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ABSTRACT

Due to a large size of lecture theaters and associated mul-
tiple sound sources, the common beamforming techniques
cannot be straightforwardly applied in those environments.
Other difficulties include significant propagation delays be-
tween the microphones and the directionality mismatch be-
tween speakers and microphones. These problems are par-
ticularly emphasized in the distance lecturing environment
equipped with a large scale microphone array (distance be-
tween neighboring microphones 1.86m). To reduce some of
these effects, we propose a technique based upon a combi-
nation of noise reduction and active speaker tracking. Ex-
periments in a real teleconferencing environment are pro-
vided to support the analysis.

1. INTRODUCTION

The core of modern multimedia distance learning and vir-
tual presence (teleconferencing) applications rests upon the
clear and realistic capture of the sound signal. An ideal so-
lution should preserve the spatial hearing comfort, together
with the robust reduction of environmental and other noise
signals. In distance learning applications, therefore, it is an
imperative that the voice of a lecturer and students in the
classroom be captured at a level that provides features for
clear understanding at the far end. To that cause, it is de-
sired that every participant in a distance lecture is equipped
with a portable microphone placed close to the mouth. On
the other hand, for a large number of participants, e.g. the
microphone could be passed among the students, but such
a solution would seriously hamper the flow of discussion,
whereas the recording/transmission system could be disturb-
ing to the participants. To balance the need for the voice
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Fig. 1. A multimedia classroom at the Media Center of Ky-
oto University designed for distance lectures and equipped
with a microphone array installed above the students area.

capture of an active speaker and the problems associated
with a large size of the classroom, a convenient solution
would be a ceiling–mounted large–scale microphone array,
which covers the area occupied by the audience. Since the
microphones mounted above the students inevitably capture
and often enhance both thenonspokenactivity and noise, it
is of crucial importance to employ appropriate filtering and
sound separation techniques, which is the focus of this pa-
per. To start off with, in the next section we discuss prepro-
cessing modules for localization of the active speaker in the
classroom.

2. NOISE REDUCTION AND SPEAKER
LOCALIZATION

The set–up of the recording and active speaker localization
situation which we consider is illustrated in Fig.1. and can
be described as follows. Consider two or more participants



in a remote multimedia session who would like to have a
trouble–free and realistic communication. Positions of the
participants in the remote room are arbitrary within the area
where the sound can be physically captured. The rooms
themselves can be equipped with air conditioners or other
devices generating unwanted sound sources and noise. Ad-
ditionally, the participants may use portable devices (e.g.
laptops) that are the sources of specific local noise.

2.1. Signal predictability for speech enhancement

The significant distance between the microphones causes
them to capture much of ”local” noise not shared across the
microphone array. To remove such local interferences that
usually degrade the performance of speaker localization al-
gorithms, we employ linear adaptive predictors whose fil-
ter lengths, for simplicity, are limited to several taps. The
output of every section of an adaptive predictorxi(k), i =
1, . . . , N , whereN is the number of microphonessi(k) in
the array, is associated with a prediction errorei(k) [1]. The
operation of linear adaptive predictors, together with the co-
efficient update (wi(k)) is given by

ei(k) = si(k)− xi(k), (1)

xi(k) =
N∑

j=1

si(k − i)wi(k) = sT
i (k)wi(k), (2)

wi(k + 1) = wi(k) + µ(k)ei(k)si(k), (3)

µ(k) =
λw(k)
‖si(k)‖22

. (4)

The dynamical learning rate adaptation parameterλw(k) is
the critical variable toward catering for the unknown dy-
namics of the recorded signals. Since our desire is to en-
hance voices of students from the auditorium area that ask
questions during the lecture, the focus of the following anal-
ysis is to identify the speaker location and efficiently sup-
press the additive noise. To that end, there are known ap-
proaches in the open literature, from which for an accu-
rate identification of the noise region, a technique called
the spectral subtraction technique might be employed [2].
Such techniques, however, although very effective, might
introduce the so calledmusical noise, which contributes to a
very bad auditory sensation and consequently creates rather
artificial auditory effects. To avoid such problems, several
adaptive step size normalized least mean square (NLMS)
based algorithms have been proposed [3, 4]. In our ap-
proach, we employ the adaptive step size for NLMSλw(k),
proposed in Eq.4, which is obtained from the cepstral voice
activity detector. Speech and noise are assumed to be mutu-
ally statistically independent, therefore the spectrum of the

enhanced speech signal
∣∣∣S̃ (ω)

∣∣∣ can be obtained from the

noisy version|X (ω)|, after subtracting the noise spectrum
estimate|N (ω)|, calculated from regions labelled as noise
[2]. As mentioned above, these techniques require a very
good voice activity detector and are prone to causing side
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Fig. 2. Top diagram: the noisy original speech signal, cep-
strally preprocessed forλw(k) estimation. Bottom diagram:
the cepstrally evaluated speech activity identifier used for
NLMS adaptation (λw(k)) plotted over the preprocessed
speech.

effects. We therefore use this technique only to detect the
possible sound activity which has a different spectral image
from the noise spectrum (speech, music, etc.). The spectrum
of such a signal with noise subtracted can be expressed as

∣∣S̃ (ω)
∣∣2 =

{
|X (ω)|2 − |N (ω)|2 , if |X (ω)|2 > |N (ω)|2 ,
0, otherwise

(5)
In order to remove the ”stationary–in–time” interference

(stable noise) from a time window at timek, the power of
the subtracted signal̃S(k) can now be evaluated over the
time window and compared to the total (with noise) power
Stotal to update the the value ofλw(k), as

λw(k) =
{

S̃(k)/Stotal(k), Scs(k) ≥ νroom,

const, S̃(k) < νroom,
(6)

In the above equation,̃S(k) is the cepstrally subtracted sig-
nal power andStotal(k) is the total power in the windows
around time samplek [2]. Value νroom reflects the back-
ground room noise and is calculated during the system in-
stallation and initialization. The value of this threshold may
also be evaluated before the distance lecture session starts.
To speed up the filter coefficient adaptation for the time win-
dows where voice activity is not detected, we opt for the use
of constantλw(k) from Eq.4. An illustrative example of the
effects of speech activity evaluation andλw(k) estimation
is shown in Fig.2.
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Fig. 3. The original recordings from 16 microphones lo-
cated on the ceiling of a classroom.

2.2. Active speaker localization

The preprocessed (locally filtered) sound waveforms are now
much better suited for the next stage: active speaker local-
ization (compare the plots of the raw data from Fig.3. and
their filtered versions from Fig.4). Since the high power
noisy interference is removed at in this stage a voice detec-
tor with delay and speech loudness estimation facilities can
be employed. For the estimation of the time frames contain-
ing spoken utterances we employ the technique described in
ITU-T P.56 [5] recommendation. Only the time frames with
active voice are considered for postprocessing. To speed up
the search for such frames, only neighboring microphones
are compared in the estimation of time and power differ-
ences. After the adaptive preprocessing, the localization
unit was able to detect the correct three neighboring micro-
phones. The result is presented on Fig.6. with signal and
tracking diagrams before and after adaptive noise reduction.
The position localization is accurate and remains stable as

#16 #15 #14

#13 #12 #11 #10

#9 #8 #7 #6 #5

#4 #3 #2 #1

Fig. 4. The filtered (denoised) recordings from 16 micro-
phones as the input to speaker localization.

Beamforming

Linear predictor
( , ..., )p       p1 N

Σ

Σ

b1

x1( )k

x3( )k y k( )

u k( )x2( )k

b2

b3

( ) ( ) 2
2k

kb x
λµ = ( ) ( ) 2

2

1

k
kp u

λµ −=Adaptation Adaptation

+

+ +
+

-

Fig. 5. The overview of the final step of the local beam-
former based upon the predictability of the speech signal.

can be seen on the lower left side plots of the above figure.

3. LOCAL BEAMFORMING AS A SECOND STEP
OF SPEECH ENHANCEMENT

After the localization of the speaker position, we perform
the final step of speech enhancement. In the first step of
speaker localization, our approach locates just the three nei-
ghboring microphones with limited delays, since the longest
distance between two opposite microphones is up to eight
meters. Once the speaker location is identified, the local
beamforming approach can be employed, since the delays
between microphones and resulting convolutive mixtures
are no longer very significant. A detailed derivation of this
approach can be found in [6]. Here, we present only the final
stage of this algorithm, which performs blind extraction of
signals based upon predictability constraints. Such a blind
signal extraction scheme is shown in Fig.5. To suit the ap-
proach proposed in this paper, three (triangulation like pro-
cedure) microphones, indicating the highest power of spo-
ken utterances, are taken into account. Since the location
of the speaker is already identified, the delays of captured
speech are not significantly different. To remove the re-
maining interferences in the second processing step, we em-
ploy a combined beamforming and linear prediction form
[6], given by

y(k) =
M∑

i=1

bi(k)xi(k)−
N∑

j=1

pj(k)
M∑

i=1

bi(k− j)xi(k− j),

(7)
Here we present only the final steps that lead to the update
of the adaptive beamformer, given by

b(k + 1) = b(k) + µb(k)y(k)b(k), (8)

where:

µb(k) =
λ

‖xi(k)‖22
, (9)

The update of a postprocessing linear predictor that is com-
bined with the beamformer in order to reduce the possible
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Fig. 6. Three microphones which are candidates for the
beamformer input. Since the first step of noise reduction
was to localize the speaker position, the situation is still
noisy, however the localization procedure was already able
to perform accurately. The three top rows of the plots
present the candidates for a steady speaker in an ascending
order. The three bottom rows of plots present the prepro-
cessed speech (the noise is still present) but the locations
presented on the right sides are steady and coherent, sug-
gesting three neighboring microphone all the time.

convolutive effects is given by

p(k + 1) = p(k) + µp(k) (10)

where:

µp(k) =
1− λ

‖u(k)‖22
, (11)

where for both cases above0 ≤ λ ≤ 1.

4. CONCLUSIONS AND FURTHER REMARKS

The proposed methodology has been shown to be suitable
and to provide successful speaker localization for large scale
microphone arrays, where multiple sound sources are recor-
ded (see result on Fig.7.). We have proposed a two stage ap-
proach. Firstly, we locally equalize the captured waveforms
to be able to locate the active speaker. In the next step, since
we can identify the closest microphones, to finally equal-
ize the signal, local beamforming equipped with the second
stage based upon adaptive prediction is utilized. To support
the analysis, experimental results in a real teleconferencing
environment are provided.
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Fig. 7. The example of a single channel speech output
from the walking speaker (this is usually the most difficult
case). The top diagram presents the composition of orig-
inal signals according to speaker location presented in the
bottom diagram (position was localized after first stage of
speech signal preprocessing). The middle diagram shows
the speech signal after our approach has been applied, ex-
hibitting effectively suppressed non-speech regions. The
path of walking speaker was correctly reconstructed from
the microphones locations.
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