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Time-Frequency Analysis of EEG Asymmetry Using
Bivariate Empirical Mode Decomposition
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Abstract—A novel method is introduced to determine asym-
metry, the lateralization of brain activity, using extension of the
algorithm empirical mode decomposition (EMD). The localized
and adaptive nature of EMD make it highly suitable for esti-
mating amplitude information across frequency for nonlinear and
nonstationary data. Analysis illustrates how bivariate extension
of EMD (BEMD) facilitates enhanced spectrum estimation for
multichannel recordings that contain similar signal components, a
realistic assumption in electroencephalography (EEG). It is shown
how this property can be used to obtain a more accurate estimate
of the marginalized spectrum, critical for the localized calculation
of amplitude asymmetry in frequency. Simulations on synthetic
data sets and feature estimation for a brain–computer interface
(BCI) application are used to validate the proposed asymmetry
estimation methodology.

Index Terms—Asymmetry ratio, bivariate empirical mode
decomposition (BEMD), cognitive task, electroencephalography
(EEG), empirical mode decomposition (EMD).

I. INTRODUCTION

B RAIN-COMPUTER interface (BCI) is a novel research
paradigm that facilitates computer-aided control using

brain activity, and has found application across bioengi-
neering fields, such as neuroprosthetics. Due to its noninvasive
nature and affordable recording equipment, the electroen-
cephalography (EEG) is the most convenient means to measure
neurophysiological activity in real-time BCI systems [1]. The
level of asymmetry observed in EEG, that is, the lateralization
of activity between left and right brain hemispheres, has been
found to be of much interest in the detection and estimation of
brain electrical activity corresponding to cognitive processes
[2], [3].

Asymmetry studies have been addressed both the full EEG
spectrum [4]–[6] and also specific frequency bands of interest
[7]–[9]. For instance, recent work focused on detecting asym-
metry in the alpha band [5], [7], as the suppression of EEG
activity in low-frequency bands is associated with cognitive en-
gagement. McKee et al. [8] found that linguistic tasks, in com-
parison to music tasks, were characterized by greater alpha sup-
pression. It was established in [9] that the lateral asymmetries
in contingent negative variation were caused by cognitive ac-
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tivity of brain. Davidson found that verbal and spatial tasks
were characterized by different levels of EEG asymmetry in
multiple frequency bands [5]. Furthermore, neuropsychological
tasks “Verbal Fluency,” “the Tower of London,” and “Corsi’s
Recurring Blocks” produced specific asymmetry patterns in the
delta and theta bands [6].

Although these results illustrate that asymmetry is a robust
measure for classifying different mental tasks [10], [11], ex-
isting studies have employed standard signal processing tech-
niques based on Fourier analysis [1], [11]–[13] and thus inherit
the well-known problems associated with standard spectrum es-
timation. In addition, standard techniques project the data onto
linear orthogonal basis functions, and are thus suboptimal for
processing of nonlinear and nonstationary real world data (such
as EEG).

In this work, we propose to estimate asymmetry using em-
pirical mode decomposition (EMD) [14], a fully data-driven
technique for decomposing the signal into AM/FM components
which reflect its natural oscillations. EMD makes no prior
assumptions on the data and, as such, it is suitable for the
analysis of nonlinear and nonstationary processes, and has been
successfully employed in the analysis of EEG [15], [16]. Using
EMD, frequency and amplitude information can be analyzed
locally, providing a highly accurate insight into signal dy-
namics, making it an ideal candidate for estimating asymmetry.
The asymmetry estimation paradigm is compared for both
the real-valued and complex-valued EMD algorithm, showing
that bivariate EMD (BEMD) produces enhanced spectrum
estimation for multichannel recordings that contain similar os-
cillating components [17], a realistic assumption in EEG. This,
in turn, yields a more accurate estimate of the marginalized
spectra, critical issue in the localized calculation of amplitude
asymmetry in frequency. Simulations on both synthetic signals
and real world cognitive EEG tasks illustrate the usefulness of
the proposed approach for calculating asymmetry.

II. EMPIRICAL MODE DECOMPOSITION ALGORITHM

A. Empirical Mode Decomposition

Huang et al. [14] developed EMD to perform a highly local-
ized time-frequency estimation in a data-driven fashion. This is
achieved by decomposing the signal into a finite set of AM/FM
components, called “intrinsic mode functions” (IMFs). An IMF
is a function for which the number of extrema and the number
of zero crossings differ at most by one, and the mean of the two
envelopes associated with the local maxima and local minima is
approximately zero. The IMF can thus be regarded as a mono-
component signal. The details of the EMD operation are out-
lined in algorithm 1 [14]. The first IMF is subtracted from the
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original data, , and the procedure is applied
iteratively to the residue, , until it becomes constant or con-
tains no more oscillations. The stopping criterion uses the mode
amplitude

Algorithm 1. The standard EMD algorithm

1) Let ( is original signal).
2) Identify all local maxima and minima of .
3) Find a lower “envelope,” that interpolates all

local minima.
4) Find an upper “envelope,” that interpolates all

local maxima.
5) Calculate the local mean value,

.
6) Subtract the local mean value from

.
7) Let and go to step 2); repeat until

becomes an IMF.

and the evaluation function
, so that sifting is iterated until for some

prescribed fraction of the total duration, while
for the remaining fraction [18]. The default value of
is [0.05, 0.5, 0.05]. The signal decomposed by the EMD
algorithm can thus be written as

(1)

, is the set of IMFs. Due to their monocom-
ponent nature, it is convenient to apply the Hilbert transform to
the IMFs to obtain a time-frequency representation. The Hilbert
transform of an IMF is given by

(2)

where symbol indicates the Cauchy principal value. The an-
alytic signal is then obtained as

(3)

and is described by its amplitude and phase functions, and
. The instantaneous frequency is calculated as the deriva-

tive of the phase function, [19]; a plot of
the amplitude versus time and instantaneous frequency

, that is, amplitude contours on the time-frequency plane is
called the Hilbert-Huang spectrum (HHS), , a three-di-
mensional time-frequency representation of a signal. The mar-
ginal Hilbert spectrum (MHS), , is calculated by marginal-
ising the amplitude of the HHS over time

(4)

where is the total data length. The advantage of MHS for EEG
applications has been addressed in [20]–[22].

B. Complex Extension of EMD

To obtain a set of M complex/bivariate IMFs,
, from a complex signal , the following procedure,

algorithm 2, is adopted (bivariate EMD) [23].

Algorithm 2. The bivariate EMD algorithm

1) Let ����� � ����;
2) To obtain K signal projections, given by

��� �����, project the complex signal �����,
by using a unit complex number ���� , in
the direction of ��, as

�� ��� � ������ ������� � � �� � � � � �

where �� � � denotes the real part of a
complex number, and �� � ��	
�;

3) Find the locations ���� �
�
��� corresponding

to the maxima of ��� ��������;
4) Interpolate (using spline interpolation)

between the maxima points ���� � ����
�
� �	, to

obtain the envelope curves ��� ��������;
5) Obtain the arithmetic mean of all the

envelope curves, ����, and subtract
from the input signal, that is,
���� � ����������. Let ����� � ���� and go to
step 2);

6) Repeat until ���� becomes an IMF;

Similarly to real-valued EMD, once the first IMF, , is ob-
tained the procedure is applied iteratively to the residual

to extract all the complex IMFs, wihch rotate around
zero [23]. In our simulations, the sifting process was stopped
once the magnitude of satisfied the real-valued stopping
criterion described in [18] and the number of projections for all
BEMD decomposition, , was 16.

Earlier results [17] illustrate that in applications involving a
pair of real valued sources, and , it is advantageous to
apply BEMD to the complex signal . The real and
imaginary components of the decomposition can then be viewed
as two separate sets of IMFs, corresponding respectively to the
real and imaginary components of the input. The advantage of
applying this bivariate approach, compared to two individual
real valued EMD operations, is that by design it improves the
stability and locality of each set of IMFs.

The BEMD operation uses multiple projections of the com-
plex signal; each projection is real-valued and is used to describe
the amplitude/envelope of the signal in a given direction. It is
important to note that each projection is a function of both the
real and imaginary parts and will therefore yield improved in-
stantaneous amplitude estimation if at a given scale the real and
imaginary parts share the same oscillatory modes. This is illus-
trated in more detail in the next section.

C. Performance Comparison of EMD and BEMD

The following two sections investigate the capacity of BEMD
to achieve a more robust estimate of spectrum information com-
pared to EMD, as accurate estimation of power spectrum is cru-
cially important for asymmetry analysis. This is achieved by
comparing their performance at 1) the IMF level and 2) the level
of marginal Hilbert spectrum.
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TABLE I
SINUSOID RECONSTRUCTION (�� AND �� ) RESULTS IN SNR

FOR DIFFERENT FREQUENCIES AND INITIAL NOISE LEVELS

1) IMF Estimation: The aim of asymmetry estimation is to
characterise the degree of similarity between two data sources
across frequency. In scenarios where the sources share similar
components, we shall illustrate, following our previous work in
[17], that the BEMD gives advantage by simultaneously mod-
elling joint oscillating modes at each IMF level.

In this work, we decompose the signal using
EMD, where is a sinusoid of frequency and is a reali-
sation of white Gaussian noise (WGN), and subsequently apply
the Wiener filter.1 to the IMFs to obtain an estimate of the sinu-
soid, The more accurate the estimate of , the more ac-
curately the IMFs represent the original input components. Ad-
ditionally, BEMD was performed on
where and denote different realisations of WGN in both the
real and imaginary parts of . For comparison with the EMD
operation, the Wiener filter was applied to the real part only
of the bivariate IMFs to obtain an estimate for the sinusoid,

. This analysis was performed for several frequencies,
and over four signal-to-noise ratio levels. The anal-
ysis was also extended to in the case of EMD
and in the case of BEMD
where denotes an amplitude modulation operation (using
1 or 2 Hz sinusoid) to illustrate component estimation for signals
with changing amplitudes. The sampling frequency was 256 Hz
and the signal length 10 s.

The average SNR of the reconstructed uniform amplitude si-
nusoids over 50 simulations using EMD and BEMD are given
in Table I. The superior performance of BEMD is evident for all
considered simulations. Component estimation results for sinu-
soids modulated at 1 and 2 Hz are shown respectively in Ta-
bles II and III. The BEMD algorithm consistently allowed for
better component estimation.

For rigour, the simulations were performed over a range
of parameters for the stopping criterion, as BEMD and EMD
often require different numbers of sifting operations even
when using the same stopping criterion. Component estimation
performance for the signal , for Hz and Hz
and for 0 dB and dB SNR, for different numbers of sifting
operations (by adjusting the stopping criterion) are shown in
Fig. 1, where, as before, BEMD consistently outperform EMD.
These results illustrate that the enhanced BEMD performance
is caused by more accurate component estimation and not by
virtue of better sifting.

1For more detail on the combination of EMD and Wiener filter we refer to
[24].

TABLE II
RECONSTRUCTION RESULTS OF A 1 HZ AMPLITUDE MODULATED

SINUSOID (�� AND �� ) IN SNR FOR DIFFERENT

FREQUENCIES AND INITIAL NOISE LEVELS

TABLE III
RECONSTRUCTION RESULTS OF 2 HZ AMPLITUDE MODULATED

SINUSOID (�� AND �� ) IN SNR FOR DIFFERENT

FREQUENCIES AND INITIAL NOISE LEVELS

Fig. 1. Reconstruction results of 1 Hz amplitude modulated sinusoid for dif-
ferent frequencies, average number of sifting operations and SNR (“���”
EMD, “�” BEMD). (a) � � �� Hz, ��� � � dB, (b) � � �� Hz, ��� �

��� dB, (c) � � 		 Hz, ��� � � dB, (d) � � 		 Hz, ��� � ��� dB.

It can therefore be deduced that mutual information between
the real and the imaginary parts of the BEMD allowed for a more
accurate estimate of the common components at the IMF level.
This is intuitive, as the performance of any EMD algorithm is
dependent on accurate local mean estimation which, in the case
of BEMD, is enhanced by two observations of any shared signal
elements.

2) Spectrum Estimation: We shall now illustrate that the su-
perior performance of BEMD over EMD supports a more ac-
curate estimate of the marginal Hilbert spectrum (MHS) com-
pared to EMD. As before, EMD and BEMD were applied to
sinusoids with added WGN. In the case of BEMD, the MHS
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Fig. 2. The marginal Hilbert spectrum of EMD and BEMD. In all scenarios,
the MHS of BEMD is more localized in frequency. (a) 6 Hz with 0 dB noise.
(b) 6 Hz with �� dB noise. (c) 25 Hz with 0 dB noise. (d) 25 Hz with �� dB
noise.

Fig. 3. The kurtosis of the periodogram based power spectrum for a sine wave
increasing noise levels. Kurtosis increases for high SNR, indicating a more con-
centrated spectrum.

was calculated for the real part of the bivariate IMFs for
where is a sinusoid of frequency and

and are different realizations of WGN with identical statis-
tics. In the case of EMD, the MHS was estimated for the IMFs
of . Fig. 2 compares the MHS of EMD and BEMD for
several frequencies and SNRs, showing a more localized result
produced by BEMD, particularly at low SNR.

To quantify the performance, the kurtosis of , defined as

(5)

was used, where is the mean of is the standard deviation
of and the expected value operates. Since kurtosis mea-
sures the peakedness of a distribution, for spectra of narrow band
components localized in frequency such as a sinusoid, a high
kurtosis value indicates an accurate MHS. This is illustrated in
Fig. 3 for the marginalized spectrum of a single sinusoid with
added WGN; the graphs were calculated for increasing levels of

Fig. 4. The kurtosis for the MHS of the sinusoids of frequency � by EMD
(cross) and BEMD (black squares) for the different noise levels. Even though
the kurtosis of spectrum estimates based on EMD and BEMD are similar for
��� dB, the results of BEMD are almost always greater than those based on
EMD, implying a more accurate MHS estimate. The values in the square boxes
are one-tailed p-values of the t-test for the kurtosis of EMD and BEMD results.
Their overall statistical significance, as determined by p-values, was less than
0.05. (a) � � � Hz, (b) � � � Hz, (c) � � �� Hz, (d) � � �� Hz, (e) � �

�� Hz.

noise.2 Fig. 4 shows average results over 100 trials where kur-
tosis values were calculated for EMD and BEMD for different
frequencies and different SNR.

2Every plot was produced as an average of 50 realizations of WGN for the
different frequency sinusoids (64, 44, 32, 25, 16, 12, 8, 6, 4, 2, and 1 Hz, with
256 Hz sampling frequency), using periodogram.
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For rigour, the degree of separation between the performance
of BEMD and EMD was determined using the one-tailed t-test.
The p-value, for each SNR and value for frequency, is also
shown in Fig. 4. In 27 of the 30 considered simulations, the per-
formance of the BEMD MHS was significantly better than that
of EMD (p-values less than 0.05).

III. ASYMMETRY

Asymmetry is defined as the normalised difference between
brain activity from a location on the left hemisphere and its cor-
responding location on the right hemisphere. In practice, the ab-
solute value of this difference is used, however this is controver-
sial among brain researchers as it produces results that can be
highly correlated. In our analysis, the absolute value of the dif-
ference was considered as results without a modulus operation
tend to be highly skewed [5].

A. BEMD Based Asymmetry

For a pair of sources, and , the complex IMFs are calcu-
lated for . The real and imaginary components of
the decomposition are then separated giving two sets of IMFs
for the two input sources. The Hilbert transform is applied to
obtain the instantaneous amplitudes and , symbols
“i” and “t” denote the order of IMF and the time index, and the
instantaneous phases and using (3) for each set of
IMFs. The instantaneous frequencies, and , are
computed by differentiating and , which can be
assumed to contain similar scales [17] since they are obtained
from the real and imaginary components of a single complex
IMF. It is therefore feasible to compare two spectral magnitudes

and , their common instantaneous frequency can
be defined by the average of their respective instantaneous fre-
quencies as

(6)

The corresponding marginal Hilbert spectra and
(for and , respectively) are calculated according to (4). The
asymmetry ratio, within the frequency range to , can now
be expressed as

(7)

We shall now illustrate the calculation of asymmetry ratio on
two signals containing sinusoids at two frequencies

(8)

Fig. 5 shows the asymmetry ratio with the lateralization evi-
dent at frequencies Hz and Hz.

IV. COGNITIVE EXPERIMENTS

To illustrate the advantages of using BEMD for estimating
asymmetry, we considered its performance in two experimental

Fig. 5. Asymmetry ratio obtained using BEMD, for two channels.
� � ������� ���������� �� and � � 	�
 ������� ���	�� ������� ��
with � � 	� Hz and � � �
 Hz.

settings. In the first experiment, EEG was band-pass filtered to
occupy a certain frequency band and the level of asymmetry is
calculated between noisy realisations of the conditioned signal.
In the second experiment, EEG asymmetry features are used to
identify different mental tasks in a BCI application.

A. Bandpass Filtered EEG

1) Setting: EEG data with a sampling frequency of 250 Hz
was obtained from electrode P3 according to the 10–20 system
[25] and filtered using a Butterworth filter such that it occupied
specific frequency bands. For an EEG signal conditioned to oc-
cupy a frequency region denoted by “band,” , the asym-
metry ratio was calculated for the signal pair

where and are different realisations of WGN. Thus, the
expected asymmetry result should be zero in the frequency
region denoted by band and nonzero within the remainder of
the spectrum. The asymmetry ratios obtained using three dif-
ferent spectrum estimation techniques (periodogram using
Bartlett window, EMD and BEMD) were calculated for
conditioned to occupy different frequency bands (delta, theta,
alpha, beta and gamma bands) for four different levels of SNR
(5, 0, dB). Their performances were evaluated by the
index , where is the total asym-
metry detected in the correct frequency band, as dictated by the
frequency range that is conditioned to occupy for a given
simulation, and is the total asymmetry detected in the full
spectrum. The performance index for an accurate estimation
of asymmetry will therefore give zero while poorer results will
approach unity. The index was estimated and averaged over 50
independent trials for different realisations of and .

2) Results: Fig. 6 shows the asymmetry ratio calculated for
the signal pair at intervals of 0.125 Hz
where was conditioned to occupy the alpha band and with
SNR 0 dB. As expected, all the algorithms showed lower asym-
metry in the alpha band than in the other frequency regions.
The BEMD asymmetry estimate was the most accurate of all
the considered algorithms.
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Fig. 6. Asymmetry graphs for the alpha band signals (between the dashed
lines) in 0 dB WGN. These asymmetry ratios were computed at intervals of
0.125 Hz. BEMD produced the lowest and most stable asymmetry in the alpha
band. (a) Periodogram. (b) EMD. (c) BEMD.

Table IV shows a comparison of the performance for all the
three algorithms, periodogram , EMD and BEMD, using
the performance index for all considered
frequency bands and noise levels. In 16 of the 20 considered
simulations, the performance of BEMD exceeds those of the
periodogram and EMD. In the other four cases, the performance
difference between BEMD and the superior algorithm was not
significant. In several instances the periodogram outperformed
the standard EMD algorithm, due to the linearity of the data, for
which the periodogram is ideally suited.3

B. BCI Application

1) Setting: The EEG data was recorded by Keirn and Aunon
who conducted several mental task experiments4. These tasks
were specially chosen for their known hemispheric brainwave
asymmetry [11].

3The linearisation of nonlinear data is a well-known consequence of linear
filtering operations [26].

4Publicly available from http://www.cs.colostate.edu/eeg/index.html.

TABLE IV
PERFORMANCE EVALUATION, �� ���� � � ���, FOR

ASYMMETRY ESTIMATION BETWEEN SIGNALS �
AND � AT DIFFERENT FREQUENCIES AND SNR

• Task 1—Baseline Measurements (B): No mental task was
performed in this experiment. The subject was told just to
relax and think of nothing.

• Task 2—Complex Problem Solving (M): The subject
was required to solve a nontrivial multiplication problem
without vocalizing. The problems were nonrepeating and
were designed so that an immediate answer was not ap-
parent. The subject verified at the end of the task whether
or not he had arrived at a solution and no subject completed
the task before the end of the 10 s recording session.

• Task 3—Geometric Figure Rotation (R): The subject was
given a drawing of a complex three dimensional block
figure to study. After 30 s, the figure was removed and the
subject was instructed to visualize the object being rotated
about an axis.

• Task 4—Mental Letter Composing (L): The subject com-
posed a letter to a friend or relative without vocalizing.

• Task 5—Visual Counting (C): The subject was instructed
to imagine a blackboard and to visualize numbers being
written on the board. And the subject counted from the
previous number and wrote it on the board after erasing
the previous number.

Electrodes P3 and P4 were selected to calculate the asym-
metry ratio between left and right hemisphere among all the
recorded channels on the position O1, O2, P3, P4, C3, and C4
defined by the 10–20 system of electrode placement, at a 250 Hz
data rate. The data were measured for 10 s during each task and
each task was repeated five times per session. Recordings were
made with reference to electrically linked mastoids A1 and A2.
For more details about the experiments we refer to [11].

Asymmetry ratios in the delta, theta, alpha, beta and gamma
bands, , calculated using
the periodogram , EMD and BEMD were used in a clas-
sifier. A support vector machine (SVM) [27] with Gaussian
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TABLE V
CLASSIFICATION RATES OBTAINED USING PERIODOGRAM (SHOWN AS “� ”), EMD AND BEMD BASED ON ASYMMETRY ESTIMATION FOR FOUR SUBJECTS AND

MULTIPLE MENTAL TASK COMBINATIONS (BASELINE MEASUREMENT (B), COMPLEX PROBLEM SOLVING (M), GEOMETRIC FIGURE ROTATION (R), MENTAL

LETTER COMPOSING (L), AND VISUAL COUNTING (C)). NOTE THE IMPROVED CLASSIFICATION FOR ASYMMETRY OBTAINED USING BEMD

kernel, (the code obtained from [28]), was used to classify be-
tween two different mental tasks. The different combinations of
two mental tasks are shown in Table V. Each combination had
20 samples of 4 s segment data because in the original recording
[11] each subject had five trials for a task and the length of each
EEG data was 8 s long discarding the first and last 1 s concerned
about noise. The numbers of training sets and test sets were re-
spectively 12 and 8. The classification was repeated 50 times
while mixing the sample order, and the final classification result
was the average of these outcomes.

2) Results: Table V shows the classification performances
for the four subjects using the BEMD, EMD and periodogram.
Of the 40 considered simulation scenarios, EMD and BEMD
asymmetry outperformed periodogram asymmetry for 36.
On average, the BEMD-based asymmetry calculation had
a classification accuracy of 70%, a 10% improvement over
periodogram-based asymmetry and a 7% improvement over
EMD-based asymmetry.

These results fully illustrate the advantages of empirical mode
decomposition and its algorithms for asymmetry estimation of
real-world data. In simulations presented in previous sections of
this paper, the signals of interest were linear: band-pass filtered
EEG data. Algorithms based on Fourier theory such as the Peri-
odogram are, by design, suitable for linear signal statistics and
its performance exceeded that of standard EMD, and BEMD to
a lesser extent, in some instances. However, for fully nonlinear
and nonstationary data sources, the performance of both EMD
and BEMD facilitated an improvement over traditional linear
asymmetry estimates.

In practice, asymmetry features are often combined with
spectral power features to achieve separation between mental
tasks [29]. As our aim was to address only asymmetry
performance, it is shown that BEMD asymmetry achieved
classification accuracy exceeding 85% in some instances.

Recently, empirical mode decomposition has been extended
to multivariate EMD by Rehman et al. [30] in order to make
EMD suitable for multichannel signal processing. It was also
illustrated [31] how the noise assisted MEMD allows for en-
hanced localization in time-frequency analysis. In future work,
multivariate EMD techniques will be utilized to extract more ac-
curate and robust asymmetry features.

V. CONCLUSION

It has been shown that complex extension of the EMD al-
gorithm provides a robust estimate of asymmetry for nonlinear
and nonstationary data. One such extension, bivariate empirical
mode decomposition facilitates enhanced multicomponent anal-
ysis and improved marginal Hilbert spectrum estimation, crit-
ical to the calculation of asymmetry. A statistical assessment of
the proposed framework has been presented for both synthetic
signals and for EEG from a BCI application. The BEMD-based
asymmetry results are shown to be highly localized in frequency
and robust to additive noise.
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