗
m 

, X = X Re �
T 
m 

. (26)

his transform is, hence, invertible and is unitary up to a scale fac-

or of 4. 

.4.3. Processing quaternion data in R 

4 

The transform in (26) converts an augmented quaternion vari-

ble to a real-valued representation in R 

4 . A general matrix prod-

ct for a row vector x = [ x r , x i , x j , x k ] ∈ R 

1 ×4 is given by 

 y r , y i , y j , y k ] = [ x r , x i , x j , x k ] H . 

here the entries of the matrix H ∈ R 

4 ×4 can take any real value.

he vector [ x r , x i , x j , x k ] is equivalently represented as a quaternion

calar x , however, the quaternion product y = xh represented in the

eal-domain is a special case of the matrix equation, y = xH , where

he matrix, H , is restricted to the form [9] 

 = 

⎡ 

⎢ ⎣ 

h r h i h j h k 

−h i h r −h k h j 

−h j h k h r −h i 

−h k −h j h i h r 

⎤ 

⎥ ⎦ 

(27) 

here [ h r , h i , h j , h k ] are the real and imaginary components of the

uaternion number h . 

emark 1. An augmented quaternion variable can be equivalently

rocessed in the real-domain, with both representations having

he same degrees of freedom for processing. The quaternion al-

ebra can therefore be viewed as a constrained matrix product

n the real-domain indicating that the structure of a quaternion-

alued estimation problem will be distinct from a generic real-

alued problem [28] . 

. Multidimensional PLS-regression algorithms 

.1. A NIPALS algorithm for tensor-variate PLS regression 

Tensor-based PLS algorithms have already been developed such

s Bro’s N-Way PLS [16] and the higher order PLS (HOPLS) of

hao et al. [17] . These produce a tensor regression between the

nput data tensor X ∈ R 

N×I 1 ×I 2 ×···×I M and the output data tensor

 ∈ R 

N×J 1 ×J 2 ×···×J P , as introduced in Section 2.3.2 . The HOPLS algo-

ithm decomposes X and Y into a sum of r rank- (1 , K 1 , K 2 , . . . , K M 

)

nd rank- (1 , L 1 , L 2 , . . . , L P ) components respectively. In accordance

ith (16) we can write 

 = 

r ∑ 

i =1 

G i ×1 t i ×2 P 

(1) 
i 

×3 P 

(2) 
i 

×4 · · · ×M 

P 

(M) 
i 

, (28) 
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2 Note that these matrices are not the same as in (31) . 
Y = 

r ∑ 

i =1 

D i ×1 t i ×2 Q 

(1) 
i 

×3 Q 

(2) 
i 

×4 · · · ×P Q 

(P) 
i 

, 

where G ∈ R 

1 ×K 1 , ×K 2 ×···×K M and D ∈ R 

1 ×L 1 , ×L 2 ×···×L P are the core

tensors of the Tucker and P 

(n ) ∈ R 

K n ×I n n = 1 , 2 , . . . , M, Q 

(n ) ∈
R 

L n ×J n n = 1 , 2 , . . . , P are factor matrices. The derivation of the HO-

PLS algorithm is given in Appendix A . On the other hand, the N-

way PLS algorithm of Bro [16] produces a decomposition of the

tensors X and Y whereby each factor matrix is a vector. 

Both current tensor-variate PLS algroithms impose strict rules

on the latent structure of the data. To that end, we introduce

a general tensor-variate NIPALS style PLS-regression algorithm for

the input data tensor, X ∈ R 

N×I 1 ×I 2 ×···×I M , and the output data ten-

sor, Y ∈ R 

N×J 1 ×J 2 ×···×J P , which instead iteratively calculates any de-

sired low-rank approximation of the original data tensors. 

The first step of each iteration of a PLS algorithm is to calculate

a cross-covariance structure. One method for tensor-variate data is

to calculate the contraction product in (13) along the first mode of

the input tensor, X , and the output tensor, Y , to give the structure

S = 〈 X , Y 〉 { 1 , 1 } ∈ R 

I 1 ×I 2 ×···×I M ×J 1 ×J 2 ×···×J P . (29)

Alternatively, the data tensors can be unfolded along the first

mode, as is done in the HOSVD algorithm [21] , which yields the

matrix cross-covariance structure 

S = X 

T 
(1) Y (1) ∈ R 

I 1 I 2 ···I M ×J 1 J 2 ···J P . (30)

Note that the mode-wise variations are encoded explicitly in

the modes of the contraction product, S . However, for the matrix,

S , obtained from the unfolded data tensors, they implicitly inte-

grated. 

The next step of the algorithm is to perform an eigen-type

decomposition of the cross-covariance data structures in order

to determine a spatial basis which describes the maximal cross-

covariance between the inputs and the outputs. For the tensor S 

obtained from the cross-covariance structure given by the contrac-

tion product in (29) , the eigen-type decomposition is then given

by a rank- (K 1 , K 2 , . . . , K M 

, L 1 , L 2 , . . . , L P ) Tucker approximation 

S = G 

C ×1 P 

(1) ×2 P 

(2) ×3 · · · ×M 

P 

(M) ×M+1 Q 

(1) ×M+2 Q 

(2) ×M+3 

· · · ×M+ P Q 

(P) . (31)

This Tucker decomposition can be obtained using either the

HOOI or HOSVD algorithms [21] . When the input and output vari-

ables yield a matrix result from (29) , the decomposition is instead

provided by an SVD. 

Now consider the alternative case where the unfolded cross-

covariance structure, S (1) , is implemented. The corresponding

eigen-problem is then defined as 

w = arg max 
|| w || =1 

|| w 

T X 

T 
(1) Y (1) || 2 2 . (32)

The result is obtained from the leading eigenvector of the ma-

trix SS T , that is, from the SVD of S in the form 

S = W�V 

T . (33)

The resulting PLS scores produced from either the decomposi-

tion of (29) or (30) can be represented as a matrix, T (1) ∈ R 

N×K 

where K is the desired number of first mode fibres, given by 

T (1) = X (1) W (1) ∈ R 

N×K . (34)

For the unfolded cross-covariance data structure, S in (30) , the

matrix W (1) ∈ R 

I 1 I 2 ... I m ×K is given by the first K left singular vec-

tors of S from (33) . On the other hand, to compute the scores from

the cross-covariance structure S in (29) , the matrix, W (1) , takes the

form 

W (1) = (P 

(M) T 
� P 

(M−1) T 
� · · · � P 

(1) T ) T , (35)
hich is the Kronecker product unfolded form of the factor ma-

rices obtained from the Tucker decomposition in (31) , where K =
 1 K 2 . . . K M 

. 

emark 2. The tensor PLS scores are calculated as the mode-1 fac-

or matrix, T (1) , for both choices of cross-covariance structure and

heir corresponding decompositions. This means that the choice of

he structure of the score tensor T (from the folding of the mode-

 factor matrix T (1) ) is flexible and depends on the form suggested

y the data. For example, when the scores are calculated from the

ucker decomposition of the contraction product, S in (31) , the

ank of the decomposition gives the dimensions of the score tensor

 ∈ R 

N×K 1 ×K 2 ×···×K M . On the other hand, when the scores are calcu-

ated from the SVD in (33) , the choice of folding is not intrinsic to

he calculation. 

The score tensor, T , is now regressed to the data tensors, X 

nd Y , through the parameters G and D respectively, to give the

elations 

 = f ( T ;G ) , Y = f ( T ;D ) , (36)

here the parameters G and D are calculated 

 = X ×1 T 

+ 
(1) 

, D = Y ×1 T 

+ 
(1) 

. (37)

rior to the next iteration, the impact of the score tensor is re-

oved through the deflation process 

 i +1 = X i − G i ×1 T (1) ,i , Y i +1 = Y i − D i ×1 T (1) ,i , (38)

here i denotes the current iteration and the tensors X i +1 and

 i +1 are used in place of X i and Y i in the next iteration. The sum

f these tensor regressions provides the tensor version of the low-

ank PLS approximations, akin to (4) and (6) in the two-way solu-

ion. 

Notice that the factor matrices for the Tucker decomposition

f the latent variable regression tensors G and D are not com-

uted inherently as in HOPLS, where they are obtained from the

ecomposition of S , and are not required for computation. Here,

hey are instead obtained by computing a Tucker decomposition

i.e. the HOSVD) for each regression tensor, G and D obtained in

37) , to give the factor matrices 2 P 

(n ) 
i 

∈ R 

K n ×I n n = 1 , 2 , . . . , M and

 

(n ) 
i 

∈ R 

K n ×J n n = 1 , 2 , . . . , P respectively. This leads to the expres-

ions 

 = G ×1 T (1) ×2 P 

(1) ×3 P 

(2) ×4 · · · ×M+1 P 

(M) , (39)

Y = D ×1 T (1) ×2 C 

(1) ×3 C 

(2) ×4 · · · ×P+1 C 

(P) , 

here G and D are now the core tensors within the Tucker de-

ompositions and not the regression tensors. This is a more general

ecomposition than the HOPLS form (28) . 

We next obtain a further decomposition of the output data ten-

or Y that is analogous to the two-way PLS expression in (7) . In

his case, the impact of the unfolded latent variables T (1) in the

ata tensor Y is found as 

 = T 

+ 
(1) 

Y (1) , U (1) = Y (1) C 

T . 

These derived latent variables are related to Y through the re-

ression tensor, E , calculated as 

 = Y ×1 U 

+ 
(1) 

. 

As is the case for tensors, G and D in the latent variable re-

ressions in (36) , the tensor E is decomposed using the HOSVD to

ive the factor matrices Q 

(n ) 
i 

∈ R 

K n ×J n n = 1 , 2 , . . . , P leading to the

elation 

 = E ×1 U (1) ×2 Q 

(1) ×3 Q 

(2) ×4 · · · ×P+1 Q 

(P) . (40)
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This process allows the introduction of two algorithms: (i) The

igher Order NIPALS (HONIPALS) and (ii) The Generalised HOPLS

GHOPLS), summarised in Algorithms 2 and 3 , respectively. The

lgorithm 2 The HONIPALS algorithm. 

1: Input: X , Y , r, K 

2: for i = 1 , . . . , r do 

3: S (1) i = X 

T 
(1) ,i 

Y (1) ,i 

4: W (1) i = first K left singular vectors of S (1) ,i 

5: T (1) i = X (1) i W (1) i 

6: G i = X i ×1 T 
+ 
(1) ,i 

7: Perform HOSVD on G i to find factor matrices P 

(n ) 
i 

n =
1 , 2 , . . . , M 

8: D i = Y i ×1 T 
+ 
(1) ,i 

9: Perform HOSVD on D i to find factor matrices C 

(n ) 
i 

n =
1 , 2 , . . . , P 

10: X i +1 = X i − G i ×1 T (1) ,i 

11: Y i +1 = Y i − D i ×1 T (1) ,i 

12: Store G i , D i , T i and W i 

13: end for 

ONIPALS approach is based upon the unfolded cross-covariance

tructure in (30) and its SVD, whereas the GHOPLS stems from the

ontraction product in (29) and its Tucker decomposition. These al-

orithms demonstrate the range of tensor-based options available

or each step of a NIPALS style PLS-regression algorithm. For each

lgorithm, the number of iterations, r , is chosen as the number of

atent variable components required to well approximate the data

ensors X and Y , and this number is usually determined through

ross-validation. 

emark 3. The solution obtained from the HONIPALS

n Algorithm 2 degenerates to the two-way NIPALS in

lgorithm 1 when the input and ouptut data tensors X and

 are given by the matrices X ∈ R 

N×M and Y ∈ R 

N×P and K = 1 . 

emark 4. A symmetric Mode-A type PLS decomposition is also

ossible for both the HONIPAL S and GHOPL S algorithms. This is

chieved by replacing the approximation of Y in terms of the

cores, T , used in the deflation step in (38) and instead using the

cores derived from the output U in (40) . 

emark 5. The relations (36) are expressed in a general form of

ensor regression and are therefore direct extensions of the two-

ay PLS relations (4) and (6) . If desired, they can be expressed

s a mode-1 product of the unfolded matrix T (1) and the respec-

ive core tensors. Furthermore, by Remark 4 both algorithms can

e used for different types of PLS, similarly to the two-way algo-

ithm. Therefore, the GHOPLS and HONIPALS are both generalisa-

ions of the original 2-way NIPALS algorithm harnessing the avail-

ble tensor-based operations. 

emark 6. The proposed GHOPLS shares the first two steps with

he HOPLS algorithm of Zhao et. al. [17] , that is, the calculation

f the cross-covariance data structure and its decomposition. How-

ver, the HOPLS algorithm then only selects a vector component

rom this decomposition. 

.1.1. Calculation of the regularised tensor regression 

The r approximations obtained in each iteration in (39) are

ummed up to yield the final PLS approximations for the HONI-

ALS and GHOPLS algorithms in the form 

˜ 
 ≈

r ∑ 

i =1 

G i ×1 T i , ˜ Y ≈
r ∑ 

i =1 

D i ×1 T i , (41) 
here G and D result from the tensor regression in (37) . This la-

ent variable decomposition can be used to produce a regularised

ensor regression solution to predict ˜ Y from 

˜ X through a regres-

ion coefficient tensor B . To this end, their mode-1 unfolded ver-

ions are given as 

˜ 
 (1) = [ T (1) , 1 , T (1) , 2 , . . . , T (1) ,r ][ G (1) , 1 , G (1) , 2 , . . . , G (1) ,r ] 

T , 

˜ 
 (1) = [ T (1) , 1 , T (1) , 2 , . . . , T (1) ,r ][ D (1) , 1 , D (1) , 2 , . . . , D (1) ,r ] 

T , 

here T (1), i denotes the unfolded version of the i th score tensor T .
ased on this, we can now obtain the prediction of ˜ Y (1) from 

˜ X (1) 

s 

˜ 
 (1) = 

˜ X (1) [ G (1) , 1 , G (1) , 2 , . . . , G (1) ,r ] 
+ T [ D (1) , 1 , D (1) , 2 , . . . , D (1) ,r ] 

T , 

(42) 

hich yields the unfolded regression coefficient tensor, B , in the

orm 

 〈 M〉 = [ G (1) , 1 , G (1) , 2 , . . . , G (1) ,r ] 
+ T [ D (1) , 1 , D (1) , 2 , . . . , D (1) ,r ] 

T (43)

his is analogous to the two-way NIPALS result in (10) . 

.2. The quaternion NIPALS algorithm 

In this section an extension of the real-valued NIPALS

lgorithm 1 is introduced for quaternion-valued data. Previous

ork on PLS for quaternion-valued data can be found in Via et.

l. [23] who shows that the PLS result should have a widely lin-

ar form. This PLS method is aimed at data block cross-correlation

nalysis and is a generalisation of PLS-SB described in [19] . As a re-

ult, the obtained decomposition is useful for an analysis of the di-

ections of cross-covariance between the input and output blocks,

ut the components may not be orthogonal and it is not the most

arsimonious for regression. The proposed extension of the NIPALS

LS algorithm for quaternion-valued data, on the other hand, pro-

uces a regularised PLS solution for the quaternion widely linear

egression problem in (24) based on an orthogonal latent variable

ecomposition. 

The proposed quaternion widely linear PL S (WL-QPL S) algo-

ithm first calculates a vector component t ∈ H 

N from the input

atrix X ∈ H 

N×m which represents the maximal cross-covariance

ith the output matrix Y ∈ H 

N×n . The vector component t is given

s 

 = Xw , 

n order to find the vector, w , the augmented versions of the in-

ut and output matrices are transformed to the real domain as

 Re ∈ R 

N×4 m and Y Re ∈ R 

N×4 m through the isomorphism introduced

n (25) . The real-valued vector, w Re ∈ R 

4 m , is found from the solu-

ion to the optimisation problem 

 Re = arg max 
|| w Re || =1 

|| w 

T 
Re X 

T 
Re Y Re || 2 2 . (44)

hich yields the leading eigenvector of X 

T 
Re 

Y Re Y 

T 
Re 

X Re . This is next

ast back into the quaternion-domain through the relation 

 w 

T , w 

i T , w 

jT , w 

k T ] T = �m 

w Re . (45)

In this way, the component chosen at each iteration of the

L-QPLS algorithm, t , represents maximal joint second-order in-

ormation between the X and Y blocks. The computation of w Re 

n the real domain does not affect the quaternion representation

22,23] and is not equivalent to a real-valued NIPALS implemen-

ation, as was the case with the widely linear complex PLS (WL-

PLS) [15] . 
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Following the calculation of the vector, t , its relation to the X

and Y blocks is found. This relationship is described by a quater-

nion widely linear regression given in augmented a form as 

X = t p 

H 
, Y = t c 

H 
, (46)

where the vectors p = [ p 1 , p 2 , p 3 , p 4 ] and c = [ c 1 , c 2 , c 3 , c 4 ] repre-

sent the widely linear regression coefficients and are calculated as

p = ( t + X ) H , c = ( t + Y ) H . (47)

To calculate the next PLS component, the matrices X and Y

must be deflated, in order to remove the impact of the current

score t . The deflation is performed as 

X i +1 = X i − t i p 

H 
i , Y i +1 = Y i − t i c 

H 
i , (48)

where the subscript i represents the current iteration number. In

the next iteration the matrices X i +1 and Y i +1 are used in place of

X i and Y i . As such, the latent variables are mutually orthogonal

which leads to a parsimonious representation of the joint process

in the input and output blocks. 

Algorithm 3 The GHOPLS algorithm. 

1: Input: X , Y , r, K 1 , K 2 , . . . , K M 

, L 1 , L 2 , . . . , L P 
2: for i = 1 , . . . , r do 

3: S i = 〈 X i , Y i 〉 { 1 , 1 } 
4: Perform rank- (K 1 , K 2 , . . . , K M 

, L 1 , L 2 , . . . , L P ) HOOI decom-

position to give S i = G 

C 
i ×1 P 

(1) 
i 

×2 P 

(2) 
i 

×3 · · · ×M 

P 

(M) 
i 

×M+1 

Q 

(1) 
i 

×M+2 Q 

(2) 
i 

×M+3 · · · ×M+ P Q 

(P) 
i 

5: T (1) = X (1) (P 

(M) T 
� P 

(M−1) T 
� · · · � P 

(1) T ) T 

6: G i = X i ×1 T 
+ 
(1) i 

7: D i = Y i ×1 T 
+ 
(1) i 

8: X i +1 = X i − G i ×1 T (1) i 

9: Y i +1 = Y i − D i ×1 T (1) i 

10: Store G i , D i , T i and W i 

11: end for 

Algorithm 4 The NIPALS algorithm for widely linear quaternion

PL S (WL-QPL S). 

1: Initialise: X 1 = [ X , X 

i , X 

j , X 

k ] , Y 1 = [ Y , Y 

i , Y 

j , Y 

k ] 

2: for i = 1 , . . . , r do 

3: X i,Re = X i �m 

, and Y i,Re = Y i �n 

4: w i,Re = Eig max { X 

T 
i,Re 

Y i,Re Y 

T 
i,Re 

X i,Re } 
5: [ w 

T 
i 
, w 

iT 
i 

, w 

jT 
i 

, w 

kT 
i 

] T = �m 

w i,Re 

6: t i = X i w i , t i = [ t i , t 
i 
i 
, t 

j 
i 
, t k 

i 
] 

7: c i = ( t + 
i 

Y i ) 
H 

8: p i = ( t + 
i 

X i ) 
H 

9: X i +1 = X i − t i p 

H 
i , Y i +1 = Y i − t i c 

H 
i 

10: Store t i , p 1 ,i , c i and w i 

11: end for 

The full WL-QPLS procedure is summarised in Algorithm 4 . Af-

ter every iteration, the vectors t are stored into the columns of

the matrices T , while p and c are stored as P = [ P 1 , P 2 , P 3 , P 4 ] and

C = [ C 1 , C 2 , C 3 , C 4 ] which leads to the widely linear relationships 

˜ X = T P 

H 
, ˜ Y = T C 

H 
. (49)

Therefore, the input X and output Y are both represented in

terms of the new latent variables T . This provides a natural rep-

resentation of the joint process and offers a useful decomposition

to calculate the regression coefficients, B , for the widely linear re-

gression 

˜ Y = 

˜ X B . (50)
his is achieved through 

 = 

˜ X 

+ ˜ Y . 

The calculation of the regression coefficients based on the WL-

PLS model means that only shared information is included in the

alculation. 

In addition to the relations (49) , an equivalent version of the

eal-valued PLS relationship (7) can be found, whereby the score

ithin the data block Y is calculated as 

 = Yc 1 + Y 

i c 2 + Y 

j c 3 + Y 

k c 4 , 

ith the respective loadings, from the augmented scores u , given

y 

 = ( u 

+ Y ) H . 

. Analysis of the MD-PLS algorithms 

Having introduced a class of MD-PLS algorithms, including two

ensor-variate and one quaternion-valued, this section provides a

omparative analysis to contrast each algorithm. 

.1. Analysis of the HONIPALS and GHOPLS cross-covariance 

tructures 

The difference between the HONIPALS and GHOPLS algorithms

s in the respective cross-covariance structures and the subse-

uent deflations. In this section, we further elaborate on the con-

equences of these alternative choices. 

Consider the tensors X ∈ R 

I 1 ×I 2 ×···×I n ×···×I M and Y ∈
 

J 1 ×J 2 ×···×J n ×···×J P with I 1 = J 1 . The mode-1 contraction product

sed by the GHOPLS algorithm is given as S = 〈 X , Y 〉 { 1 , 1 } ∈
 

I 2 ×I 3 ×···×I M ×J 2 ×···J P . On the other hand, the HONIPALS uses

he product of the mode-1 unfolded data tensors in the form

 = X 

T 
(1) 

Y (1) ∈ R 

I 2 I 3 ... I M ×J 2 J 3 ... J P . Observe that these share the same

lements, that is 

I 1 ∑ 

i 1 = j 1 =1 

x (i 1 ,i 2 , ... ,i M ) y ( j 1 , j 2 , ... , j P ) 

= X (1) [: , i 2 i 3 . . . i M 

] T Y (1) [: , j 2 j 3 . . . j P ] . 

s seen from the definition of the contraction product in (13) . The

ink is provided through the canonical matrix unfolding in (15) ,

hereby the mode- (M − 1) canonical unfolding of the tensor S 

ields the matrix S 〈 M−1 〉 ∈ R 

I 2 I 3 ... I M ×J 2 J 3 ... J P which is the same as the

atrix S = X 

T 
(1) 

Y (1) . 

As the two cross-covariance structures contain the same ele-

ents, intuitively, they share the same information. However, the

ucker decomposition of the contraction product form will yield a

ifferent result to the SVD of the unfolded cross-covariance matrix,

hat is, the matrices, W (1) , derived from each decomposition select

 different unfolded score matrix as T (1) = X (1) W (1) . 

roposition 1. Consider the tensors X ∈ R 

I 1 ×I 2 ×···×I n ×···×I M and Y ∈
 

J 1 ×J 2 ×···×J n ×···×J P with I 1 = J 1 . The mode- (M − 1) canonical unfolding

f the Tucker decomposition of the tensor S = 〈 X , Y 〉 { 1 , 1 } (obtained

rom the mode-1 contraction product) does not yield the equivalent

esult as the SVD of the matrix S 〈 M−1 〉 , obtained as S = X 

T 
(1) 

Y (1) =
�V 

T . 

roof. The tensor given by S = 〈 X , Y 〉 { 1 , 1 } admits a Tucker de-

omposition 

 = G ×1 A 

(1) ×2 A 

(2) ×3 · · · ×M+ P−2 A 

(M+ P−2) , 

here G ∈ R 

K 1 ×K 2 ×···×K M+ P−2 and A 

(i ) ∈ R 

K i ×K i with K i = I i +1 for

 < M and K i = J i +1 for i ≥ M . The Tucker decomposition of the ten-

or S is computed through the HOOI or HOSVD algorithms so that
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he factor matrices A 

( i ) , and hence their Kronecker products, are

rthogonal. The mode- (M − 1) canonical unfolding is then given as

20] 

S 〈 M−1 〉 = (A 

(M−1) 
� A 

(M−2) 
� · · · � A 

(1) ) G 〈 M−1 〉 
(A 

(M+ P−2) 
� A 

(M+ P−3) 
� · · · � A 

(M) ) T . 

This yields the left and right multiplication of the unfolded core

ensor G 〈 M−1 〉 by two unitary matrices. However, the matrix G 〈 M−1 〉 
s in general not diagonal which means that the result is not

enerally equivalent to the SVD of the matrix S 〈 M−1 〉 = X 

T 
(1) 

Y (1) =
�V 

T , where the matrix � is diagonal. �

emark 7. The cross-covariance structures for the HONIPALS,

 (1) = X 

T 
(1) 

Y (1) , and GHOPLS, S = 〈 X , Y 〉 { 1 , 1 } , algorithms have

he same entries, linked by a canonical mode-1 unfolding, and

hus, they share the same information. However, according to

roposition 1 , the Tucker decomposition in (31) which is employed

ithin the GHOPLS algorithm is in general not equivalent to the

VD in (33) used for HONIPALS. As a result, the unfolded score ma-

rices, T (1) in (34) , will not be the same in both algorithms. 

.2. The duality between tensor and quaternion PLS 

A quadrivariate random variable is readily represented by either

 tensor or quaternion data structure. In this section we show how

ll proposed algorithms process such data equivalently, but in an

lternative manner. As a prerequisite, the link between a quater-

ion variable and its tensor counterpart is first formalised through

he derivation of an isomorphism. 

.2.1. The isomorphism between quaternions and tensors 

Consider a matrix of quaternion variables, X , which can also be

epresented as a tensor, X ∈ R 

N×4 ×m , where each mode-2 slice is

onstructed as 

X (: , 1 , :) = X r , X (: , 2 , :) = X i , 

X (: , 3 , :) = X j , X (: , 4 , :) = X k . 
(51) 

ence, the frontal slices, X (: , : ,m ) ∈ R 

N×4 for m = 1 , 2 , . . . , m, are

atrices that contain the four components of a quaternion vector.

his can be regarded as an extension of the isomorphism in (25) ,

m 

, which yields a quaternion to tensor transform. To this end, we

hall re-write (26) , X Re = 

1 
4 X �∗

m 

, as 

 (1) = X �∗�, (52) 

here X (1) ∈ R 

N×4 m indicates the mode-1 unfolding of the tensor

epresentation of the augmented quaternion-valued matrix X . The

atrix � is a permutation matrix which re-orders the columns of

he matrix, X Re , to group the four quaternion vector components,

 r , x i , x j , x k , of each variable into consecutive columns, that is 

 (1) = X Re �. (53) 

hrough the right multiplication of (52) by an identity matrix I (1) ∈
 

4 m ×4 m , which is also considered to be in a mode-1 unfolded state

e obtain the relation 

 (1) = ( X �∗�) I (1) ⇔ X = I ×1 ( X �∗�) , (54)

here I ∈ R 

4 m ×4 ×m is constructed from the 4 m × 4 m dimensional

dentity matrix folded such that each mode-3 slice has a 4 × 4

dentity matrix shifted down by 4 from the previous slice. The full

uaternion to tensor transform is then given by 

 = A ×1 X , (55) 

here 

 = I ×1 �
∗� ∈ H 

4 m ×4 ×m , (56) 

s the complete transform. 
The mapping back into the quaternion domain is performed as

 = X (1) A 

H 
(1) . (57) 

.2.2. WL-QPLS as a tensor-variate PLS 

The link between a quaternion-valued and tensor-based PLS so-

ution is described through the quaternion to tensor transform in

56) . Consider the case where it is desired to calculate a PLS-

egression between the quaternion-valued input data matrix, X ∈
 

N×m , and the quaternion-valued output data matrix, Y ∈ H 

N×p .

sing the transform A constructed in (56) , we can express the ma-

rices, X and Y , as third order tensors 

 = A m 

×1 X Y = A p ×1 Y , (58) 

here X ∈ R 

N×4 ×m and Y ∈ R 

N×4 ×p . These data tensors can be

rocessed by the tensor-valued HOPLS or the proposed GHOPLS

nd HONIPALS algorithms to compute an alternative PLS solution. 

Each iteration of the WL-QPLS in Algorithm 4 computes a

idely linear regression between a vector score, t i , and the in-

ut and output blocks X i and Y i . The equivalent regression (with

he same degrees of freedom) in the real-domain requires the

uaternion vector, t , to be represented as an N × 4 matrix, t Re =
 t r , t i , t j , t k ] , produced by the transform (26) . Therefore, the score

f an equivalent tensor PLS solution would also be an N × 4 ma-

rix. This score can be computed by the HONIPALS and GHOPLS in

lgorithm 2 (with M = 4 ) and Algorithm 3 (with K 1 = L 1 = 4 and

 2 = L 2 = 1 ) respectively, however, the HOPLS [17] cannot produce

n alternative solution as it only calculates a vector score com-

onent. Therefore, for the same data represented as quaternion

r tensor-variate, which are related through the transform (58) ,

ll the three algorithms, WL-QPL S, GHOPL S and HONIPAL S, have

nough degrees of freedom to provide a comparable regression re-

ult. 

.2.3. Comparison of the WL-QPLS and HONIPALS cross-covariance 

tructures 

The quaternion-valued data matrices X ∈ H 

N×m and Y ∈ H 

N×p 

an be transformed, through (58) , to the data tensors, X ∈ R 

N×4 ×m 

nd Y ∈ R 

N×4 ×m , which, as stated in Section 4.2.2 , allow alterna-

ive PLS solutions using the WL-QPLS, HONIPALS and GHOPLS al-

orithms. The data inputs are related as 

 (1) = X Re �X , Y (1) = Y Re �Y , 

here X (1) and Y (1) are the mode-1 unfolded data tensors, X Re 

nd Y Re denote the transformed real-valued data matrices through

26) and �X and �Y are the permutation matrices of the required

imensions needed for the quaternion to tensor transform (56) . 

Observe that the WL-QPLS algorithm in (45) calculates the

ross-covariance structure in the real-domain, given by the matrix

 

T 
Re 

Y Re , before transforming back to the quaternion-domain. On the

ther hand, the HONIPALS algorithm creates the cross-covariance

tructure from the mode-1 unfolded data tensors, as S = X 

T 
(1) 

Y (1) .

hese cross-covariance structures are therefore related as 

 (1) = �T 
X S Re �Y , 

hile the corresponding SVDs are related as 

 �V 

T = �T 
X U Re �V 

T 
Re �Y . 

he leading four left singular vectors are chosen for the basis of

he HONIPALS score vectors T (1) in (34) when used to provide an

lternative to the quaternion-valued solution. This basis for the

ONIPALS algorithm is therefore the same as that calculated in the

eal-domain for the WL-QPLS, as they are related by 

 (1) = X Re �X ( �
T 
X U Re )[: , 1 : 4] . 

However, to calculate the quaternion-valued score vector, t , only

he first left singular vector, U [:, 1], is transformed back into the
Re 
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Table 2 

Comparison of the multidimensional PLS algorithms. 

Algorithm Step WL-QPLS GHOPLS HONIPALS 

Cross-covariance structure S i,Re = X T 
i,Re 

Y i,Re 

Transformed to the 

real-domain 

S i = 〈 X i , Y i 〉 { 1 , 1 } 
Tensor-based 

contraction product 

S i = X T 
(1) ,i 

Y (1) ,i Unfolded 

to matrices 

Eigen-decomposition w i,Re = Eig max { S i,Re S 
T 
i,Re 

} 
Left singular vectors of 

S i,Re 

HOOI/HOSVD 

decomposition of S i 
W (1) i = Eig K-max { S i S T i 

} 
First K left singular 

vectors of S i 
Score calculation t i = X i w i The 

projection of X i 

T (1) = X (1) (P (M) T �

P (M−1) T � · · · � P (1) T ) 

The projection of 

unfolded X i 

T (1) i = X (1) i W i The 

projection of unfolded 

X i 

Deflation X i +1 = X i − t i p 
H 
i 

Y i +1 = Y i − t i c 
H 
i 

X i +1 = X i − G i ×1 T (1) i 

Y i +1 = Y i − D i ×1 T (1) i 

X i +1 = X i − G i ×1 T (1) i 

Y i +1 = Y i − D i ×1 T (1) i 
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quaternion domain, to the vector w in (45) . Moreover, to cast the

quaternion multiplication of the score computation, t = Xw , to the

real-domain, the constrained matrix multiplication (27) is required.

Remark 8. The cross-covariance structures for the proposed HONI-

PAL S and WL-QPL S algorithms are linked through a permutation

matrix which means that they share the same eigendecomposition

computation. The HONIPALS uses the four leading singular vec-

tors to calculate the scores from the unfolded data matrix X (1) . On

the other hand, the WL-QPLS uses only the first singular vector of

the real-valued cross-covariance structure which is folded back to

the quaternion-domain prior to the calculation of the score vector.

This operation performed equivalently in the real-domain requires

a constrained matrix multiplication. As a result, the scores and the

subspace identified in every iteration of the WL-QPLS and HONI-

PALS algorithms are not the same. 

4.3. Comparison of the core components of the multidimensional PLS 

algorithms 

The key characteristics of the NIPAL S PL S in Algorithm 1 are

that it is iterative, eigenvector-centric and based on capturing the

joint second-order information. Each iteration consists of four ma-

jor steps: 

1. Finding the cross-covariance structure, 

2. The eigendecomposition of the cross-covariance structure, 

3. The calculation of the score, 

4. The latent variable decomposition and deflation. 

The choice of how these steps are computed dictates the qual-

ities of the solution and therefore the goal of the implementa-

tion. For example, PLS Mode-A changes the deflation step to Y i +1 =
Y i − u i q 

T 
i 

for use in correlation analysis applications. 

It has been shown that the three algorithms WL-QPLS, GHO-

PL S and HONIPAL S are generalisations of the two-way NIPALS algo-

rithm for performing PLS-regression on higher-order multidimen-

sional data. The choices of the core components with respect to

the NIPALS PLS, are summarised in Table 2 . 

5. Simulations and applications 

5.1. Simulation of WL-QPLS and tensor-variate PLS 

A simulation on synthetic data is now presented to further

examine the WL-QPLS, HONIPALS and GHOPLS algorithms for

multidimensional regression. An improper quaternion-valued data

matrix, X ∈ H 

N×m ( N = 10 0 0 and m = 10 ), was generated from a

mixture of r = 5 independent improper sources. Each quaternion

axis q r , q i , q j , q k was an i.i.d. source, sampled from the distri-

bution as q n ∼ N (0 , 1) for n = r, i, j, k . The output data matrix,

Y ∈ H 

N×p , was then calculated as Y = X B , where X ∈ H 

N×4 m is in
he augmented form and B ∈ H 

4 m ×p are the quaternion-valued

egression coefficients, where p = 10 . A noise matrix, N Y ∈ H 

N×p ,

as then created where each quaternion axis was sampled from

he distribution q n ∼ N (0 , σ 2 ) for n = r, i, j, k, while σ 2 was varied

o give a range of SNRs calculated as 

NR = 10 log 10 

Tr { E[ Y 

H Y ] } 
Tr { E[ N 

H 
Y 

N Y } . 

The matrices X and Y were transformed to tensors using the

uaternion to tensor transform in (56) to give the data tensors

 ∈ R 

N×4 ×m and Y ∈ R 

N×4 ×p . The widely linear and tensor regres-

ion estimates were calculated using the WL-QPLS, GHOPLS and

ONIPALS algorithms for the same data and for a range of com-

onents. The tensor GHOPLS and HONIPALS, outlined respectively

n Algorithm 3 and Algorithm 2 , were implemented to calculate

ank-( N , 4, 1) scores. The results were transformed back into the

uaternion domain to calculate the error as 

SE = 

| Y − ˆ Y | 2 
Tr { E[ Y 

H Y ] } , (59)

here ˆ Y are the estimated dependent variables. The results are

hown in Fig. 1 for three different SNRs and include the results

or training data and the ensemble average of the estimate on

est data, for an ensemble with 50 members. The right hand plots

ompare the MSE (on the training data) for each algorithm for

he range of SNR. For more than r = 5 PLS components, the error

or the test data degraded for all the algorithms as they were

ver-fitting. For a general application, the structure of the data

ithin this representation must be considered in order to indicate

he most appropriate algorithm. 

.2. Application for quaternion covariance matrix diagonalisation 

Applications which invlove covariance matrix diagonalisation

re ubiquitous in real-valued signal processing [29] . To that end,

he WL-QPLS algorithm can be implemented as a tool for the di-

gonalisation of the quaternion empirical covariance matrices in

ection 2.4 , X 

H X , X 

i H X , X 

jH X and X 

k H X . This result is analogous

o that achieved by the WL-CPLS for complex-valued data [15] . 

In Section 2.4.1 it was shown that to fully cater for

uaternion-valued second-order statistics, the four covariance ma-

rices E[ X 

H X ] , E[ X 

i H X ] , E[ X 

jH X ] and E[ X 

k H X ] must be considered.

o that end, quaternion covariance matrix diagonalisation requires

ll four matrices to be simultaneously diagonalised as well as the

raditional covariance matrix. An extension of PCA for quaternion-

alued data, QPCA, has been developed in [30,31] , and was ob-

ained from the quaternion SVD of the quaternion covariance ma-

rix, 

 

H X = U�U 

H X = TU 

H , 
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Fig. 1. The MSEs of widely linear and tensor regression estimates from the proposed MD-PLS algorithms, for a range of SNRs and different numbers of PLS components. The 

MSE was calculated as a ratio of the power in the dependent variables. 
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c  
s a direct extension of the real-valued PCA. However, in this way

he full augmented statistics are not considered and so the com-

onents are not fully uncorrelated. Xiang et al. [32] show that an

xtension of the complex-valued SUT for quaternions, the QUT, can

nly diagonalise the quaternion covariance matrix and one comple-

entary covariance matrix at a time. Furthermore, the quaternion

pproximate uncorrelating transform (QAUT) can approximately di-

gonalise the covariance matrix along with the three complemen-

ary covariance matrices. 

Owing to the ability of the WL-QPLS to calculate orthogonal

atent-variables, T , it consequently produces a decomposition of

he input variables, X , which has diagonalised all the quaternion

ovariance matrices. To resolve this outstanding isssue, notice that

he WL-QPLS algorithm can be implemented with both the input

nd output being the same matrix, X , with the aim of producing a

iagonalising transform. This diagonalisation is given by 

 = X �+ 
, 

here the transform matrix � takes the form 

= 

⎛ 

⎜ ⎜ ⎜ ⎝ 

(P 

H 
1 W ) W 

H (P 

i H 
2 W ) W 

H (P 

jH 
3 

W ) W 

H (P 

k H 
4 W ) W 

H 

(P 

H 
2 W ) W 

H (P 

i H 
1 W ) W 

H (P 

jH 
4 

W ) W 

H (P 

k H 
3 W ) W 

H 

(P 

H 
3 W ) W 

H (P 

i H 
4 W ) W 

H (P 

jH 
1 

W ) W 

H (P 

k H 
2 W ) W 

H 

(P 

H 
4 W ) W 

H (P 

i H 
3 W ) W 

H (P 

jH 
2 

W ) W 

H (P 

k H 
1 W ) W 

H 

⎞ 

⎟ ⎟ ⎟ ⎠ 

. 

(60) 

emark 9. The WL-QPLS in Algorithm 4 with the input and out-

ut blocks given by the quaternion-valued matrix X yields a score

atrix T which is fully uncorrelated in terms of quaternion-valued

econd-order statistics. The augmented covariance matrix, T H T , of
he WL-QPLS scores is now block diagonal which means that all

our covariance matrices are diagonalised. 

emark 10. If, in each iteration of the WL-QPLS Algorithm 4 , the

core vector t is normalised, then the complementary covariance

atrices of the score matrix, T , will yield their circularity quotients

n (22) . 

.3. Application of the MD-PLS algorithms for image classification 

The GHOPLS, HONIPALS and WL-QPLS were implemented

or the real-world problem of colour image classification, a case

here the data are naturally mutlidimensional. To do so we

mployed the quaternion-based framework developed by Risojevi ́c

nd Babi ́c [33,34] and implemented the MD-PLS algorithms as an

lternative pre-processing step. 

This methodology was applied to the Brazilian Coffee Scenes

ataset [35] , a selection of satellite images in the near infrared

NIR), red and green spectrum. Each image is categorised into ei-

her an image of a coffee plantation (over 80% of pixels containing

offee plants) or a non-coffee area. The image is then encoded into

 quaternion representation as 

(x, y ) = iQ NIR (x, y ) + jQ r (x, y ) + kQ g (x, y ) . 

As a first processing step, each image was converted into over-

apping p × p pixel patches where p = 5 . The patches were vec-

orised as s ∈ H 

1 ×25 and a subset of N = 10 0 0 0 were randomly se-

ected to calculate a set of filters using each proposed MD-PLS al-

orithm. The WL-QPLS, HONIPALS and GHOPLS were implemented

or the case where the input and output were the same data struc-

ure, as required for the covariance matrix diagonalisation appli-

ation in Section 5.2 . For the WL-QPLS implementation, the filter
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Table 3 

Coffee image classification. 

Filter Accuracy 

QPCA 88.6% 

WL-QPLS 89.7% 

HONIPALS 88.5% 

GHOPLS 88.8% 
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was the matrix W of the concatenated score projections in (45) .

For the tensor-based algorithms, the quaternion-valued patch was

transformed to a tensor representation through (56) and the fil-

ter was obtained from the GHOPLS and HONIPALS basis in (34) .

In each case the number of components selected was r = 15 . The

filtered patches were then represented in the quaternion domain

as 

˜ s = ̃

 s (0) + ̃

 s (1) i + ̃

 s (2) j + ̃

 s (3) k. 

The dictionary learning step employed in [33] was neglected in

order to provide a direct comparison between the algorithms con-

sidered. Moreover, a filter was developed using quaternion princi-

pal component analysis (QPCA) [30] , which is calcualted from the

SVD of the covariance matrix.A real-valued feature vector for each

image was then calcualted via the same process in [33] , outlined in

Appendix B . Once the feature vector was obtained the images were

classified using a support vector machine (SVM) implemented in

Matlab. The 5-fold cross validated results are presented in Table 3 ,

demonstrating the validity of the proposed quaternion and tensor-

valued representations. 

The advantages of quaternion-valued filters for image represen-

tation have been established in the literature [30,31,36] . The mul-

tidimensional encoding inherent in the algebra enables the rela-

tionships between colours to be preserved and so the processing

contains physical meaning [31,36] . This ability is lost if the data

is transformed to a real-valued vector. Our application shows that

tensors also offer a method in which to preserve geometric infor-

mation in the calculations. The implementation of the MD-PLS al-

gorithms to determine a subspace filter highlights their flexibility.

As the data structure is a parameter, the proposed algorithms of-

fer an alternative way in which to represent a subspace in both

regression and unsupervised learning tasks. 

6. Conclusion 

We have introduced a class of novel algorithms for a PLS-

regression solution with multidimensional data. The WL-QPLS has

been shown to be a generalisation of the real-valued two-way

NIPALS algorithm for quaternion-valued data, which makes pos-

sible a regularised widely linear regression for both circular and

noncircular quaternion data. Two algorithms have been proposed

for tensor-based regression, the HONIPAL S and the GHOPL S which

adopt a different and more general approach to tensor PLS than

the existing HOPLS or N-PLS methods. The HONIPALS uses an un-

folding approach for the cross-covariance structure, whereas the

GHOPLS uses the tensor contraction product. The analysis shows

that these methods take into account the same information but

produce alternative results. Finally, a quaternion to tensor isomor-

phism has been introduced to highlight the equivalence for quadri-

variate data. The proposed algorithms have been verified through a

simulation on synthetic data, the application of the WL-QPLS algo-

rithm for the open problem of quaternion covariance matrix diag-

onalisation and a case study of image classification of coffee plan-

tations from satellite data. 

The proposed MD-PLS algorithms have been shown to represent

comprehensive generalisations of a NIPALS style PLS-regression for

tensor- and quaternion-valued data. These developments open a
ew approach for PLS-regression type applications as they allow

he dimensionality of the PLS model to be chosen either as the

ost appropriate parameters from cross-validation or based on

ome physically meaningful property of the data, whereas conven-

ional applications are limited to purely selecting the number of

LS scores. In particular, the tensor-based framework allows com-

lete flexibility of the data structure dimensions. The proposed

ONIPAL S and GHOPL S algorithms have been shown to provide

lternative methods of representation for such tensorvariate data,

hich can enhance interpretability of the solution or model. More-

ver, the WL-QPLS utilises the quaternion algebra which can be

sed to represent relationships among data such as rotations. As

 result, the class of MD-PLS algorithms has the potential to be

mployed for a wide variety of regression scenarios and provide in

epth data analysis beyond a two-way solution for common appli-

ations such as subspace identification. 
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ppendix A. The HOPLS algorithm 

Zhao et. al. [17] introduced a tensor-based PLS algorithm, HO-

LS, which computes the decomposition (28) in order to pro-

uce a tensor regression. The full HOPLS process is outlined in

lgorithm 5 . The first step in each iteration is to compute the con-

lgorithm 5 The HOPLS algorithm [17] . 

1: Input: X , Y , r, K n for n = 1 , 2 , . . . , M and L n for n = 1 , 2 , . . . , P 

2: for i = 1 , . . . , r do 

3: S i = 〈 X i , Y i 〉 { 1 , 1 } 
4: Perform rank- (K 1 , K 2 , . . . , K M 

, L 1 , L 2 , . . . , L P ) HOOI decom-

position to give S = G 

C 
i ×1 P 

(1) 
i 

×2 P 

(2) 
i 

×3 · · · ×M 

P 

(M) 
i 

×M+1 

Q 

(1) 
i 

×M+2 Q 

(2) 
i 

×3 · · · ×M+ P Q 

(P) 
i 

5: t i is first leading left singular vector of 

(
X i ×2 P 

(1) T 
i 

×3 

P 

(2) T 
i 

· · · ×M+1 P 

(M) T 
i 

)
(1) 

6: G i = X i ×1 t 
T 
i 

×2 P 

(1) T 
i 

×3 P 

(2) T 
i 

×4 · · · ×M+1 P 

(M) T 
i 

7: D i = Y i ×1 t 
T 
i 

×2 Q 

(1) T 
i 

×3 Q 

(2) T 
i 

×4 · · · ×P+1 Q 

(P) T 
i 

8: X i +1 = X i − G i ×1 t i ×2 P 

(1) 
i 

×3 P 

(2) 
i 

×4 · · · ×M+1 P 

(M) 
i 

9: Y i +1 = Y i − D i ×1 t i ×2 Q 

(1) 
i 

×3 Q 

(2) 
i 

×4 · · · ×P+1 Q 

P) 
i 

10: end for 

raction product (13) between X and Y along the first mode. The

rthogonal rank- (K 1 , K 2 , . . . , K M 

, L 1 , L 2 , . . . , L P ) Tucker decomposi-

ion of the resultant tensor, S , is then obtained through the HOOI

lgorithm [21] . The HOPLS score vector t is found as the first sin-

ular vector of the unfolded matrix ( X i ×2 P 

(1) T 
i 

×3 P 

(2) T 
i 

· · · ×M+1 

 

(M) T 
i 

) (1) , where P 

( n ) for n = 1 , 2 , . . . , M are the factor matrices

roduced from the prior Tucker decomposition of S . The respec-

ive core tensors, G and D , for the HOPLS decomposition of X and

 can then be solved for. 

To calculate the tensor regression coefficients for prediction us-

ng the HOPLS model, a mode-1 unfolding of the latent variable

epresentation of X is first performed 

 (1) = T (1) V , (A.1)
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here T (1) is a matrix of r columns which contains the r score vec-

ors obtained by the HOPLS algorithm and V is a matrix of r rows

ith each row, v r , given by 

 r = G (1) r (P 

(M) 
� P 

(M−1) 
� · · · � P 

(1) ) T . 

 mode-1 unfolding of Y is performed as [17] 

 (1) = T (1) Q 

∗T , (A.2)

here the matrix Q 

∗ has r rows, q 

∗
r , given by 

 

∗
r = D (1) r (Q 

(P) 
� Q 

(P−1) 
� · · · � Q 

(1) ) T . 

ow the prediction of the mode-1 unfolded dependent variables,

 (1) , can be performed as 

 (1) = X (1) V 

+ Q 

∗, (A.3)

here each column v + r of V 

+ is calculated as 

 

+ 
r = (P 

(M) 
� P 

(M−1) 
� · · · � P 

(1) ) G 

+ 
(1) r 

. 

ppendix B. Calculation of feature vector for the image 

lassification problem 

The process used in [33] is employed to create the fea-

ure vector to be used for image classification from the filtered

uaternion-valued patch vectors ˜ s . The real-valued feature vector,

 

(l) = [ f (l) 
q , f (l) 

q + r , f 
(l) 
q +2 r 

] , q = 1 , 2 , . . . , 15 was obtained from 

f (l) 
q = | ̃  s (l) 

q | , 
f (l) 
q + r = max (0 , ̃  s (l) 

q − θ ) , 

f (l) 
q +2 r 

= max (0 , −˜ s (l) 
q − θ ) , 

here θ = 1 × 10 −10 , l = 0 , 1 , 2 , 3 , for each quaternion axis and r is

he length of the vectorised patch. These are then pooled for each

atch as 

 

(l) = 

1 

N 

N ∑ 

i =1 

f (l) 
i 

, 

here N is the number of patches within an image. Each element

as power-law transformed as F = F α, where α = 0 . 5 and then

ormalised through 

 

(l) = 

F (l) 

|| F (l) || 2 
2 

, 

efore being concatenated into one feature vector F =
 F 
(0) 

, F 
(1) 

, F 
(2) 

, F 
(3) 

] to be fed into the SVM. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.sigpro.2019.03.002 . 
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