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Abstract— An extension of the fast independent component
analysis algorithm is proposed for the blind separation of both
Q-proper and Q-improper quaternion-valued signals. This is
achieved by maximizing a negentropy-based cost function, and
is derived rigorously using the recently developed HR calculus
in order to implement Newton optimization in the augmented
quaternion statistics framework. It is shown that the use of
augmented statistics and the associated widely linear modeling
provides theoretical and practical advantages when dealing with
general quaternion signals with noncircular (rotation-dependent)
distributions. Simulations using both benchmark and real-world
quaternion-valued signals support the approach.

Index Terms— Augmented quaternion statistics, independent
component analysis, quaternion blind source separation, quater-
nion noncircularity, quaternion widely linear modeling.

I. INTRODUCTION

THE independent component analysis (ICA) methodology
is a popular framework for the separation of latent

sources from an observed mixture, based on the assumption
of statistical independence of the sources [1]. In its standard
form, the latent sources are assumed to be linearly mixed,
and subject to additive noise. For this scenario, algorithms
proposed in the past two decades include those based on
the second- and higher-order statistics (second order blind
identification and joint approximate diagonalization of eigen-
matrices algorithms [2], [3]), and those based on information
theoretic criteria such as the maximization of likelihood and
minimization of mutual information [4].

The fast independent component analysis (FastICA)
algorithm [5], a fast converging algorithm based on the
maximization of non-Gaussianity and implemented using an
approximative Newton optimization method, has become a
standard for the separation of both sub- and super-Gaussian
sources. The algorithm has shown to exhibit cubic conver-
gence when in the deflationary mode (using the kurtosis cost
function) and local quadratic convergence in the symmetric
orthogonalization approach [6]. The FastICA algorithm was
subsequently extended to allow for the separation of complex
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circular sources in [7], and more recently it was generalized to
enable separation of complex noncircular sources [8], this was
achieved based on the fourth-order moments and through the
strong uncorrelating transform [9]. A FastICA algorithm for
the separation of both circular and noncircular sources based
on a negentropy-based criterion was addressed in [10].

The recent progress in supervised and unsupervised adaptive
signal processing algorithms in the complex domain [11] has
been made possible through to the advances in the so-called
augmented statistics [12] and the framework for analysis of
non-analytic functions called the CR calculus (also known as
Wirtinger calculus) [13].

On the other hand, the advances in multidimensional sensor
technology (3-D anemometers, 3-D inertial body sensors,
robotics) have highlighted the need for adaptive signal process-
ing algorithms in the quaternion domain, which is a natural
domain for the processing of 3-D and 4-D signals. The
literature on quaternion-valued signal processing includes the
algebraic [14], [15] as well as statistical approaches [16], [17].
More recent developments include the analysis of quaternion-
valued random variables via augmented quaternion statis-
tics [18], the unitary diagonalization of quaternion matrices
[19], and the so-called HR calculus, which is a unified
framework for the analysis of non-analytic quaternion func-
tions [20].

These advances have been exploited through widely lin-
ear modeling of quaternion signals [18], [21], allowing the
incorporation of the full second-order information and leading
to the class of widely linear quaternion least mean square
algorithms [22]. For nonlinear signal models, both split and
fully quaternion nonlinear models have been successfully
implemented [23], [24], whereas for unsupervised adaptive
algorithms a quaternion ICA algorithm based on likelihood
maximization and the concept of Infomax was proposed by
Le Bihan and Buchholz in [25]. In their study, it was con-
cluded that a fully quaternion nonlinearity results in better
separation performance. Moreover, real-valued and complex-
valued ICA models are shown to be special instances of
the quaternion-valued ICA model (all being division alge-
bras), which highlights the generality of quaternions. In other
words, quaternion-valued ICA can solve both the real-valued
and complex-valued blind source separation paradigm, but
the opposite does not necessarily hold. For instance, inter-
channel correlation of a quadrivariate independent component
is accounted for in a quaternion model, whereas complex-
valued ICA models do not allow for the modelling of
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correlation beyond two dimensions. Therefore, the complex-
valued ICA model is not likely to reconstruct the quadrivariate
sources as shown in Section IV-D.

In this paper, we propose a FastICA algorithm suitable
for the separation of both Q-proper and Q-improper (second-
order noncircular) quaternion-valued signals from an observed
linear mixture. This is achieved by means of the recently
introduced augmented quaternion statistics [18], [21], widely
linear modeling [18], [21], [22], and HR calculus [20]. An
augmented Newton method is proposed, whereby at a cost
of additional complexity we are able to capture the complete
statistical properties of the mixing signals and thus ensure
successful separation of latent sources. The performance is
validated using synthetic Q-proper and Q-improper signals
in both deflationary and simultaneous separation scenarios,
together with real-world case studies of electroencephalogram
(EEG) artifact extraction and in the context of Alamouti coding
in communications.

II. PRELIMINARIES ON QUATERNION SIGNALS

A. Quaternion Algebra

Consider the quaternion variable q = qa+ıqb+jqc+κqd ∈
H, where qa, qb, qc, and qd are real-valued scalars, and ı, j ,
and κ are both orthogonal unit vectors and imaginary units,
such that

ıj = −j ı = κ jκ = −κj = ı κı = −ıκ = j

ıjκ = ı2 = j2 = κ2 = −1. (1)

These identities illustrate the noncommutative property of
quaternion products, whereby q1q2 �= q2q1. The variable q
can also be written in terms of its real (scalar) part �{q} = qa

and its vector part �{q} = ı�ı {q} + j�j {q} + κ�κ{q}, such
that q = �{q} + �{q}. Alternatively, by adopting the Cayley–
Dickson notation, q can be constructed from a pair of complex
quantities z1 = qa + ıqb and z2 = qc + ıqd , such that
q = z1 + z2j , however, in this paper direct quaternionic
notation will be used.

We next consider three self-inverse mappings1 or involu-
tions [26] about the ı, j , and κ axes, given by

qı = −ıqı = qa + ıqb − jqc − κqd

qj = −jqj = qa − ıqb + jqc − κqd

qκ = −κqκ = qa − ıqb − jqc + κqd (2)

which form the bases for augmented quaternion statistics [18],
[21]. Intuitively, an involution represents a rotation along a
single imaginary axis, while the conjugate operator (·)∗, also
an involution, rotates along all the three imaginary directions,
that is

q∗ = qa − ıqb − jqc − κqd . (3)

The involutions have the property that (q1q2)
α = qα

1 qα
2 , α =

{ı, j, κ}, while (q1q2)
∗ = q∗2q∗1. Finally, the norm (modulus)

of a quaternion variable q is defined by

‖q‖2 =
√

qq∗ = √
q∗q =

√
q2

a + q2
b + q2

c + q2
d (4)

1A self-inverse mapping operator sinv(·) is such that sinv
(
sinv(q)

) = q.

while for a vector q in a quaternion Hilbert space [16], the
2-norm is defined as ‖q‖2 =

√
qH q.

B. Augmented Statistics and Widely Linear Modeling

For a random vector q = qa + ıqb + jqc + κqd ∈ HN ,
the probability density function (pdf) is defined in terms
of the joint pdf of its components, such that pQ(q) �
pQa,Qb,Qc,Qd (qa, qb, qc, qd ). Its mean is then calculated in
terms of each respective component as E{q} = E{qa} +
ı E{qb}+ j E{qc}+ κ E{qd}. The covariance matrix of quadri-
variate real-valued component vectors Cr

qq = E{qr qrT } ∈
R4N×4N describes the second-order relationship between the
respective components of q, where qr = [qT

a , qT
b , qT

c , qT
d ]T .

Representing the components of Cr
qq by their equiva-

lent quaternion-valued counterparts allows for the complete
second-order statistical information to be captured directly in
H [18]. This is achieved by expressing the components of the
quaternion random vector q through its involutions (2), such
that

qa = 1

4

(
q+ qı + qj + qκ

)
, qb = 1

4

(
q+ qı − qj − qκ

)

qc = 1

4

(
q− qı + qj − qκ

)
, qd = 1

4

(
q− qı − qj + qκ

)
.

(5)

In analogy to the complex domain2 where both z and z∗
are used to define the augmented statistics [27], [28], it can be
shown that the bases q, qı , qj , and qκ provide a suitable means
to define the quaternion augmented statistics [18]. This way,
the augmented random vector qa = [qT , qıT , qjT , qκT ]T is
used to define the augmented covariance matrix

Ca
q = E

{
qaqa H

}

=

⎡

⎢
⎢
⎢
⎣

Cqq Cqı Cqj Cqκ

CH
qı Cqı qı Cqı qj Cqı qκ

CH
qj Cqj qı Cqj qj Cqj qκ

CH
qκ Cqκqı Cqκqj Cqκqκ

⎤

⎥
⎥
⎥
⎦
∈ H4N×4N (6)

which describes the complete second-order information avail-
able. The block matrices in (6), Cqı , Cqj , Cqκ , are respectively
termed the ı -, j -, and κ-covariance matrices E{qqαH }, α =
{ı, j, κ}, while Cqq = E{qqH } is the standard covariance
matrix. The ı -, j -, and κ-covariance matrices are also called
the complementary or pseudo-covariance matrices [28].

In the domain of second-order statistics, the concept of
properness3 has been extended from the complex to the
quaternion domain and has been discussed in [16] and [17].
Following on the involution-based augmented bases in [18]
and [21], a random vector is considered Q-proper if it is
not correlated with its involutions, or equivalently, Cqı =
Cqj = Cqκ = 0, that is, all the cross-covariance matrices
vanish, it is otherwise termed Q-improper [18]. Note that,

2In the complex domain, the real and imaginary components can be repre-
sented in terms of the conjugate coordinates z and z∗ as zr = (1/2)(z+ z∗)
and zi = (1/2j )(z− z∗).

3Properness refers to second-order circularity (rotation invariant pdfs), that
is, equal power in all the components, qa , qb, qc, and qd , of a quaternion
random variable q = qa + ıqb + jqc + κqd .
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for a Q-proper random vector, the augmented covariance
matrix in (6) has a block-diagonal structure. More restricted
definitions of properness can also be given, whereby one or
more pseudo-covariances are nonzero (C-proper) [17]. This
can be intuitively understood as rotation invariance along one
or more of the quaternion axes, Q-properness thus reflects
rotation invariance along all the three imaginary axes.

Recall that the solution to the mean square error (MSE)
estimator of a real-valued signal y ∈ R in terms of an
observation x , that is

ŷ = E{y|x} (7)

is given by ŷ = hT x, where h is a coefficient vector and x
the regressor vector. As a generalization, the MSE estimator
for a quaternion-valued signal y ∈ H can be written in terms
of the MSE estimators of its respective components, given by

ŷa = E{ya|qa, qb, qc, qd } ŷb = E{yb|qa, qb, qc, qd}
ŷc = E{yc|qa, qb, qc, qd } ŷd = E{yd |qa, qb, qc, qd}

(8)

such that

ŷ = ŷa + ı ŷb + j ŷc + κ ŷd

= E {ya|qa, qb, qc, qd} + ı E {yb|qa, qb, qc, qd}
+j E {yc|qa, qb, qc, qd } + κ E {yd |qa, qb, qc, qd}.

(9)

Observe that by using the relations (5), the MSE estimator of
y can be equivalently written as

ŷ = E
{

y|q, qı, qj , qκ
}+ ı E

{
yı |q, qı , qj , qκ

}

+j E
{

yj |q, qı , qj , qκ
}+ κ E

{
yκ |q, qı , qj , qκ

}

(10)

which for jointly normal independent components results in
the widely linear estimator [18], [22]

y = hH q + gH qı + uH qj + vH qκ

= ωa H qa (11)

where the augmented weight vector ωa = [hT , gT , uT , vT ]T .
Thus, the linear estimator in (11) is the optimal estimator for
the generality of quaternion-valued signals, both proper and
improper.

C. Overview of the HR Calculus

A real-valued cost function, typically the error power,
is a common performance criterion across statistical signal
processing problems. However, the ways to calculate gradients
of a real function of quaternion variables are only just being
addressed. In a similar fashion to the complex CR calculus
framework, where a real-valued function is defined based on
the conjugate coordinates z and z∗ [11], [13], [29], in the
context of HR calculus [20] the mapping f (q): HN �→ R can
be considered as a function of the orthogonal quaternion basis
vectors q, qı , qj , and qκ , such that

f (q, qı , qj , qκ) : HN ×HN ×HN ×HN �→ R. (12)

Likewise, the duality between a quaternion function f and its
real-valued equivalent g (vectors in R4) can be expressed as

f (q) = f (q, qı , qj , qκ )

= fa(qa, qb, qc, qd )+ ı fb(qa, qb, qc, qd )

+j fc(qa, qb, qc, qd )+ κ fd(qa, qb, qc, qd )

= g(qa, qb, qc, qd ). (13)

Then, based on the isomorphism between R4 and H and by
considering the components of the quaternion variable q in the
orthogonal bases in (5), a relation can be established between
the derivatives of g ∈ R4 and those taken directly with respect
to the quaternion basis variables. Within the HR calculus, the
HR derivatives are given by [20]

∂ f

∂q
= 1

4

(
∂ f

∂qa
− ı

∂ f

∂qb
− j

∂ f

∂qc
− κ

∂ f

∂qd

)

∂ f

∂qı
= 1

4

(
∂ f

∂qa
− ı

∂ f

∂qb
+ j

∂ f

∂qc
+ κ

∂ f

∂qd

)

∂ f

∂qj
= 1

4

(
∂ f

∂qa
+ ı

∂ f

∂qb
− j

∂ f

∂qc
+ κ

∂ f

∂qd

)

∂ f

∂qκ
= 1

4

(
∂ f

∂qa
+ ı

∂ f

∂qb
+ j

∂ f

∂qc
− κ

∂ f

∂qd

)
(14)

and the HR∗ derivatives can then readily be written from (14)
by using the property that, for real functions of quaternion
variables,

(
∂ f /∂q

)∗ = ∂ f /∂q∗, leading to

∂ f

∂q∗
= 1

4

(
∂ f

∂qa
+ ı

∂ f

∂qb
+ j

∂ f

∂qc
+ κ

∂ f

∂qd

)

∂ f

∂qı∗ =
1

4

(
∂ f

∂qa
+ ı

∂ f

∂qb
− j

∂ f

∂qc
− κ

∂ f

∂qd

)

∂ f

∂qj∗ =
1

4

(
∂ f

∂qa
− ı

∂ f

∂qb
+ j

∂ f

∂qc
− κ

∂ f

∂qd

)

∂ f

∂qκ∗ =
1

4

(
∂ f

∂qa
− ı

∂ f

∂qb
− j

∂ f

∂qc
+ κ

∂ f

∂qd

)
. (15)

Similar to the conjugate derivatives in (15), involution-wise
derivatives are also applicable to real-valued functions of
quaternion variables, and are given by

(
∂ f

∂q

)α

= ∂ f

∂qα
, α = {ı, j, κ}. (16)

Recently, in [20], it has been shown that in the quaternion
domain, the direction of steepest descent (maximum rate of
change of f (q)) is given by the derivative with respect to q∗,
i.e., (∂ f /∂q∗). This can be seen as a natural generalization of
Brandwood’s result for functions of complex variables [30].
Finally, note that, while we have considered real-valued func-
tions of quaternion variables in the above discussion, the HR

calculus framework can be equally utilized for the analysis of
general quaternion-valued functions.

III. QUATERNION FASTICA (Q-FASTICA) ALGORITHM

Consider the standard ICA model

x́ = As (17)

where observed mixtures x́ ∈ HN are a weighted sum of Ns

latent sources s ∈ HNs in a noise-free environment, and the
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rows of A ∈ HN×Ns form the respective mixing parameters.
While no knowledge of the mixing process is available, the
sources are assumed statistically independent, for convenience,
they have zero mean and unit variance and for generality
no assumption is made regarding the ı -, j -, and κ-variances.
The mixing matrix A is assumed square (N = Ns ), well-
conditioned, and invertible.

We shall now show that for a quaternion random vector
q ∈ HN , its whitening matrix V is given by

V = �−
1
2 EH (18)

where � is the diagonal matrix of right eigenvalues and E is
the matrix of the corresponding eigenvectors of the covariance
matrix of q.

Indeed, by expressing the covariance matrix in terms of the
quaternion right eigenvalue decomposition Cqq = E{qqH } =
E�EH [19], [31], the covariance matrix of the whitened
random vector p = Vq then becomes

E
{

ppH
}
= VE

{
qqH

}
VH

= �−
1
2 EH (

E�EH )
E�−

1
2 = I (19)

where I is the identity matrix.
Using the above result as a preprocessing step in ICA

algorithms, the quaternion mixture x́ is whitened such that4

E
{

xxH
}
=ME

{
ssH

}
MH = I (20)

where x = Vx́ = VAs and M � VA is a new unitary mixing
matrix containing the whitening matrix V, given in (18). We
aim to obtain a demixing matrix W such that WH x is an
estimate of the original sources, albeit subject to the scaling,
phase, and permutation ambiguities. Then for the nth source
estimate, we have

yn = wH
n x = wH

n Ms = uH s = eξϕsm (21)

where wn is the nth column of the demixing matrix W,
u is a vector with a single nonzero value given by eξϕ

at the nth entry signifying an arbitrary direction within
H, ϕ is an unknown and arbitrary angle, and ξ =
(
ıqb + jqc + κqd

/√
q2

b + q2
c + q2

d

)
is the unit pure quater-

nion vector.5 Finally, note that, by constraining the demixing
vector wn to unit norm, the estimated source yn is of unit
variance

E
{

yn y∗n
} = wH

n E
{

xxH
}

wn = wH
n wn = 1 (22)

while the matrix W becomes unitary.

A. Newton-Update-Based ICA Algorithm

The proposed q-FastICA algorithm is based on the max-
imization of negentropy of the separated sources, following
on the previous implementations of the FastICA algorithm in
the real and complex domains [1], [7], [10]. This is achieved

4The result in [19] can be seen as the Takagi factorization of quaternion
matrices.

5A pure imaginary quaternion is referred to as the imaginary or vector part
of a quaternion variable.

by choosing an appropriate nonlinear function G(y), so as to
make a suitable approximation of the negentropy function.

In [25], three such distinct quaternion nonlinearities were
identified: a nonlinear function applied component-wise to
y (split-quaternion function), applied to the components of
the Cayley–Dickson form of y (split-complex function), or
applied directly to y (full-quaternion function). It was also
shown that the full-quaternion nonlinearity resulted in the
best separation performance. The difficulty in applying a full
quaternion nonlinearity in this paper stems from the fact
that under the stringent analyticity conditions of the Cauchy–
Riemann–Fueter [32] equations, the only analytic function in
H is a constant. As an alternative, local analyticity conditions
may be considered in the calculation of the derivatives [24],
[33]. However, the assumptions therein may not be valid
for general nonlinear functions. For continuity, following the
existing complex FastICA (c-FastICA) algorithms which all
use a real-valued nonlinear function, we shall also employ
a real-valued smooth and even nonlinearity G : R �→ R,
while using the HR calculus and widely linear modeling to
implement an augmented Newton method so as to employ the
full information available within general Q-improper mixtures.

The real-valued q-FastICA cost function, which approxi-
mates negentropy [1], is then defined as

J (w, wı , wj , wκ ) = E
{
G(|wH x|2)} (23)

where the cost function J is written in terms of the four basis
vectors, to emphasize the widely linear model. Based on (11),
the optimization problem based on (23) can be stated as

wopt = arg max‖w‖22=1 J (w, wı , wj , wκ ) (24)

where the demixing vector is normalized to avoid very small
values of w, while keeping the unit variances of the extracted
sources.

The solution of this constrained optimization problem is
found through the method of Lagrange multipliers and by
utilizing the Newton method to perform a fast iterative
search for the optimal value wopt. In summary, the q-FastICA
algorithm for the estimation of one possibly noncircular source
is expressed in its augmented form as

wa(k + 1) = wa(k)− (Ha
ww)−1∇wa∗L

λ(k + 1) = λ(k)+ μ∇wa∗L
w(k + 1)← w(k + 1)

‖w(k + 1)‖2 (25)

where the augmented demixing vector wa = [w, wı , wj , wκ ]T ,
L is the Lagrangian function and λ is the Lagrange parameter
updated via a gradient ascent method with step size μ. The
vector ∇wa∗L and matrix Ha

ww are respectively, the augmented
gradient vector and Hessian matrix of the Lagrangian function.
The algorithm is summarized in Algorithm 1 and the full
derivation is provided in the Appendix.

The estimation of multiple sources can be performed one by
one through a deflationary procedure, where the nth estimated
source is recovered either sequentially, by the following Gram–
Schmidt orthogonalization procedure or, simultaneously, via a
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Algorithm 1: The q-FastICA algorithm
1: Preprocessing: Decorrelate the input data x, which may

be achieved using the whitening matrix V (18),
and center the data by removing their mean;

2: Initialize the demixing vector w1 by assigning random
values or the identity matrix;

3: Calculate the augmented gradient vector ∇wa∗ and
Hessian matrix Ha

ww of the Lagrangian according
to (41);

4: Update the augmented demixing vector as
wa ← wa − (Ha

ww)−1∇wa∗L
5: Update the Lagrange parameter as

λ← λ+ μ∇wa∗L
6: Normalize the updated demixing vector

w← w/‖w‖2
7: If the algorithm has not converged, go to step 3.

symmetric orthogonalization method. Orthogonalization pro-
cedures in the quaternion domain follow from the already
established results [34].

Computational complexity of the proposed q-FastICA
is approximately O(4160N3 + 32N2T ), whereas that of
c-FastICA in the long vector mode is approximately O(32N3+
48N2T ), symbols N = Ns and T denote, respectively, the
number of mixtures/sources and the number of samples for
each source.

IV. SIMULATIONS AND DISCUSSION

A. Benchmark Simulations

The performance of the q-FastICA algorithm is first
assessed through simulations using synthetic 4-D signal codes
located on the edges of geometric polytopes [35] with
varying degree of Q-improperness. To assess the degree of
Q-improperness of the generated sources, we define a circular-
ity measure based on the ratio of the complementary variances
to the standard variance, expressed as [18]

r =
∣
∣E{qqı∗}∣∣+∣∣E{qqj∗}∣∣+∣∣E{qqκ∗}∣∣

3E{qq∗} , r ∈ [0, 1]. (26)

This way, a measure of r = 0 indicates a Q-proper source,
while for a highly Q-improper source r = 1.

For the q-FastICA algorithm with symmetric orthogonaliza-
tion, the standard performance index (PI) measure was used,
given by

P I = 10 log10

⎛

⎝ 1

N

N∑

i=1

⎛

⎝
N∑

j=1

|bi j |
max{|bi1|, . . . , |bi N |} − 1

⎞

⎠

+ 1

N

N∑

j=1

(
N∑

i=1

|bi j |
max{|b1 j |, . . . , |bN j |} − 1

)⎞

⎠ (27)

where BH = WH VA and bi j = (B)i j and a PI of less than
−10 dB signifies good separation performance.

For simulations, 5000 samples of four polytope sources
were mixed using a randomly generated quaternion-valued
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Fig. 1. Performance of the q-FastICA algorithm for the separation of four
sources using a symmetric orthogonalization procedure. (a) Scatter plot of
the quaternion sources, properties given in Table I. (b) Scatter plot of the
estimated sources, with nonlinearity G1(y). (c) PI at each iteration of the
ICA procedure for nonlinearities G1(y) = log cosh(y), G2(y) = √0.1 + y
and G3(y) = log(0.1 + y).

4× 4 mixing matrix. The observed mixtures were then decor-
related and processed using the q-FastICA algorithm (25),
with symmetric orthogonalization. To estimate the sources
simultaneously, Table I describes the source properties, while
scatter plot performance graphs are given in Fig. 1(a). Sources
s1(k) to s4(k) were, respectively, generated from cubic,
5-point dicyclic, 2-point cyclic, and 3-point cyclic groups,
source s3(k) had a high degree of Q-improperness r = 1,
the source s4(k) had the value of r = 0.3351, and the other
two sources were Q-proper. For performance comparison,
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TABLE I

SOURCE PROPERTIES FOR SIMULATIONS ON BENCHMARK SIGNALS

BASED ON SYMMETRIC ORTHOGONALIZATION

Source Polytope Q-improperness measure (r)

s1(k) Cubic 0.0104
s2(k) Dicyclic (5 point) 0.0089
s3(k) Cyclic (2 point) 1.0000
s4(k) Cyclic (3 point) 0.3351

TABLE II

SEPARATION OF SOURCES WITH DIFFERENT MEASURES OF

Q-IMPROPERNESS. PI (27) IS GIVEN IN DECIBELS

Quaternion infomax ICA
rs1 rs2 Full-H Split-C q-FastICA

‘CASE 1’ 0.01 0.01 −5.57 −3.11 −16.69
‘CASE 2’ 0.34 0.02 −4.57 −2.51 −18.16
‘CASE 3’ 0.35 1.00 −3.11 −2.21 −17.35

the nonlinearity G was chosen as in [7], with G1(y) =
log cosh(|y|2), G2(y) = √

0.1+ |y|2 and G3(y) = log(0.1 +
|y|2). The demixing matrix W was initialized randomly, and
the step sizes were set as μ1 = 1, μ2 = 0.1, μ3 = 0.5, and
λ = 5 for the gradient ascent update algorithm. As shown
in Fig. 1(c), the algorithm successfully separated all the four
sources with the respective PI values of −17.87,−15.8086,
and −19.4882 dB. Fig. 1(b) illustrates the scatter plots of the
normalized estimated sources for the case with nonlinearity
G1, note that sources were estimated in a random order.

B. Effect of Q-Improperness on Performance

In the next stage, the effect of the Q-impropriety of sources
on the performance of the algorithm when separating using
a symmetric orthogonalizsation method was assessed over
three cases for the mixture of 5000 samples of a Q-proper
and Q-improper polytope signal, given in Table II and also
shown in Fig. 2. For comparison, the quaternion Infomax ICA
algorithm [25] was utilized with both full-quaternion and split-
complex nonlinearity, where G(y) = log cosh(y). Observe that
the q-FastICA algorithm had a consistent performance in all
three cases with an average PI of −17.40 dB, outperform-
ing the quaternion Infomax ICA whose performance further
deteriorated for Q-improper sources, having an average PI
of −4.42 and −2.61, respectively, for the full-quaternion and
split-complex nonlinearity.

C. EEG Artifact Extraction

In an EEG recording session, each channel comprises a
mixture of an EEG signal corresponding to the neural activity,
and electrical activity pertaining to artifacts such as movement
of the head, line noise, and eye blinks. In the modeling of the
EEG signal, the artifacts, both external and biological, were
considered statistically independent from pure EEG [36]–[38];
and the usefulness of the real-valued FastICA algorithm in the
extraction of eyeblink artifacts was studied in [39].

In our experimental setup, data was sampled at 4.8 kHz for
30 s from 12 electrodes placed symmetrically on the scalp

Case 1 Case 2 Case 3
−20
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−14

−12

−10

−8

−6

−4

−2

0

PI
 (

dB
)

Infomax (Full−H) Infomax (Split−C) q−FastICA

Fig. 2. Performance of the proposed q-FastICA algorithm (25) and the
quaternion Infomax ICA in separating sources with varying degrees of
Q-improperness, whose properties are given in Table II.

according to the 10–20 system, as shown in Fig. 3(f), with
the reference and ground electrodes placed, respectively, on
the right earlobe and forehead. The electrodes used were AF7,
AF8, AF3, AF4, ML, MR, C3, C4, PO7, PO8, PO3, and PO4,
where the ML and MR electrodes were placed, respectively, on
the left and right mastoid. In addition, the voltage difference
between the two pairs of electrodes placed above and to the
side of the eye sockets measured the electrooculogram (EOG),
i.e., the electrical activity due to eye blinks and eye movement.
The left and right EOG was combined into a quadrivariate
signal as a reference to assess the performance of the q-
FastICA algorithm in artifact removal from EEG.

The three quaternion-valued EEG signals were formed
from four symmetric electrodes from the frontal (AF7, AF8,
AF3, AF4), central (ML, MR, C3, C4) and occipital (PO7,
PO8, PO3, PO4) regions of the head. The so-constructed Q-
improper quaternion signals were

x1(k) = AF8(k)+ ıAF4(k)+ jAF7(k)+ κAF3(k)

x2(k) = MR(k)+ ıC3(k)+ jML(k)+ κC4(k)

x3(k) = PO8(k)+ ıPO4(k)+ jPO3(k)+ κPO7(k) (28)

and the observed EEG mixtures were then represented as
x = [x1(k), x2(k), x3(k)]T . The corresponding degrees of Q-
impropropriety were, respectively, 0.8902, 0.6824, and 0.8932,
measured according to (26).

In this scheme, the q-FastICA algorithm (25) was first
utilized to estimate the source signals, with the step size μ = 1
and initial Lagrange parameter λ = 5 was chosen empiri-
cally, while following our earlier analysis, the nonlinearity
was chosen to be G(y) = log cosh(y). Next, the estimated
source pertaining to the EOG artifact was selected through
the examination of the kurtosis values of the components of
the separated sources. Pure EEG signals typically have near-
zero kurtosis values, while those belonging to EOG artifacts
have super-Gaussian distributions and thus large kurtosis val-
ues [40], this being attributed the the sparse nature of eye
blinks.
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Fig. 3. Removal of EOG artifact from an EEG recording using the proposed q-FastICA algorithm. (a) Recorded EEG and EOG channels. (b) Components
of the estimated sources. (c) Top: Kurtosis values of the recorded EEG channels, bottom: Kurtosis values of each component of the estimates. (d) Original
and reconstructed EOG signals, along with the residual estimation error. (e) Original recorded EEG (thick gray line) and clean EEG mixture after artifact
removal (thin black line), shown between 6s–9s. (f) Placement of the EEG recording electrodes.

A waveform of the original recorded channels and the
components of the quaternion-valued separated sources are
depicted, respectively, in Fig. 3(a) and (b). The occurrences
of eye blinks can be seen at the beginning of the record-
ing, then at around 7, 15, and 22 s, with the effect of

the EOG artifact more prominent on the frontal lobe chan-
nel and less severe in the central and occipital channels.
By inspection, the separated EOG artifact can be seen in
the components of the third extracted source y3(k), that is
�{y3(k)},�ı{y3(k)},�j {y3(k)}, and�κ{y3(k)}, and is verified
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Fig. 4. Communication codes in quaternion mixing. (a) Communication
sources. (b) c-FastICA estimates (long vector). (c) c-FastICA estimates.
(d) q-FastICA estimates.

through comparison of the kurtosis values of each component
Fig. 3(c). While most of the estimated sources had a near-
zero measure of kurtosis, the real and imaginary compo-
nents of y3(k) exhibited, in comparison, very large kurtosis
values.

To study the effectiveness of the algorithm in removing
the artifact, the components of y3(k) were reconstructed to
form the EOG artifact by averaging the four channels of
y3(k) and were then compared to the original quadrivariate
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Fig. 5. Communication codes in quaternion mixing when the constellation
signals s1a �= s1b. (a) Communication sources. (b) c-FastICA estimates (long
vector). (c) c-FastICA estimates. (d) q-FastICA estimates.

EOG recording (which is also the average of the two pairs of
electrodes placed near the eye sockets). Fig. 3(d) depicts the
EOG extraction performance, along with the residual error of
the estimation process, having a small MSE of 1.21× 10−4.
By excluding the artifact components contained in y3(k), the
clean EEG mixture was reconstructed, a 3-s window between
6 and 9 s for each reconstructed channel is shown in Fig. 3(e),
where the effect of the EOG present at 7 s was diminished in
all the channels.
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Fig. 6. Communication codes in complex mixing. (a) Communication
sources. (b) c-FastICA estimates (long vector). (c) c-FastICA estimates. (d) q-
FastICA estimates.

D. Alamouti-Based Communication Systems

We next present the application of q-FastICA in the context
of a practical communication problem of Alamouti coding,
which was shown to enhance the reliability of data communi-
cations. For a single user, the model of two transmit antennas
and one antenna receiver can be expressed as [41]

[
x́a

x́b

]
=

[
sa −s∗b
sb s∗a

] [
aα

aβ

]
∈ C (29)

x́ = as ∈ H (30)

where x́a and x́b are two consecutive observed signals at the
receiver, sa and sb denote the transmitted complex symbols
to be recovered, and aα and aβ denote the channel responses
between the two transmit antennas and receiver. The complex
mixing problem in (29) can be formulated as a quaternion
source separation problem in (30), where x́ = x́a + x́bj and
s = sa + sbj [42]. The single-user quaternion model can be
generalized for a multiuser communication system as in (17),
where each mixing matrix entry ai jε represents the channel
between the receiver of the i th user and the εth transmit
antenna of the j th user, ε ∈ {α, β}.

For clarity, a 2 × 2 source separation in H (31) can be
expressed in C (32) as

[
x́1
x́2

]
=

[
a11a12
a21a22

][
s1
s2

]
∈ H (31)

corresponding to
[
x́1a

x́1b

]
=

[
s1a−s∗1b
s1b s∗1a

][
a11α

a11β

]
+
[
s2a−s∗2b
s2b s∗2a

][
a12α

a12β

]
∈ C

[
x́2a

x́2b

]
=

[
s2a−s∗2b
s2b s∗2a

][
a22α

a22β

]
+
[
s1a−s∗1b
s1b s∗1a

][
a21α

a21β

]
∈ C. (32)

We have considered three scenarios: 1) the pair of sym-
bols sia = sib corresponding to the i th user were equal;
2) the pair of symbols s1a �= s1b of the first user were
not equal; and 3) the mixing matrix A in (31) was complex
valued. The sources were communication constellations such
as binary phase shift keying (BPSK), quadrature PSK (QPSK),
and 16-quadrature amplitude modulation (QAM) for these
three scenarios as shown in Figs. 4(a), 5(a), and 6(a). For
all the scenarios, q-FastICA was compared with c-FastICA
[10] to solve this special complex-valued BSS problem. Two
methodologies were considered for using c-FastICA: 1) the
long vector approach in which the i th quaternion observation
x́i = x́ia + x́ibj were split into two complex observations
x́ia and x́ib , which were then concatenated into a “long”
complex-valued vector, 2) the conventional approach whereby
the two quaternion observations were split into four complex
observations, i.e., {x́1, x́2} ∈ H ≡ {x́1a, x́1b, x́2a, x́2b} ∈ C.
For the first scenario in Fig. 4, observe that the estimates
of the long vector method are different from those by the
conventional method. However, both estimates were far from
being close to the original complex sources. On the other hand,
the q-FastICA gave reasonable estimates of the sources. The
nature of dependence between sia and sib explains why c-
FastICA failed to recover the sources. Moreover, the model of
Alamouti-based communication BSS problem in (29) is not
best suited for the conventional ICA model. As for scenario
two in Fig. 5, it was expected that the c-FastICA estimates
would improve, as now we have three independent sources,
instead of just two. Again, the long-vector c-FastICA tech-
nique did not estimate successfully any of the three sources,
however, conventional c-FastICA recovered the QPSK source.
In practice, it is highly unlikely that sia and sib are different,
because that would mean the user is alternating between BPSK
and QPSK for each consecutive symbol period. For the sake of
comparison, we have also considered complex-valued mixing
in the context of Alamouti-based communication systems in
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the third scenario in Fig. 6. This scenario is also unlikely
due to the fact that the channel response aib of the second
transmitter antenna for each i th user is zero. Both long vector
and conventional c-FastICA recovered an improved version
of the QPSK source (vis-a-vis their estimates of scenario 2).
However, they did not succeed in reconstructing the 16-QAM
source, in contrast to q-FastICA.

V. CONCLUSION

An ICA algorithm suitable for the blind separation of both
Q-proper and Q-improper sources has been introduced. The
well-known negentropy-based cost function has been utilized
to estimate independent quaternion-valued sources, while an
augmented Newton method implementation has allowed the
extension of the FastICA methodology to the quaternion
domain. The performance of the proposed widely q-FastICA
algorithm in both deflationary and simultaneous separation,
using benchmark quaternion polytope signals, has been illus-
trated. The algorithm has also been shown to be effective in
the removal of ocular artifacts from the EEG and in Alamouti-
based communication systems.

APPENDIX I
SOME BACKGROUND RESULTS FROM HR CALCULUS

Some results used in the derivation of the q-FastICA
algorithm (25) are discussed below.

A. Chain Rule in the HR Calculus

For a composite quaternion function F ◦ G = F(G(q)) :
H �→ H, the chain rule is expressed as

∂ F

∂ξ
= ∂F

∂G
∂G
∂ξ + ∂F

∂Gı
∂Gı

∂ξ + ∂F
∂Gj

∂Gj

∂ξ + ∂F
∂Gκ

∂Gκ

∂ξ (33)

and ξ = {q, qı , qj , qκ}. To show this, the total differential of
F(q̄) can be written as [20]

d F = ∂F
∂ q̄ dq̄ + ∂F

∂ q̄ ı dq̄ ı + ∂F
∂ q̄j dq̄j + ∂F

∂ q̄κ dq̄κ (34)

where the dummy variable q̄ � G(q). Likewise, the total
differential for G(q) is given by

dG = ∂G
∂q dq + ∂G

∂qı dqı + ∂G
∂qj dqj + ∂G

∂qκ . (35)

By substituting (35) into (34), and after rearranging the
expressions, we obtain the total differential of F with respect
to q as

d F =
(

∂F
∂G

∂G
∂q + ∂F

∂Gı
∂Gı

∂q + ∂F
∂Gj

∂Gj

∂q + ∂F
∂Gκ

∂Gκ

∂q

)
dq

+
(

∂F
∂G

∂G
∂qı + ∂F

∂Gı
∂Gı

∂qı + ∂F
∂Gj

∂Gj

∂qı + ∂F
∂Gκ

∂Gκ

∂qı

)
dqı

+
(

∂F
∂G

∂G
∂qj + ∂F

∂Gı
∂Gı

∂qj + ∂F
∂Gj

∂Gj

∂qj + ∂F
∂Gκ

∂Gκ

∂qj

)
dqj

+
(

∂F
∂G

∂G
∂qκ + ∂F

∂Gı
∂Gı

∂qκ + ∂F
∂Gj

∂Gj

∂qκ + ∂F
∂Gκ

∂Gκ

∂qκ

)
dqκ

where the derivatives ∂ F/∂ξ are given by the terms within the
brackets. The corresponding chain rule for the HR∗ derivatives
can be obtained similarly, and the result of (33) can be
extended to vector-valued functions to form a generalized
chain rule for the derivatives.

B. Augmented Quaternion Newton Method

The isomorphism between R4 and H allows for considera-
tion of the duality between the derivatives in the two domains.
This methodology was previously considered in [43] and
resulted in the derivation of the augmented complex Newton
method. The extension of this paper to the quaternion domain
based on the involution bases was detailed in [20]. A short
summary is presented below. For a function f (q) : HN �→
R, its augmented gradient ∇qa∗ f = ∂ f /∂qa∗ and Hessian
Ha

qq = (∂/∂qa∗)
(
∂ f /∂qq∗)T , where the augmented vector

qa = [qT , qıT , qjT , qκT ]T . The augmented Newton update
can then be written as

�qa = −(Ha
qq

)−1 · ∇qa∗ f (36)

where �qa = qa(k + 1)− qa(k) denotes the change in qa in
each consecutive update.

Finally, observe that the elements of the augmented Hessian
matrix

Ha
qq =

⎡

⎢
⎢
⎣

Hq∗q∗ Hqı∗q∗ Hqj∗q∗ Hqκ∗q∗
Hq∗qı∗ Hqı∗qı∗ Hqj∗qı∗ Hqκ∗qı∗
Hq∗qj∗ Hqı∗qj∗ Hqj∗qj∗ Hqκ∗qj∗
Hq∗qκ∗ Hqı∗qκ∗ Hqj∗qκ∗ Hqκ∗qκ∗

⎤

⎥
⎥
⎦ (37)

can be written in terms of its first row by utilizing the
involution property in (16) and noting that

(
(·)α)β = (·)γ , α �=

β �= γ = {ı, j, κ}.

APPENDIX II
DERIVATION OF THE AUGMENTED Q-FASTICA

UPDATE ALGORITHM

A. First and Second Derivatives of the Cost Function J (w)

Firstly, by using the product rule, the derivatives of the
involutions of |y|2 = yy∗ = |wH x|2 with respect to the
conjugate demixing vector w∗ are calculated as

∂ yy∗

∂w∗
= ∂ y

∂w∗
y∗ + y

∂ y∗

∂w∗
= xy∗ − 1

2
yx∗

∂(yy∗)ı

∂w∗
= ∂ yı

∂w∗
yı∗ + yı ∂ yı∗

∂w∗
= 1

2
yı xı∗

∂(yy∗)j

∂w∗
= ∂ yj

∂w∗
yj∗ + yj ∂ yj∗

∂w∗
= 1

2
yj xj∗

∂(yy∗)κ

∂w∗
= ∂ yκ

∂w∗
yκ∗ + yκ ∂ yκ∗

∂w∗
= 1

2
yκxκ∗.

Then, by using the chain rule (33) and after simplification, we
obtain the gradients of the cost function as

∇w∗J = E{2g(|y|2)xy∗}
∇wı∗J = E{2g(|y|2)xyı∗}
∇wj∗J = E{2g(|y|2)xyj∗}
∇wκ∗J = E{2g(|y|2)xyκ∗} (38)

where g is the first derivative of G, this result can also
be interpreted based on the involution property (16). After
simplifications and considering the whiteness of x, the second
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derivatives of the cost function J can then be calculated as

∂

∂w∗

(
∂J
∂w∗

)T

= E{4g′(|y|2)xy∗xT y∗ − g(|y|2)I}
∂

∂wı∗

(
∂J
∂w∗

)T

= E{2g′(|y|2)(xy∗)ı (xT y∗)+ g(|y|2)I}
∂

∂wj∗

(
∂J
∂w∗

)T

= E{2g′(|y|2)(xy∗)j (xT y∗)+ g(|y|2)I}
∂

∂wκ∗

(
∂J
∂w∗

)T

= E{2g′(|y|2)(xy∗)κ(xT y∗)+ g(|y|2)I}
(39)

where g′ is the second derivative of G and the calculations
of the remaining derivatives follow from property (16). Notice
that the non-commutativity of the quaternion product prohibits
further simplification of the derivatives in (39).

B. Augmented Newton Update

The Lagrangian function L for the optimization problem
in (24) is given by

L(w, λ) = J (w)+ λ(wH w− 1)︸ ︷︷ ︸
� c

(40)

where λ ∈ R is the Lagrange parameter. We can use the
Newton method (36) to find the extrema of (40), where

∂L
∂wa∗ = ∂J

∂wa∗ + ∂c
∂wa∗

∂

∂wa∗

(
∂L

∂wa∗

)T

= Ha
ww + ∂

∂wa∗

(
∂c

∂wa∗

)T

. (41)

The augmented gradient and Hessian of J are then obtained
using (38) and (39). The gradients of c are given by

∂c

∂w∗
= λ

(
w− 1

2
w∗

)
∂c

∂wı∗ =
λ

2
w∗

∂c

∂wj∗ =
λ

2
w∗ ∂c

∂wκ∗ =
λ

2
w∗

and the Hessian can be calculated from

∂

∂w∗

(
∂c

∂w∗

)T

= −λI
∂

∂wı∗

(
∂c

∂w∗

)T

= −λ

2
I

∂

∂wj∗

(
∂c

∂w∗

)T

= −λ

2
I

∂

∂wκ∗

(
∂c

∂w∗

)T

= −λ

2
I.

The Newton update is obtained by substituting these results
in (36). Finally, the Lagrange parameter λ is updated using a
gradient ascent method, where at each iteration the demixing
vector w is first updated via the augmented Newton method,
followed by the update of λ using the current value of w and
a normalization of the demixing vector [44], as in (25).
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