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ABSTRACT

A criterion function for selecting the optimal payload size
in data transmission over a binary symmetrical communica-
tion channel is presented. The work assumes that the pack-
ets comprise a fixed size header and variable length pay-
load. The conventional criterion function is based on the
ratio between payload size and mean number of transmit-
ted bits per packet, which includes re-transmissions of cor-
rupted packets. Applying a logarithm to the inverse of this
criterion function makes the resulting function very suitable
for mathematical analysis. This also facilitates parameter
sensitivity studies without recourse to numerical methods.
As such, this helps to visualise and understand the problem
of optimal payload length selection when teaching courses
in signal processing for communications and multimedia.

1. INTRODUCTION

The rapid popularisation of multimedia communications [1,
2], over both IP and wireless networks [3], means that
there is now an increasing requirement to discuss packet-
based data transmission techniques as part of communica-
tions courses. An important issue within this is to determine
the optimal size of payload allocated to a packet for a given
probability of bit error.
Packet transmission at the physical layer can be modelled
by assuming that packets comprise (x + h) bits. The infor-
mation part of the packet is termed the payload and can be
set to varying lengths of x bits - as determined by the ap-
plication or developer. The header is assumed to be of fixed
size (h bits - determined by network protocols) and contains
error protection, address information, etc. The transmission
channel can be modelled by a memoryless binary symmet-
rical channel (BSC) (although in practice bit errors typically
occur in bursts [4]) with channel matrix [5, 6, 7]

PBSC =
[

1 − p p
p 1 − p

]
, 0 < p < 0.5 (1)

where p(1/0) = p(0/1) = p, which denotes the probabil-
ity of bit error for a given channel assuming that any error
correction has been applied. When the received packet con-
tains uncorrectable bit errors a request is made to higher
layer protocols, such as TCP (Transmission Control Proto-
col [3]), to re–transmit those packets. This continues un-
til confirmation is given by the destination that the packets
have been received without error. In practise other factors,
such as packet loss due to network congestion, will also re-
sult in packet re–transmission requests.
To maximise packet efficiency it is desirable to make the
payload (x bits) as large as possible in comparison to the
fixed size packet header (h bits). This results in an increase
in the overall packet size ((x + h) bits) which consequently
increases the likelihood of a bit error occurring within the
packet. In this instance re–transmission in necessary which
directly reduces the proportion of information bits which are
transmitted. Therefore the aim is to find the optimal size of
the payload (x bits) in the packet ((x + h) bits) for a given
probability of bit error, p, with respect to the maximum ratio
between the payload size and mean number of transmitted
bits per packet - including any re–transmission of packets.
The problem itself is not new and has been extensively con-
sidered [6]. This is a constrained optimisation problem,
which is usually solved by computer simulation for a given
channel model and channel quality. Ultimately the final
payload size depends on a number of factors which include
the network bandwidth, the application, the maximum per-
missible delay and the processing power of the terminal de-
vice. In the physical layer the parameter h contains error
correction codes and is, for modelling purposes, assumed to
also comprise header information of higher layer protocols.
Here, we present a new analytical approach to the problem
of deriving the optimum packet length for the channel de-
fined above, which despite its simplicity can point to solu-
tions for real conditions of data transfer. In addition, due
to its convenient graphical interpretation, this approach is
suitable for teaching the problem, and for determining sub-
optimal solutions, when needed.
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2. DEFINITION OF THE CRITERION FUNCTION

The probability, pc, of correctly receiving a packet compris-
ing (x + h) bits, for the binary symmetric channel (after
error correction) is

pc = (1 − p)x+h (2)

The probability of the packet being in error and hence re-
quiring a re–transmission is therefore (1 − pc). The mean
number of re–transmissions per packet n̄, can be therefore
expressed as

n̄ = pc + 2pc(1 − pc) + 3pc(1 − pc)2 + · · ·
=

1
pc

=
1

(1 − p)x+h
(3)

From (3), we can find the mean number of bits transmitted
per message

n̄(x + h) =
x + h

(1 − p)x+h
(4)

As a measure of transfer efficiency, we can define the cri-
terion function f as the ratio between the number of in-
formation bits in a data frame x, and the mean number of
transmitted bits per message n̄(x + h) [6]

f =
x(1 − p)x+h

x + h
(5)

Although both x and h belong to the set of natural numbers
N, (x, h ∈ N), we will assume 0 < x < ∞. From (5), it is
obvious that function f satisfies the conditions

0 < f < 1
lim

x→0+
f = 0

lim
x→∞ f = 1 (6)

The optimal length of the payload x0 can be determined by
finding the maximum of the function f in equation (5) with
respect to x, for given p and h, i.e.

max (f) = f(x0) = fmax (7)

If a relatively good channel is considered, namely small p,
then the function f can be approximated by

f∗ =
x [1 − p(x + h)]

x + h
, p << 1 (8)

In the case of an ideal channel (p = 0), we have

f∗∗ =
x

x + h
(9)

Differentiating (5) with respect to x, we have

f ′ =
[

h

(x + h)x
+ loge(1 − p)

]
f (10)
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Fig. 1. Criterion function f(x, h, p) for h = 10 and various
p

Equating (10) to zero, and utilising the nature of the variable
x, the root of (10) becomes

x0 =
−ah +

√
a2h2 + 4ah

2a

a = loge

1
1 − p

(11)

which is the optimal size of the payload. Alternatively, from
(8), we have

x∗
0 =

√
h

p
− h (12)

If we proceed with the formal analysis of the criterion func-
tion, the second differentiation gives the following analytic
expression

f ′′ =
d

dx

[
h

(x + h)x
+ loge(1 − p)

]
f

=
−h(2x + h)
x2(x + h)2

f +
[

h

x(x + h)
+ loge(1 − p)

]
f ′ (13)

with f and f ′ given respectively in (5) and (10). Figure 1
shows the criterion function f = f(x, h, p) for fixed h = 10
and various values of the error probability of the channel p.
Figure 1 also shows the asymptotes of f as x → ∞. Be-
cause of its large dynamics, function f is not very suitable
for strict analysis, and is sensitive to parameter perturba-
tions. Therefore we look for an alternative way of represent-
ing the criterion function f , which would be more suitable
for analysis and graphical representation.
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3. THE PROPOSED CRITERION FUNCTION

The above analysis can be significantly simplified by using
the logarithm of the criterion function f (5). Knowing that
the logarithm function is a monotonically increasing func-
tion, the result of the optimisation with respect to x is iden-
tical. As the function f lies within the (0, 1) interval, the
function loge f lies within the (−∞, 0) interval. Hence, it
is more convenient to consider a new criterion function g in
the form of a logarithm of the reciprocal value of function
f , i.e.

g = loge

1
f

= loge

x + h

x
+ (x + h) loge

1
1 − p

(14)

This gives fmax ⇔ gmin with respect to x, and hence, the
criterion function g becomes a measure of the ratio between
the mean number of transmitted bits per message and the
number of bits in the information field of the message. Fol-
lowing the same approach as for the criterion function f ,
from equation (14) we have

g′ = loge

1
1 − p

− h

x(x + h)
(15)

Solving (15) with respect to variable x, we obtain x0 as
given in (11). The second derivative

g′′ =
h(2x + h)
x2(x + h)2

(16)

is positive along the interval of interest (0 < x < ∞).
From equation (16), we see that g is convex, since its second
derivative is strictly greater than zero, and thus it reaches
its minimum at x0. In other words, function f (5) indeed
reaches its maximum at x0 (11).
Figure 2 shows simulation results for the criterion function
g = g(x, h, p) for various values of the error probability of
the channel p and fixed h = 10. Using (11) and (14) we can
find an expression for the curve g0 that represents the min-
ima of function g (trajectory connecting optimal payloads)
as

g0 = loge

x0 + h

x0
+

h

x0
(17)

which is shown by the broken line in Figure 2.
For most applications the payload is significantly larger than
the header, hence h 
 x. For a given p, function g now
becomes

g(x, h, p) ≈ (x + h) loge

1
1 − p

(18)

since loge
x+h

x ≈ 0 for h 
 x. The set of curves (18), are
the asymptotes of curves {g}p=0.1,...,0.5 shown in Figure 2.
All the asymptotes intersect in the point (−h, 0). A further
approximation, for a fixed p would be

g(x, h) ≈ c (x + h) , C = loge

1
1 − p

(19)
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Fig. 2. Criterion function g(x, h, p) for h = 10 and various
p

Due to the simplicity of functions g, g ′, and g′′, it is easy to
show that the function g rises slower on the right from x0

than on the left from this point (optimal location), i.e. for
∀ε > 0

g(x0 + ε) < g(x0 − ε) (20)

which is equivalent to

f(x0 + ε) > f(x0 − ε) (21)

This means, since x0 in practice has to be a positive inte-
ger, if we take an approximate value for x0, then it is better,
having in mind other limitations, to take greater rather than
lower values of x with respect to x0.

4. SIMULATION RESULTS

Table 1 shows several results for the optimal size of the pay-
load x0, together with appropriate values of functions f and
g for h = 40 and various p. A header size of 40 bits is not
unrealistic in the physical layer in which the packet headers
consist of between two and four bytes. Allowing another
byte for redundancy within the payload gives 40 bits.
The maximum value of the criterion function, denoted by
fmax, is shown in the fifth column of Table 1 and its ap-
proximation f ∗

max is shown in the sixth column of Table 1.
The approximation x∗

0 is useable for many practical systems
in which the error rate is mostly less than 10−3. Due to
the approximations made, the values of f ∗

max and x∗
0 ap-

pear negative for a poor channel. Figure 3 illustrates the
optimum packet length x0 and its approximation x∗

0 for a

IV - 4122



Table 1. Criterion functions and optimal information field
lengths for h = 40 and various p

p x0 x∗
0 g0 fmax f∗

max

10−8 63226 63206 0.001 0.999 0.999
10−7 19981 19960 0.004 0.996 0.996
10−6 6305 6285 0.0127 0.987 0.987
10−5 1981 1960 0.0402 0.961 0.960
10−4 613 593 0.129 0.879 0.877
10−3 181 160 0.421 0.657 0.638
10−2 47 24 1.47 0.231 0.070
10−1 8 -20 6.79 0.001 -0.633
0.1 8 -20 6.79 0.001 -0.633
0.2 5 -25 10.197 0.00 -0.889
0.4 2 -30 23.044 0.00 -0.752
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Fig. 3. Optimal payload size x0 (solid line) and approximate
payload size x∗

0 (dashed line) for various h and p

variety of channel probabilities and header sizes. For re-
alistic bit error probabilites and moderate header sizes the
approximation x∗

0 is perfectly satisfactory.
As we expected, in the case of higher quality channels, the
length of the information field could be relatively longer,
thus providing better transmission efficiency. So, for in-
stance, for a high quality channel, with p = 10−7 the calcu-
lated optimum data length is x0 = 19981 bits. This is close
to the TCP maximum payload size of 1500 bytes.
Considering a poor quality channel, such as a cellular link
which may have a bit error rate of p = 10−3, the calculated
optimal payload size is x0 = 181 bits. This is again close
to typical packet sizes used in, for example, GSM networks.
These calculated figures of the optimal payload size com-
pare reasonably well to actual payload sizes used in various
networks [8].

5. CONCLUSIONS

An analytical approach to the derivation of the optimal pay-
load length for data transmission over a binary symmetrical
channel has been presented. The ratio between the number
of bits in the payload and the mean number of bits needed
for the transmission of one packet has been used as a con-
venient criterion function. This definition is a constrained
optimisation problem which has been traditionally solved
by computer simulation.
It has been shown that the analysis becomes much simpler if
the criterion function is defined as a logarithm of the recip-
rocal value of the above mentioned function. In the analysis,
while varying the payload size, the header has been assumed
to be of constant size as is specified by network protocols.
We have shown, that when in a need of a suboptimal so-
lution, it is always better to take greater rather than lower
values of the optimal data field length x0. Simulated results
compare reasonably well to payload sizes used in practical
applications.
The analysis presented is useful when teaching courses on
signal processing for communications and dealing with the
problem of deriving an optimal payload size for transmis-
sion.

6. REFERENCES

[1] J. D. Gibson, ed., Muiltimedia Communications. Aca-
demic Press, 2001.

[2] S. Gringeri, R. Egorov, K. Shuaib, A. Lewis, and
B. Basch, “Robust compression and transmission of
MPEG-4 video,” in Proceedings of the seventh ACM
international conference on Multimedia, pp. 113–120,
1999.

[3] F. Halsall, Data Communications, Computer Networks
and Open Systems. Addison Wesley, third ed., 1992.

[4] I. Cidon, A. Khamisy, and M. Sidi, “Analysis of packet
loss processes in high speech networks,” IEEE Transac-
tions On Information Theory, vol. 39, no. 1, pp. 98–108,
1993.

[5] M. Schwartz, Computer Communication Network De-
sign and Analysis. Prentice–Hall, 1977.

[6] G. J. Marshall, Principles of Digital Communications.
McGraw–Hill, 1980.

[7] D. Petersen, Audio, Video and Data Telecommunica-
tions. McGraw–Hill, 1992.

[8] P. Manzoni, D. Ghosal, and G. Serazzi, “Impact on mo-
bility on TCP/IP: An integrated performance study,”
IEEE Journal on Selected Areas in Communications,
vol. 12, no. 5, pp. 858–867, 1995.

IV - 4123


