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Abstract—Recent advances in sensor and communication tech-
nologies have made the deployment of sensor networks in a variety
of roles feasible, including smart grid management applications
and collaborative target tracking solutions. While most research
in distributed adaptive signal processing is conducted in the real
and complex domains, inherently in many real-world applications
the data sources are three-dimensional. This scenario is ideally
suited for quaternions in terms of both convenience of represen-
tation and mathematical tractability. In this paper, we expand the
concept of distributed Kalman filtering to the quaternion domain in
order to develop a robust distributed quaternion Kalman filtering
algorithm for data fusion over sensor networks dealing with three-
dimensional data. For rigor, the mean and mean square behavior of
the algorithm are analyzed. Finally, the developed algorithm is used
to estimate the nominal system frequency in power distribution
networks and for collaborative target tracking applications.

Index Terms—Distributed estimation, frequency estima-
tion, smart grid, target tracking, quaternion-valued signal
processing.

I. INTRODUCTION

IN RECENT years, sensor networks have been used in a va-
riety of applications such as collaborative target tracking,

distributed fault detection, control of unmanned aerial vehi-
cles, and automated vehicle guidance technology [1]–[18]. In
these applications, algorithms based on Kalman filtering have
proven to be advantageous in terms of enhanced accuracy and
faster convergence rates, due to their underlying state space
model that accounts for observational noise. In addition, ow-
ing to the low implementation cost and computational effi-
ciency that distributed estimation and tracking techniques of-
fer, as compared to their centralized counterparts, distributed
signal processing algorithms have proven to be computation-
ally efficient, scalable with the size of the network, robust to
link failure, and suitable for real-time implementation [8]–[12],
[18], [19]. Most distributed signal processing algorithms are
developed in the real and complex domains; however, in our
three-dimensional world, real and complex-valued models lack
the dimensionality necessary to adequately represent the signal
of interest.
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Quaternions have been used in mathematics, physics, and
computer graphics in order to model three-dimensional rota-
tions and orientation in a compact and computationally efficient
fashion, where their division algebra allows us to avoid prob-
lems associated with rotation, e.g. gimbal lock [20]. Quater-
nions provide accurate and mathematically tractable solutions
with fewer constraints than those obtained in the real domain
through vector algebras. In addition, the introduction of the
HR-calculus [21], [22], a framework for calculating the deriva-
tives of quaternion-valued functions, and the augmented second-
order statistics of quaternion-valued random signals [23], [25],
a framework for exploiting the full second-order statistical in-
formation of quaternion-valued random signals, have led to the
development of quaternion-valued signal processing algorithms,
such as the class of quaternion Kalman filters developed in [26].
These are shown to outperform their real and complex-valued
counterparts in applications including frequency estimation in
smart grids [27], color image processing [28], [29], bearings-
only-tracking [26], spacecraft orientation tracking [30], kernel
learning [31], [32], and wind profile forecasting [33]. Although
a diffusion quaternion least mean square algorithm does ex-
ist [34], a fully distributed quaternion-valued sequential state
estimator is still lacking.

In light of the advantages that quaternion-valued signal
processing algorithms offer, we expand the framework of
quaternion-valued Kalman filtering to the distributed setting
in order to develop a rigorous distributed quaternion Kalman
filter applicable for frequency estimation in three-phase power
distribution networks and collaborative target tracking. Quater-
nions offer the dimensionality necessary to model such signals
directly in the multi-dimensional domain where they live. The
distributed quaternion Kalman filter is developed through de-
composing the operations of the centralized quaternion Kalman
filter in such a way that they can be performed locally by the
individual nodes (sensors) of the network. The performance
analysis of the developed algorithm shows that it is unbiased;
moreover, in order to quantify the mean square behavior of the
developed algorithm, a recursive expression for the augmented
covariance matrix of the estimation error is derived. This also
allows for the concept to be expanded to multi-task settings
through the introduction of a confidence measure.

Mathematical notations: Scalars, column vectors, and ma-
trices are represented by lowercase, bold lowercase, and bold
uppercase letters. The augmented state vector at time instant n
is denoted by xa

n , while I represents the identity matrix with
the same number of rows as the augmented state vector. The
transpose, Hermitian transpose, and trace operators are denoted
by (·)T, (·)H, and Tr(·), whereas E[·] denotes the statistical ex-
pectation operator. The Kronecker product is denoted by ⊗ and
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the operator Vec(·) transforms a matrix into a column vector by
stacking its columns. Finally, the real and quaternion domains
are denoted by R and H.

II. BACKGROUND

The skew-field of quaternions is a four-dimensional, non-
commutative, associative, division algebra. A quaternion vari-
able q ∈ H consists of a real part,ℜ(q), and a three-dimensional
imaginary part or pure quaternion, ℑ(q), which comprises three
components ℑi(q), ℑj (q), and ℑk (q); hence, a variable q ∈ H
can be expressed as

q = ℜ(q) + ℑ(q) = ℜ(q) + ℑi(q) + ℑj (q) + ℑk (g)

= qr + iqi + jqj + kqk

where qr , qi , qj , qk ∈ R. The unit vectors i, j, and k form the
orthonormal basis for the quaternion imaginary subspace and
obey the following product rules

ij = −ji = k, jk = −kj = i, ki = −ik = j,
i2 = j2 = k2 = ijk = −1

which also illustrate the non-commutativity property.
The involution of q ∈ H around µ ∈ H is defined as qµ !

µqµ−1 [35]. In particular, the three self-inversing involutions

qi = − iqi = qr + iqi − jqj − kqk

qj = − jqj = qr − iqi + jqj − kqk

qk = − kqk = qr − iqi − jqj + kqk

that rotate the imaginary part of q by an angle of π around the
i-, j-, and k-axis [35], are seen as the quaternion equivalent of
the complex conjugate operator. The real-valued components
of a quaternion number, q ∈ H, can be expressed using these
involutions as [22]–[27], [31], [33], [34]

qr =
1
4

(
q + qi + qj + qk

)
qi =

1
4i

(
q + qi − qj − qk

)

(1)

qj =
1
4j

(
q − qi + qj − qk

)
qk =

1
4k

(
q − qi − qj + qk

)
.

Furthermore, the quaternion conjugate is also a self-inverse
involution that rotates the imaginary part of q around the i-, j-,
and k-axis simultaneously and is defined as [25], [35]

q∗ = ℜ(q) −ℑ(q) =
1
2

(
qi + qj + qk − q

)

while the norm of q ∈ H is given by

|q| =
√

qq∗ =
√

q2
r + q2

i + q2
j + q2

k .

A quaternion q ∈ H can alternatively be expressed by its
polar presentation, given by [36]

q = |q|eξθ = |q|
(
cos(θ) + ξsin(θ)

)

where

ξ =
ℑ(q)
|ℑ(q)| , θ = atan

(
|ℑ(q)|
ℜ(q)

)
.

Moreover, it is straightforward to prove that the sin(·) and cos(·)
functions can be expressed as

sin(θ) =
1
2ξ

(
eξθ − e−ξθ

)
, cos(θ) =

1
2

(
eξθ + e−ξθ

)
(2)

where1 ξ2 = −1.
Consider the quaternion-valued function f (·) : HN → H and

the parameter vector q ∈ HN ; then, the function f is dif-
ferentiable with respect to q if and only if it satisfies the
Cauchy-Riemann-Fueter condition given by given by [22], [37]

∂f (q)
∂q∗ =

1
4

( ∂f
∂qr

+ i
∂f
∂qi

+ j
∂f

∂qj
+ k

∂f
∂qk

)
= 0.

However, the Cauchy-Riemann-Fueter condition imposes a se-
vere restriction on differentiable quaternion-valued functions,
only allowing for the differentiation of linear functions. One
elegant solution to this problem is the HR-calculus [21],
[22], which based on the expressions in (1), establishes a
duality between R4 and H. A quaternion function, f (q =
qr + iqi + jqj + kqk ) : HN → H can now be expressed in
terms of the orthogonal quaternion basis q, qi , qj , and qk ,
such that f (qa = [q,qi ,qj ,qk ]T ) : H4N → H, where qa is re-
ferred to as the augmented quaternion vector. Then, by consider-
ing the real-valued components of f (qa) = fr (qa) + ifi(qa) +
jfj (qa) + kfk (qa) and through exploiting the isomorphism be-
tween R4 and H, a relation can be established between the
derivatives taken in R4 and those taken directly in H, allowing
for a unified framework for calculating the derivatives and es-
tablishing the gradients of quaternion-valued functions directly
in the quaternion domain.

The isomorphism between the augmented quaternion vector
qa = [q,qi ,qj ,qk ]T ∈ H4N and [qr ,qi ,qj ,qk ]T ∈ R4N has
been instrumental in the development of the augmented quater-
nion statistics that allow for the full second-order statistical
description of quaternion random variables through the use of
the augmented covariance matrix [23]–[25], given by

Cqa = E[qaqaH ]

=

⎡

⎢⎢⎢⎢⎣

Cqq Cqq i Cqqj Cqqk

Cq i q Cq i q i Cq i qj Cq i qk

Cqj q Cqj q i Cqj qj Cqj qk

Cqk q Cqk q i Cqk qj Cqk qk

⎤

⎥⎥⎥⎥⎦
(3)

where ∀ζ, ζ ′ ∈ {1, i, j, k},Cqζ qζ ′ = E
[
qζqζ ′H

]
.

Remark 1: All elements of the augmented covariance ma-
trix in (3) are different involutions of Cqq i , Cqqj , Cqqk , and
Cqq . Therefore, the complete second-order information within
the augmented covariance matrix is contained in the standard
covariance, Cqq , and the pseudo-covariances, Cqq i , Cqqj ,
and Cqqk .

To illustrate the need for such an approach, consider the min-
imum mean square error (MMSE) estimator of a variable, y,
conditional to the observation, x, given by ŷ = E[y|x]. For

1Note that in order to express the sin(·) and cos(·) functions in their polar
from, as in (2), ξ can be replaced with an arbitrary normalized pure quaternion
number [36].
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real-valued, zero-mean, and jointly Gaussian x and y, the solu-
tion is the standard linear estimator in the form of ŷ = gT x,
where g = [g1 , g2 , . . . , gN ]T is a vector of coefficients and
x = [x1 , x2 , . . . , xN ]T is a regressor vector of past observa-
tions. However, in the quaternion domain, following the com-
plex domain analogy [38], [39], the MMSE estimator has to be
expressed according to the individual components of the quater-
nion random variables; thus, for quaternion-valued y and x the
MMSE estimator is given by

ŷ = E[yr |xr , xi, xj , xk ] + iE[yi |xr , xi, xj , xk ]

+ jE[yj |xr , xi, xj , xk ] + kE[yk |xr , xi, xj , xk ].

The expressions in (1) are now exploited to replace xr , xi ,
xj , and xk , to give

ŷ = E[yr |x, xi, xj , xk ] + iE[yi |x, xi, xj , xk ]

+ jE[yj |x, xi, xj , xk ] + kE[yk |x, xi, xj , xk ].

Therefore, for quaternion-valued, zero-mean, and jointly
Gaussian x and y, the MMSE solution is in the form of a
widely-linear estimator given by

ŷ = gT x + hT xi + uT xj + vT xk

where gT , hT , uT , and vT are quaternion-valued coefficient
vectors and x is the regressor vector.

The augmented quaternion statistics in conjunction with the
HR-calculus have led to the development of a class of quater-
nion Kalman filters [26] that operate akin to their complex-
valued counterparts. For example, consider the evolution of the
quaternion-valued augmented state vector sequence {xa

n , n =
0, 1, 2, . . .}, given by

xa
n = fn (xa

n−1) + νa
n

where fn (·) is the state evolution function at time instant n and
{νa

n , n = 0, 1, 2, . . .} is the augmented state transition noise
sequence. The objective is to track xa

n in real-time through
observations

ya
n = hn (xa

n ) + ωa
n

where ya
n and hn (·) are respectively the augmented observa-

tion vector and observation function at time instant n, while
{ωa

n , n = 0, 1, 2, · · · } is the augmented measurement noise se-
quence. In order to simplify the analysis, we shall approximate
the observation and state evolution functions in a widely-linear
fashion as fn (xa

n ) ≃ Aa
nxa

n and hn (xa
n ) ≃ Ha

nxa
n , where Aa

n

and Ha
n are the Jacobian matrices of fn (·) and hn (·). Now, the

augmented sate vector sequence can be tracked using the quater-
nion Kalman filter (QKF) given in its information formulation
in Algorithm 1, where Cνa

n
and Cωa

n
denote the augmented

covariance matrices of νa
n and ωa

n , while x̂a
n |n−1 and x̂a

n |n
represent the a priori and a posteriori estimates of xa

n .

III. THE DISTRIBUTED QUATERNION KALMAN FILTER

Consider a set of sensors denoted by N that are intercon-
nected in a network and let the neighborhood of a node be the

Algorithm 1: Quaternion Kalman Filter (QKF) [26].
Initialize with:

x̂a
0|0 = E[xa

0 ]

M̂a
0|0 = E

[
(xa

0 − E[xa
0 ])(xa

0 − E[xa
0 ])H

]

Model update:

x̂a
n |n−1 = Aa

n x̂a
n−1|n−1

M̂a
n |n−1 = Aa

nM̂a
n−1|n−1A

aH
n + Cνa

n

Measurement update:

M̂a−1

n |n = M̂a−1

n |n−1 + HaH
n C

−1

ωa
n
Ha

n

Gn = M̂a
n |nHaH

n C
−1

ωa
n

x̂a
n |n = x̂a

n |n−1 + Gn

(
ya

n − Ha
n x̂a

n |n−1
)

subset of nodes that communicate with that node, including self-
communication. Organizing all observations made by different
nodes throughout the network in the column vector

ya
col,n = [yaT

1,n , . . . ,yaT
|N |,n ]T

where ya
m,n represents the augmented observation vector at

node m at time n and |N | denotes the number of nodes in
the network, allows the augmented state vector sequence to be
estimated by the centralized quaternion Kalman filter (CQKF)
given in Algorithm 2, where

Ha
col,n = [HaT

1,n , . . . ,HaT
|N |,n ]T

is the column block matrix of the augmented observation func-
tions with Ha

m,n representing the observation function at node
m and at time instant n, while Cωa

c o l , n
is the augmented covari-

ance matrix of the column vector of the combined augmented
observation noises given by

ωa
col,n = [ωaT

1,n , . . . ,ωaT
|N |,n ]T

with ωa
m,n denoting the observation noise at node m and at time

instant n.
Although the CQKF is optimal in the sense that it incorpo-

rates all the available information in the network, its operation
requires inversions of large matrices and the transfer of all ob-
servation vectors to the central node, which burdens the cen-
tral node with communication traffic and heavy computations.
We next show that the operations of the CQKF can be repli-
cated within a distributed framework by making the following
assumptions:

1) the network is “connected”, that is, there exists a path
between any two given nodes in the network,

2) the observation noise at one node is uncorrelated with the
observation noise at other nodes in the network.

Assuming that the observation noise at one node is uncorre-
lated with the observation noise at other nodes in the network
leads to a block diagonal Cωa

c o l , n
and therefore the a posteriori
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Algorithm 2: Centralized Quaternion Kalman Filter
(CQKF) [26].

Initialize with:

x̂a
0|0 = E[xa

0 ]

M̂a
0|0 = E

[
(xa

0 − E[xa
0 ])(xa

0 − E[xa
0 ])H

]

Model update:

x̂a
n |n−1 = Aa

n x̂a
n−1|n−1

M̂a
n |n−1 = Aa

nM̂a
n−1|n−1A

aH
n + Cνa

n

Measurement update:

M̂a−1

n |n = M̂a−1

n |n−1 + HaH
col,nC

−1

ωa
c o l , n

Ha
col,n

Gn = M̂a
n |nHaH

col,nC
−1

ωa
c o l , n

x̂a
n |n = x̂a

n |n−1 + Gn

(
ya

col,n − Ha
col,n x̂a

n |n−1
)

estimate of the augmented state vector can be expressed as

x̂a
n |n = x̂a

n |n−1

+
∑

∀l∈N
M̂a

n |nHaH
l,n C

−1

ωa
l , n

(
ya

l,n − Ha
l,n x̂a

n |n−1

)
. (4)

The key in moving from a centralized implementation to a
distributed one is to formulate the a posteriori augmented state
vector estimate, x̂a

n |n , in the from of the network average of the
local state vector estimates, φa

l,n , that is

x̂a
n |n =

1
|N |

∑

∀l∈N
φa

l,n (5)

with φa
l,n denoting the local estimate of the augmented state

vector at node l at time instant n, which is given by

φa
l,n = x̂a

n |n−1

+ |N |M̂a
n |nHaH

l,n C
−1

ωa
l , n

(
ya

l,n − Ha
l,n x̂a

n |n−1

)
(6)

where the Kalman filter update is scaled by a factor of |N |
to preserve the equivalence of the centralized implementation
in (4) and the distributed implementation in (5), (6). Further-
more, assuming uncorrelated observation noise throughout the
network, from Algorithm 2, we have

M̂a−1

n |n = M̂a−1

n |n−1 +
∑

∀l∈N
HaH

l,n C
−1

ωl , n
Ha

l,n . (7)

Now, substituting (7) into (6) yields

φa
l,n = x̂a

n |n−1 + Gl,n

(
ya

l,n − Ha
l,n x̂a

n |n−1

)
(8)

where Gl,n is given by

Gl,n =

|N |
(

M̂a−1

n |n−1 +
∑

∀m∈N
HaH

m,nC
−1

ωa
m , n

Ha
m,n

)−1

HaH
l,n C

−1

ωa
l , n

.

(9)

Making the assumption that the network is connected, allows∑
∀m∈N HaH

m,nC−1

ωa
m , n

Ha
m,n to be obtained through a diffusion

of the local parameters HaH
l,n C−1

ωa
l , n

Ha
l,n . Thus, M̂a

n |n in the for-
mulation in (7) andGl,n in the formulation in (9) can be obtained
at each node in the network in a distributed fashion, which in
turn permits φa

l,n in the formulation in (8) to be calculated by
the individual nodes of the network. In addition, assuming a
connected network permits x̂a

n |n to be obtained in a distributed
manner by averaging local estimates, φa

l,n . Therefore, the op-
erations of the CQKF can be mirrored in a distributed fash-
ion through diffusion of the local parameters HaH

l,n C−1

ωa
l , n

Ha
l,n

and the averaging of local estimates φa
l,n . The operations of

such a distributed quaternion Kalman filter (DQKF) are sum-
marized in Algorithm 3, whereNl denotes the set of nodes in the
neighborhood of node l.

Remark 2: The DQKF implemented at a node is optimal
in the sense that it operates akin to a centralized Kalman fil-
ter combining all the information available to the nodes in its
neighborhood.

Remark 3: In essence, we have shown that locally optimal
Kalman filters can be implemented in a distributed fashion
by sharing only the local estimates φa

l,n and the parameters
HaH

l,n C−1

ωa
l , n

Ha
l,n , whereas conventional distributed Kalman fil-

tering techniques (see [2], [9]) require the sharing of additional
information on local measurements, observation functions, and
noise covariance matrices. In addition, in contrast to conven-
tional distributed Kalman filtering techniques no extra mixing
coefficients are required for averaging local estimates, φa

l,n and
the effect of diffusing local estimates, obtained through different
observation functions and with different noise characteristics,
on the a posteriori estimate of the error augmented covariance
matrix, M̂a

n |n , is taken into account.

IV. PERFORMANCE ANALYSIS

In order to analyze the mean and mean square performance of
the developed algorithm, the error of the augmented state vector
estimates is first expressed in a recursive manner. The difference
between the true augmented state vector and the local estimate
at node l and at time instant n is given by ϵa

l,n = xa
n − φa

l,n

which can be alternatively expressed as

ϵa
l,n = xa

n − x̂a
l,n |n−1

− Gl,n

(
ya

l,n − Ha
l,n x̂a

l,n |n−1

)

where upon replacing ya
l,n = Ha

l,nxa
n + ωa

l,n and ϵa
l,n |n−1 =

xa
n − x̂a

l,n |n−1 we have

ϵa
l,n =

(
I − Gl,nHa

l,n

)
ϵa

l,n |n−1 − Gl,nωa
l,n . (10)
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Algorithm 3: Distributed Quaternion Kalman Filter
(DQKF).

For node l = {1, · · · , |N |}:
Initialize with:

x̂a
l,0|0 = E[xa

0 ]

M̂a
l,0|0 = E

[
(xa

0 − E[xa
0 ])(xa

0 − E[xa
0 ])H

]

Model update:

x̂a
l,n |n−1 = Aa

n x̂a
l,n−1|n−1

M̂a
l,n |n−1 = Aa

nM̂a
l,n−1|n−1A

aH
n + Cνa

n

Measurement update:

M̂a−1

l,n |n = M̂a−1

l,n |n−1 +
∑

∀m∈Nl

(
HaH

m,nC
−1

ωa
m , n

Ha
m,n

)

Gl,n = |Nl |M̂a
l,n |nHaH

l,n C
−1

ωa
l , n

φa
l,n = x̂a

l,n |n−1 + Gl,n

(
ya

l,n − Ha
l,n x̂a

l,n |n−1
)

Information sharing:
1) Share φa

l,n with neighboring nodes.
2) Share HaH

l,n C−1

ωa
l , n

Ha
l,n with neighboring nodes, only if it

has changed compared to the previous time instant.
Averaging:

x̂a
l,n |n =

1
|Nl |

∑

∀m∈Nl

φa
m,n

Furthermore, substituting ϵa
l,n |n−1 = Aa

nϵa
l,n−1|n−1 + νa

n into
(10) gives

ϵa
l,n =

(
I − Gl,nHa

l,n

)
Aa

nϵa
l,n−1|n−1

+
(
I − Gl,nHa

l,n

)
νa

n − Gl,nωa
l,n . (11)

Now, consider the difference between the true augmented
state vector and its estimate obtained at node l, given by

ϵa
l,n |n = xa

n − x̂a
l,n |n

= xa
n − 1

|Nl |
∑

∀m∈Nl

φa
m,n =

1
|Nl |

∑

∀m∈Nl

ϵa
m,n (12)

where replacing (11) into (12) gives a recursive expression for
the augmented state vector estimation error as

ϵa
l,n |n =

1
|Nl |

∑

∀m∈Nl

(
I − Gm,nHa

m,n

)
Aa

nϵa
m,n−1|n−1

+
1

|Nl |
∑

∀m∈Nl

(
I − Gm,nHa

m,n

)
νa

n (13)

− 1
|Nl |

∑

∀m∈Nl

Gm,nωa
m,n .

From Algorithm 3, we can now substitute

Ga
m,nHa

m,n = M̂a
m,n |n HaH

m,n |Nm |C−1

ωa
m , n

Ha
m,n

︸ ︷︷ ︸
Pm , n

into (13) to yield

ϵa
l,n |n =

1
|Nl |

∑

∀m∈Nl

(
I − M̂a

m,n |nPm,n

)
Aa

nϵa
m,n−1|n−1

+
1

|Nl |
∑

∀m∈Nl

(
I − M̂a

m,n |nPm,n

)
νa

n

− 1
|Nl |

∑

∀m∈Nl

Gm,nωa
m,n . (14)

A. Mean Error Behavior

Taking the statistical expectation of (14) and noting that νa
n

and ωa
m,n are zero-mean results in

E[ϵa
l,n |n ]=

1
|Nl |

∑

∀m∈Nl

(
I − M̂a

m,n |nPm,n

)
Aa

nE[ϵa
m,n−1|n−1 ].

(15)
Therefore, given that∀m ∈ N : x̂a

m,0|0 = E[xa
0 ], the expression

in (15) indicates that the algorithm operates in an unbiased
fashion.

B. Local Mean Square Error Behavior

Given the error of the augmented state vector estimates in the
formulation in (14), the augmented error covariance matrix of
the augmented state vector estimates at node l and time instant
n can be expressed as

Σa
l,n = E

[
ϵa

l,n |nϵaH
l,n |n

]

= Sl,nEn−1SH
l,n + Rl,nVnRH

l,n + Ql,nWnQH
l,n (16)

where the expressions

En = E

[[
ϵaT

1,n |n , . . . , ϵaT
|N |,n |n

]T [
ϵaT

1,n |n , . . . , ϵaT
|N |,n |n

]∗]

Wn = E

[[
ωaT

1,n , . . . ,ωaT
|N |,n

]T [
ωaT

1,n , . . . ,ωaT
|N |,n

]∗]

Vn = block(Cνa
n
) =

⎡

⎢⎣
Cνa

n
· · · Cνa

n

...
. . .

...
Cνa

n
· · · Cνa

n

⎤

⎥⎦ (17)

represent respectively the state estimation error cross-
covariance between all nodes in the network, the observation
noise cross-covariances between all nodes in the network, and
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a block matrix with all its elements equal to Cνa
n

, while

Sl,n =
1

|Nl |

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

αl,1AaH
n

(
I − M̂a

1,n |nP1,n

)H

αl,2AaH
n

(
I − M̂a

2,n |nP2,n

)H

...

αl,|N |AaH
n

(
I − M̂a

|N |,n |nP|N |,n

)H

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

H

Rl,n =
1

|Nl |

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

αl,1

(
I − M̂a

1,n |nP1,n

)H

αl,2

(
I − M̂a

2,n |nP2,n

)H

...

αl,|N |

(
I − M̂a

|N |,n |nP|N |,n

)H

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

H

(18)

Ql,n =
1

|Nl |
[
αl,1G1,n ,α1,2G2,n , · · · ,α1,|N |G|N |,n

]

with

αl,m =

{
1, if m ∈ Nl

0, otherwise.

We shall now use the following standard assumptions in
steady-state Kalman filtering analysis [40]:

1) the state evolution function and observation functions for
all nodes in the network become time invariant, i.e.

∀l ∈ N :

{
limn→∞ Aa

n = Aa

limn→∞ Ha
l,n = Ha

l

2) the state evolution and observation noises are stationary,
that is, Cνa

n
→ Cνa and Wn → W , which in turn implies

that Vn → V and ∀l ∈ N : Cωa
l , n

→ Cωa
l
.

3) the matrix pairs ∀l ∈ N : {Aa ,Ha
l,n} are observable and

the matrix pair {Aa ,C
1
2
νa } is controllable.

Then, it follows that for all nodes in the network, M̂a
l,n |n

becomes time invariant. Moreover, from the expressions in
(18), a time invariant M̂a

l,n |n would result in the matrices
{Sl,n ,Rl,n ,Ql,n} also becoming time invariant, which can be
summarized as

Given lim
n→∞

M̂a
l,n |n = M̂a

l ⇒ ∀l ∈ N :
limn→∞ Sl,n = Sl

limn→∞ Rl,n = Rl

limn→∞ Ql,n = Ql

and therefore Σa
l,n converges.

Remark 4: From Algorithm 3 and the expression in (16),
notice that the correlation between the observation noise at dif-
ferent nodes in the network does not have an effect on Sl,n ,
Rl,n , and Ql,n . In addition, Tr(Σa

l,n ) is linearly dependent on
Tr(Ql,nWnQH

l,n ). Hence, for a constant value of Tr(Wn ), we
have that Tr(Ql,nWnQH

l,n ) and therefore Tr(Σa
l,n ) are mini-

mized (cf. maximized) when the observation noises at different
nodes are uncorrelated (cf. fully correlated).

Remark 5: Note that since {Sl,n ,Rl,n ,Ql,n} given in (18)
are linearly dependent on |Nl |, which is referred to as the

connection degree of the node. Therefore, the term Σa
l,n in (16)

will also be dependent on the connection degree of the node.

C. Global Mean Square Error Behavior

From the expression in (14), the estimation error cross-
covariance between all nodes of the network, En , can be given
in a recursive formulation as

En = SnEn−1SH
n + RnVnRH

n + QnWnQH
n (19)

where En , Vn , and Wn are given in (17), while

Sn =

⎡

⎢⎣
S1,n

...
S|N |,n

⎤

⎥⎦ , Rn =

⎡

⎢⎣
R1,n

...
R|N |,n

⎤

⎥⎦ , and Qn =

⎡

⎢⎣
Q1,n

...
Q|N |,n

⎤

⎥⎦ .

Then, if convergence conditions in Section IV-B are satisfied,
i.e. Vn → V and Wn → W , as a result of local convergence,
matrices {Sn ,Rn ,Qn} become time invariant, that is

lim
n→∞

Sn = S, lim
n→∞

Rn = R, and lim
n→∞

Qn = Q

and En in (19) converges, that is, En → E as n → ∞. Therefore,
the expression in (19) simplifies to a quaternion-valued discrete
time Lyanpunov equation given by

E = SESH + RVRH + QWQH . (20)

Invoking the duality between R and H established using the
expressions in (1) and through decomposing the quaternion-
valued matrices in (20) into their real-valued components, the
closed form solution to the equation in (20) can be obtained as

Vec(EHR) =
(
I − SHR ⊗ SHR

)−1
Vec

(
AHR

)
(21)

where A = RVRH + QWQH and I is an identity matrix with
the same number of rows as SHR ⊗ SHR, while

EHR =

⎡

⎢⎢⎢⎢⎣

Er −Ei −Ej −Ek

Ei Er −Ek Ej

Ej Ek Er −Ei

Ek −Ej Ei Er

⎤

⎥⎥⎥⎥⎦

with SHR and AHR defined analogously.

D. Extension to Multi-Task Networks

Note that in Algorithm 3 it is assumed that all the nodes
in the network are estimating the same augmented state vector
sequence; however, in many applications this assumption may
not hold true and therefore it becomes necessary for a node
to identify other nodes in its neighborhood that are estimating
the same augmented state vector sequence. Let xa

l,n and xa
m,n

denote respectively the augmented state vectors of nodes l and m
at time instant n. Considering that ϵa

l,n |n−1 = xa
l,n − x̂a

l,n |n−1 ;
from Algorithm 3, ϵa

l,n |n−1 is a zero-mean quaternion-valued
Gaussian random vector with the augmented covariance matrix
M̂a

l,n |n−1 . Therefore, from (13) and considering that ωa
l,n is a

quaternion-valued zero-mean Gaussian random vector, ϵa
l,n =



TALEBI et al.: DISTRIBUTED QUATERNION KALMAN FILTER WITH APPLICATIONS TO SMART GRID AND TARGET TRACKING 483

xa
l,n − φa

l,n will also be a zero-mean quaternion-valued random
vector with the augmented covariance matrix

Cϵa
l , n

=
(
I − Gl,nHa

l,n

)
M̂a

l,n |n−1
(
I − Gl,nHa

l,n

)H

+ Gl,nCωa
l , n

GH
l,n . (22)

Now, consider a measure of difference between the observa-
tion at node m and its predicted value given the local estimate
at node l, defined as

ra
(l,m ) = Ha

m,nφa
l,n − ya

m,n = Ha
m,n

(
φa

l,n − xa
m,n

)
− ωa

l,n

= Ha
m,n∆xa

(l,m )n
− Ha

m,nϵa
l,n − ωa

l,n

where ∆xa
(l,m )n

denotes the difference between the augmented
state vectors at nodes l and m at time instant n. Note that
ra

(l,m ) is a quaternion-valued Gaussian random vector with the
augmented covariance matrix

Cra
( l , m )

= Ha
m,nCϵa

l , n
HaH

m,n + Cωa
l , n

(23)

and mean vector Ha
m,n∆xa

(l,m )n
, where Cϵa

l , n
is given in (22).

In the case when the nodes l and m are estimating the
same augmented state vector sequence; ∆xa

(l,m )n
= 0 and

hence Ha
m,n∆xa

(l,m )n
= 0. Therefore, the Mahalanobis dis-

tance d = raH
(l,m )C

−1

ra
( l , m )

ra
(l,m ) can be used as a confidence mea-

sure to indicate whether ra
(l,m ) is an outlier (cf. not an outlier) for

a zero-mean quaternion-valued distribution with the augmented
covariance matrix Cra

( l , m )
indicating that the local estimate at

node l, φa
l,n , offers an invalid (cf. valid) update for the aug-

mented state vector estimates at node m given the measurement
ya

m,n .
Remark 6: Note that if ∆xa

(l,m )n
= 0; then, d is a chi-square

random variable whereas for the case where ∆xa
(l,m )n

̸= 0 the
confidence measure, d, is a non-central chi-square random vari-
able. This allows the probabilities of miss-detection and false
alarm to be established using numerical methods for given val-
ues of ∆xa

(l,m )n
[41], [42]. Since, in most applications prior

knowledge of ∆xa
(l,m )n

is not available, in the solution devised
here, the threshold is set to be the 90% probability mass line of
a zero-mean quaternion-valued Gaussian random variable with
the augmented covariance matrix given in (23) essentially as-
suming that the threshold is satisfied (cf. not satisfied) due to the
fact that ∆xa

(l,m )n
= 0 (cf. ∆xa

(l,m )n
̸= 0).

V. APPLICATIONS

The newly developed DQKF was applied for frequency es-
timation in three-phase power distribution networks and for
collaborative target tracking. In the simulations, the network of
20 nodes shown in Figure 1 was used, where the estimates of
the system frequency or target location from the node denoted
by the red circle were used for illustrating the performance of
the DQKF.

Fig. 1. The network of 20 nodes used in simulations, where the nodes are
marked by red “*” and the connections are shown with blue lines. The node for
which the estimates of the system frequency or target location are illustrated in
later sections is marked by a red circle.

A. Frequency Estimation in Smart Grids

Consider the instantaneous voltages of each phase in a
three-phase power system, given by [43]

va,n = Va,n sin (2πf∆Tn + θa,n )

vb,n = Vb,n sin
(
2πf∆Tn + θb,n +

2π

3

)
(24)

vc,n = Vc,n sin
(
2πf∆Tn + θc,n +

4π

3

)

where Va,n , Vb,n , and Vc,n are the instantaneous amplitudes,
θa,n , θb,n , and θc,n represent the instantaneous phase shifts,
and ∆T is the sampling interval, while f denotes the system
frequency. The three-phase system is referred to as balanced if
Va,n = Vb,n = Vc,n and θa,n = θb,n = θc,n . The power grid is
designed to operate optimally at a nominal frequency and in a
balanced fashion. Large deviations from the nominal frequency
and unbalanced operating conditions can adversely affect the
performance of different components of the power grid, such
as compensators and loads [44], [45], resulting in harmful op-
erating conditions that can propagate throughout the network.
In addition, real-time frequency tracking reveals essential infor-
mation about the dynamics of the power grid, such as power
generation-consumption mismatch. Therefore, smart grid con-
trol and management applications require accurate estimates of
the power signal frequency in order to ensure nominal operating
conditions [18], [27].

For more than 50 years the standard approach for the analysis
of three-phase power systems has been to apply the Clarke
transform, given by [43]

⎡

⎢⎣
v0,n

vα ,n

vβ ,n

⎤

⎥⎦ =
√

2
3

⎡

⎢⎢⎣

√
2

2

√
2

2

√
2

2

1 − 1
2 − 1

2

0
√

3
2 −

√
3

2

⎤

⎥⎥⎦

⎡

⎢⎣
va,n

vb,n

vc,n

⎤

⎥⎦ (25)

for mapping the three-phase voltages onto a new domain where
they are represented by the complex number vn = vα ,n + ivβ ,n .
Note that due to the lack of dimensionality of complex numbers,
v0,n has to be ignored in practical applications, which com-
promises complex-valued analysis techniques when it comes
to dealing with three-phase systems as they cannot fully
incorporate the available information.
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Quaternions were used in [27] for modeling three-phase
power signals in order to provide a framework for incorporating
all the available information, where the three-phase voltages in
(24) were combined together to generate the quaternion signal

qn = iva,n + jvb,n + kvc,n . (26)

A simple mathematical manipulation on (26) yields

qn = ΛI ,n cos(2π∆Tn) + ΛQ,n sin(2π∆Tn) (27)

where ΛI ,n and ΛQ,n are given by

ΛI ,n = iVa,n sin(θa,n ) + jVb,n sin
(

θb,n +
2π

3

)

+ kVc,n sin
(

θc,n +
4π

3

)
(28)

ΛQ,n = iVa,n cos(θa,n ) + jVb,n cos
(

θb,n +
4π

3

)

+ kVc,n cos
(

θc,n +
4π

3

)
.

Replacing the sin(·) and cos(·) functions with their polar
representations, gives

qn =
ΛI ,n

2
(
e(γ2πf ∆T n) + e−(γ2πf ∆T n))

+
ΛQ,n

2γ

(
e(γ2πf ∆T n) − e−(γ2πf ∆T n)) (29)

where γ = ℑ (ΛI ,nΛQ,n ) / |ℑ (ΛI ,nΛQ,n )|. Upon rearranging
the expression in (29), we have

qn =
(ΛI ,n

2
+

ΛQ,n

2γ

)
e(γ2πf ∆T n)

︸ ︷︷ ︸
q +

n

+
(ΛI ,n

2
− ΛQ,n

2γ

)
e−(γ2πf ∆T n)

︸ ︷︷ ︸
q −

n

(30)

where qn has been divided into the two counter-rotating signals
q +
n and q −

n , which can be expressed by the quaternion linear
regressions

q +
n = q +

n−1e
γ2πf ∆T and q −

n = q −
n−1e

−γ2πf ∆T . (31)

Taking into account the quaternion linear regressions in (31),
where the phase incrementing element of q +

n is the quaternion
conjugate of the phase incrementing element of q −

n , a state
space model for qn is proposed in Algorithm 4, where ϕn =
eγ2πf ∆T , νn is the state evolution noise, and ωn the observation
noise. Note that in all simulations in this section the sampling
interval was considered to be ∆T = 0.001 s.

Remark 7: For a balanced three-phase system it can be
shown that γ = (i + j + k)/

√
3 and q−n = 0 (cf. q+

n = 0) if the
system is positive sequenced (cf. negative sequenced) allowing
to detect the incidences when the three-phase system is oper-
ating under unbalanced conditions and take appropriate action
for restoring balanced operating conditions. Since the output of

Algorithm 4: State space model used for frequency
estimation.

State evolution function:

⎡

⎢⎣
ϕn

q +
n

q −
n

⎤

⎥⎦ =

⎡

⎢⎣
ϕn−1

q +
n−1ϕn−1

q −
n−1ϕ

∗
n−1

⎤

⎥⎦ + νn

Observation function: qn =
[
0 1 1

]
⎡

⎢⎣
ϕn

q +
n

q −
n

⎤

⎥⎦ + ωn

Estimate of frequency: f̂n = 1
2π∆T ℑ (ln (ϕn ))

Fig. 2. Frequency estimation using the DQKF and the local-QKF. The esti-
mate of the system frequency obtained by the DQKF is in solid blue line and
the estimates obtained by the local-QKF are given in red.

the Clarke transform does not incorporate all the available infor-
mation in the three-phase signal, the operating conditions of the
power system is not retrievable in complex-valued frequency
estimators based on the Clarke transform.

In the first simulation, the three-phase system was considered
to be initially operating at its nominal frequency of 50 Hz in a
balanced fashion; then, the system suffered a fault resulting in
unbalanced operating conditions characterized by an 80% drop
in the amplitude of va,n and 20 degree shifts in the phases of vb,n

and vc,n ; furthermore, the frequency of the system experienced
a step jump of 0.5 Hz. The fault lasted for a short duration and
the system returned to its balanced operating condition and its
nominal frequency. The estimates of the system frequency at
the node indicated in the network shown in Figure 1, obtained
through implementing a local-QKF and the newly developed
DQKF are shown in Figure 2. Note that the estimates of the
system frequency obtained through implementing the DQKF
have significantly lower steady-state variance as compared to
those obtained by the local-QKF.

In the second simulation, the three-phase system experiences
a rise (cf. fall) in frequency due to a mismatch between power
generation and consumption, while operating under the same
unbalanced conditions characterized in the first simulation. In
Figure 3, the estimates of the system frequency obtained at the
node indicated in the network shown in Figure 1, through imple-
menting a local-QKF are compared to those obtained through
implementing the DQKF. Observe that the developed DQKF
accurately tracked the system frequency and achieved a lower
steady state variance as compared to the local-QKF due to
cooperation between nodes in the network.
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Fig. 3. Frequency estimation for an unbalanced three-phase system with
changing frequency at the rate of 1 Hz/s. The estimate of the system frequency
obtained using the DQKF is in solid blue line and the estimates obtained using
the local-QKF are given in red.

Fig. 4. Voltage recordings from two neighboring nodes in a real-world power
distribution network.

Fig. 5. Frequency estimation in a power distribution network using real-world
data from two neighboring nodes.

In the third simulation, frequency estimation using real-world
data recorded from two neighboring nodes in a power distribu-
tion network was considered. The recorded data are shown in
Figure 4, where both nodes suffered a fault 0.1 second after the
recording started. Although Node-2 recovered, Node-1 contin-
ued to operate in an unbalanced fashion. The estimates of the
system frequency with and without the proposed multi-tasking
technique are shown in Figure 5. Observe that the developed
algorithm was able to detect that the nodes are operating un-
der different circumstances and isolated their local estimators
preventing bias in the estimated frequency.

In Figure 6, the mean square error (MSE) performance of
the proposed quaternion frequency estimator, implemented us-
ing a local-QKF, the newly developed DQKF, and the CQKF is
compared to that of its complex-valued counterparts that use
the linear complex Kalman filter (LCKF) and widely-linear

Fig. 6. Mean square error performance of various frequency estimation al-
gorithms: a) balanced three-phase system, b) unbalanced three-phase system
characterized by an 80% drop in the amplitude of va ,n and 20 degree shifts in
the phases of vb,n and vc ,n .

complex Kalman filter (WLCKF) (see [46], [47]). Notice that the
quaternion frequency estimator not only outperformed its lin-
ear and widely-linear complex-valued counterparts, but also the
unbalanced operating conditions did not affect the performance
of the quaternion frequency estimator, a desirable characteris-
tic for frequency estimators in three-phase systems. Further-
more, employing the developed quaternion frequency estimator
in its distributed form reduced the MSE by approximately 4dB.
Implementing the quaternion frequency estimator through the
CQKF only improved the steady-state variance performance
by around 1dB as compared to implementing the quaternion
frequency estimator through the DQKF.

B. Collaborative Target Tracking

We next considered the problem of tracking the location of a
target in the three-dimensional space. To this end, consider the
state vector [26]

xn =

[
iLxn + jLyn + kLzn

iL̇xn + jL̇yn + kL̇zn

]

where {Lxn, Lyn, Lyn } and {L̇xn, L̇yn, L̇zn } denote the location
and speed of the target along the X , Y , and Z axes. The state
evolution function now becomes

xn+1 =

[
1 ∆T

0 1

]

︸ ︷︷ ︸
A

xn +

[
1
2 (∆T )2

∆T

]

︸ ︷︷ ︸
B

ηn (32)

where ∆T denotes the sampling interval and ηn = iηi,n +
jηj,n + kηk,n is a zero-mean quaternion-valued random vari-
able used to model acceleration. The nodes in the network shown
in Figure 1 are attempting to estimate the state vector through
observations

∀l ∈ N : yl,n =
[
0 1

]
︸ ︷︷ ︸

H

xn + ωl,n (33)

which can be achieved by quaternion-valued Kalman filter-
ing [26], where the state involution and observation equations
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Fig. 7. Collaborative target tracking using the DQKF, showing the position of
the target and its estimates along the X , Y , and Z axes. The initial values for
the target position and its estimate are denoted as “starting points”.

are used in their augmented formulation given by

∀l ∈ N :

⎧
⎨

⎩

xa
n+1 = Aaxa

n + Ba
nηa

n

ya
l,n = Haxa

n + ωa
l,n

(34)

with Aa = block-diag(A), Ha = block-diag(H), and Ba =
block-col(B) representing block diagonal matrices that have
A, H, and B as their diagonal elements respectively.

Remark 8: Note that since state evolution and observa-
tion noise have vanishing real components, i.e. ℜ(ηn ) =
ℜ(ωn ) = 0, they will have non-vanishing pseudo-covariances
and the augmented formulation becomes necessary in order fully
incorporate the second-order information.

In the first simulation, the quaternion Kalman filter was im-
plemented to track a maneuvering target, where ∆T = 0.04 s,
whereas ηn was a zero-mean unit variance quaternion Gaus-
sian random variable with all its pseudo-covariances equal to
−0.33, while for all nodes in the network the observation noise
was selected as a zero-mean quaternion Gaussian variable with
the variance of 0.009 and pseudo-covariances cωω i = −0.007,
cωω j = −0.001, and cωω k = −0.001. The estimate of the lo-
cation of the target, at the node denoted in Figure 1, obtained
through the DQKF are shown in Figure 7; in addition, the steady-
state MSE performance of each node is shown in Figure 8.
Observe that the newly developed DQKF can accurately track
the target and that the steady-state MSE of each node obtained
through simulations closely follows those obtained through the
analysis in Section IV-C.

We next considered the problem of tracking the position of
a maneuvering target where the sensors can only measure the
bearings of the target. Commonly referred to as bearings-only
tracking, this problem is often encountered in passive radar or
sonar tracking applications. Since none of the nodes have access

Fig. 8. Steady-state MSE performance of different nodes in collaborative
target tracking implemented through the DQKF and CQKF.

Fig. 9. Collaborative target tracking using bearings-only measurements. Po-
sition of the target and its estimates along the X , Y , and Z axes are shown
respectively in the top three graphs, while the bottom graph shows the location
of the target and its estimate in the three-dimensional space. The initial values
for the target position and its estimate are denoted as “starting points”.

to the range of the target, arriving at a unique solution using only
the information available to one node is not possible. A solution
to this problem is given in [26] using a quaternion Kalman filter
that combines the observations of two sensors in order to locate
the target through triangulation; however, the results are not
generalizable for implementation over sensor networks. Taking
into account that the developed DQKF operates akin to a CQKF
that has access to observations from its neighboring nodes, in



TALEBI et al.: DISTRIBUTED QUATERNION KALMAN FILTER WITH APPLICATIONS TO SMART GRID AND TARGET TRACKING 487

the solution designed here, the proposed DQKF is implemented
in the sensor network where the diffusion of local estimates is
exploited to force the nodes to arrive at a unique solution, based
on observations from all nodes in the network.

In the second simulation, we considered tracking the location
of a target moving inside a 24 × 24 × 24 cube using bearings-
only measurements. The 24 × 24 × 24 cube was sub-divided
into 20 equal sized cubes each housing, at its center, a node of
the network shown in Figure 1. The bearings-only measurements
for every node in the network is given by

∀l ∈ N : yl,n =
Ltarg

n − Lsen
l∣∣Ltarg

n − Lsen
l

∣∣ + ωl,n

where Ltarg
n represents the location of the target at time instant

n, Lsen
l denotes the location of node (sensor) l, and ωl,n is

the observation noise at node l at time instant n. Note that the
state evolution equation remains the same as the one given in
(32). The sampling interval was ∆T = 0.04 s, with the state
and observation noise statistics kept the same as in the previous
simulation. The estimate of the location of the target at the node
at (4.4, 4.4, 4.4) is shown in Figure 9. Observe that the proposed
algorithm was able to accurately track the location of the target.

VI. CONCLUSION

A distributed quaternion Kalman filter has been developed
for distributed sequential state estimation in sensor networks.
This has been achieved through decomposing the operations of
the centralized quaternion Kalman filter in such a fashion that
they can be performed by individual nodes in the network so
that the final state vector estimate can be obtained by averaging
local estimates obtained at each node. The proposed algorithm
differs from existing distributed Kalman filtering techniques in
that it does not require mixing coefficients for averaging local
estimates. The proposed algorithm also takes into account the
effect of averaging local estimates on the a posteriori estimate
of the augmented covariance matrix of the augmented state
vector estimation error. In addition, the concept has been ex-
panded for application in multi-task networks. The performance
of the developed algorithm has been analyzed and quantified
through establishing a recursive expression for the estimation
error. Finally, the developed algorithm has been used for estimat-
ing the fundamental frequency of three-phase power distribution
networks and for collaborative target tracking.
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