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variate entropy, quadrivariate random processes.

. INTRODUCTION

Standard techniques employed in statistical multichapnetessing typically do not fully ex-
ploit the ‘coupled’ nature of the available information kit the channels. In other words,
most practical approaches are based on channelwise prugesss is often inadequate as the
components of a multichannel process are typically caedleOn the other hand, the quaternion
domainH facilitates the modelling of three- and four-dimensiongnsals. The resurgence in
guaternion signal processing is due to the advantages démpian algebra over real-valued
guadrivariate vector algebra in the modelling of such dAfgplications of quaternions include
those in information forensics [1], instrumentation [2pnemunications [3], robotics [4], neural
networks [5], and seismics & oceanics [6]. In the signal pesing community, quaternions have
been employed in Kalman filtering [7], the well-known MUSI€chnique [8], singular value

decomposition for vector sensing [9] and the least-meaiggestimation [10].

As gquaternions are a hypercomplex extension of complex eusnlit is natural to investigate
whether the recent developments in so called augmentedlersiatistics can be extended to the
guaternion domain, in order to cater for the generality ofd@m signals. One of the pioneering
results in augmented complex statistics is the work by Neasd Massey, who introduced the
concept of properness (second order circularity, rotathvariant probability distribution) into
complex-valued statistics. They demonstrated that thar@wvceE{zz” } of a complex random
vectorz alone is not adequate to provide a complete second ordestisitdescription [11] and
that the pseudocovariandé{zz’} also needs to be considered in order to cater for improper
signals. Their work was followed by Picinbono [12] and VamEos, who formulated a generic
Gaussian distribution of both proper and improper complexgsses, to show that the traditional
definition of the complex Gaussian distribution (based andbvariance) is only a special case,
applicable to proper processes only [13]. These foundatiwewve been successfully used to
design novel algorithms in adaptive signal processing, [@dinmunications [15], autoregressive
moving average (ARMA) modelling [16], and independent congd analysis [17]. By virtue
of augmented complex statistics, all these results areicaibé to the generality of complex

signals, both second order circular and noncircular.
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The results of work on quaternion-valued second orderss$izi are still emerging and are
scattered in the literature [18], [19]. The existing apptoes typically take into account only the
information contained in quaternion-valued covariancg [B], [8], [20] and by analogy with
the complex domain, they are bound not to maximise the useailiahle statistical information.
However, despite quaternions being a natural generalisati complex numbers (their hyper-
complex extension), the developments in the ‘augmentedissits of general processes (both
second order circular and noncircular) in the quaterniomaia are still in their infancy. In this
connection, Vakhania extended the concept of ‘propernestie quaternion domain, however,
his definition ofQ-properness was restricted to the invariance of the prdtabtensity function
(pdf) under some specific rotations around angler@f [18]. Amblard and Le Bihan relaxed

the conditions ofQ-properness to an arbitrary axis and angle of rotatiohat is [19]

g=e¥q Yo (1)

for any pure unit quaternion (whose real part vanishes); symb®dldenotes equality in terms
of pdf. Although these results provide an initial insightoirQ-properness, they are restricted
to single quaternion variables and it is not straightfodvar apply them to quaternion-valued

processes.

The augmented statistics of complex variables and signatsasldressed in detail in [21], [22].
We here extend this analysis to cater for the quaternion doamal derive conditions for complete
second order statistical description of such signals. & ¢md, this work introduces a generic
framework for second order statistical analysis of the gaitg of quaternion-valued random
variables and vectors, both second order circular and nmarar. It is demonstrated that in
order to exploit complete second order information, it isegsary to incorporate complementary
covariance matrices, thus accounting for a possible imgrmgss of quaternion processes. The
benefits of such an approach are thus likely to be analogaihe tadvantages that the augmented
statistics provides for noncircular complex-valued ddtd][[23]. Our analysis shows that the
basis for augmented quaternion statistics should alsadechjuaternion involutions, and that
the so introduced augmented covariance matrix containeegiéssary second order statistical

information, also leading to the introduction of widelydar modelling inH. Next, multivariate
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Gaussian distribution is revisited to cater for generaltejunon processes, leading to enhanced
entropy based descriptors. Finally, conditions fdproperness (second order circularity) are

presented, and it is shown th@tproper Gaussian processes attain maximum entropy.

The organisation of the paper is as follows: in Section Il wiefty review the elements of
guaternion algebra. In Section Ill, novel statistical mmgas for quaternion-valued variables
are introduced and the duality with their quadrivariatel d@main counterparts is addressed.
Next, Section VI revisits the fundamentals @fproperness and illustrates its implications for
guaternion statistics. Section VIl formulates a generia$s&n distribution to cater for boti-
proper andQ-improper signals. In Section VIII, the upper bound of thérepy of a multivariate
guaternion-valued data is derived, and it is shown that iatisined forQ-proper signals.
Further, the so-called interaction information, an extam®f mutual information to multivariate

processes, is introduced. We conclude this work in Secfon |

II. PROPERTIES OFQUATERNION RANDOM VECTORS
A. Quaternion Algebra

The quaternion domain provides a natural framework for diethtreatment of three- and four-

dimensional processes and can be regarded as a non-commmatdénsion of complex numbers

[24]. A quaternion variableg € H comprises a real pafk{-} (denoted by subscript) and

a vector-part, also called a pure quaternidfl-}, consisting of three imaginary components

(denoted by subscripts ¢, andd), and can be expressed as:
q = R{q} +{q}
= R{q} +Si{a} + sS{a} + sSu{q}
= Qutwp+igc+trg €H (2)

The orthogonal unit vectors, j, « not only describe the three vector dimensions of a quaternio

but are also imaginary numbers; their relationships arergly
1) = K JK =1 Kt =

yk = 1© = )0 = Kk = —1 3)
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For everyq,, ¢» € H, quaternion multiplication is defined as

a1 = Mot + Hae!}
where R{q1¢2} = QraGa+ Q@b + Qe+ Qadea
MHauet = 6,.5{e} + @ S{a} + S{a} x e} 4)

where the symbol %” denotes the vector product; observe that = ¢2q1 —23{q2} X S{q1 } #
¢2q1- The non-commutativity of the quaternion product is a cons@ce of the vector product.

The quaternion conjugate is defined as
¢ = ¥ -3{q}

= Qo — Wb — J4c — K44 (5)

B. Quaternion Involutions and the augmented basis vector

Complex calculus allows for the real and imaginary part of emmglex numberz = z, + 1z,

to be calculated as, = 3(z + z*) and z, = 5-(z — z*). The necessity to use both and

2* to describe the elements of the corresponding bivariateaiip R? is used as a basis for
the augmented complex statistics, where the ‘augmentesis baector is[z 2*]7. However,
the quaternion domain does not permit such convenient mkatipn and the correspondence
between the elements of a quadrivariate vectoRfnand the elements of a quaternion valued
variable inH is not straightforward. To circumvent this problem, we e to employ the three

perpendicular quaternion involutions (self-inverse nmag@g), given by

¢ = =gt =qq+1q — Jqc — Kqq
¢ = —39)=Ga —Q + JGc — KQa
¢ = —KQK = — Gy — Jqc + KQq (6)

The four components of the quaternion variabhlean now be expressed as [25]
1

1 * 2%
qa—§(q+Q) qb—z—z(q—q)
= Lig—¢") = L g—¢) @)
G =5 (1—q Ga=5-(4—4

Notice that the quaternion conjugate operatiori is also an involution, that is

* 1 VA K
q =§(q +¢ +¢"—q) (8)
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By introducing the augmented quaternion statistics, we aimstablish the duality between the
second order statistics of ‘augmented’ quaternion presags c H*V*! and quadrivariate real

valued vectors irR*V*!1, To make the augmented statisticslnsuitable for the description of

both second order circular and noncircular signals, falhgunon (see pp. 118-119 [26]), we need
to establish a one-to-one correspondence between the cemiscof a quadrivariate real variable
and its quaternionic counterpart. For convenient mantmriaof the components of quaternion
variables, we shall use a combinafioof {¢, ¢*, ¢*, ¢’, ¢"}, and thus define the augmented

quaternion vectory® = [q” g g7 ¢**]" as

qa — Aq'/'
g ] [T a a1 w1 ][aq]
! I I —yI —kI db
9)
q’ I —I I —kI qe
| 9 ] | I —d —I kI | | qq |

whereI € RV*¥ s the identity matrix, andy = [q; ¢2---qn]? € HY*; similar description
also applies tay’, o/, g € HV*!, andq,, q», q. andqg € RV*!, The4N x 4N matrix A
provides an invertible mapping between the augmented mquarevalued signak® ¢ H*V*!
and the quadrivariate ‘composite’ real valued veaipr= [q! q! q! q}]" € R**!, and its
inverse is

1
ATl = A (10)

thus yieldingq” = iAan. The determinant oA can be calculated as a product of its singular
values, and so e.g. fav = 1, det(A) = 16. For any arbitraryV, the determinant oA therefore
becomes

det(A) = 16~ (11)

The basis{q, ¢*,¢’, ¢*} in (9) has been selected so as to make the ma\rils unitary, which
facilitates its algebraic manipulation. In the sequel, wk shhow that due to the relation (8), any
other combination of four elements ¢§, ¢*, ¢', ¢°, ¢*}, for instance the basiy, ¢*, ¢"*, ¢’*}

is also valid, but this does not guarantee a unitAry

2Any four of {q,q", ¢",¢’,q"} or their conjugates can be used with the same effect.

November 18, 2009 DRAFT



[1l. QUATERNION STATISTICS
A. Preliminaries

The standard covariance mati, of a quaternion random vecter= [q; - - - gn|” is given by

qu = E{qu}
= §R{qu} + Z%z{cqq} + j%J{qu} + ’f%n{cqq} (12)

and its structure is shown in Table |. Observe that the redligraginary parts o€, are linear
functions of the real-valued covariance and cross-coneeanatrices of the component vectors
da, @, qc @andqg € RY*L, From Table I, the cross-correlation matrices have spagiametry

properties, €.0Cq,q, = CZ

wq, and it thus becomes apparent thdtC,, } is symmetric, whereas

3{Cqq} IS Skew-symmetric, thus explaining the Hermitian proparty’,q.

Based on (7) and (9), the real-valued componentwise caoelatatrices of the components
44, 95, 9. andq, cannot be estimated from the quaternion-valued covariamateix C, alone.
Hence, second order information within the quaternionwdlvectorq cannot be characterised
completely by the covariance matrix, and complementaryetation matrices: the-covariance
Cq., they-covariancely,, and thex-covariance’,,, need to be used. They augment the information

within the covariance, and are given by

Cq = FE{aq"}

= R{Cq} + 1S {Cq} + 1S, {Cq} + £ {Cq} (13)

qu = E{qq]H}

= ®{Cq} + 1S {Cq} + 1S {Cqy} + £Su{Cqs} (14)
CQH = E{qqﬁH}
= R{Cqu}t + 18 {Car} + 1S {Can} + rSu{Caqs} (15)

where the structures of the real and imaginary part§,ofC,,, andC,, are given in Table | and
Table Il. Observe that, e.g. all the components oftgevariance’,, are symmetric, except for

the :-component3,{C,,} which has a skew-symmetric structure, giving rise to:itdermitian
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TABLE |
STRUCTURES OF THE QUATERNIONVALUED COVARIANCE MATRICES IN TERMS OF THEIR QUADRIVARIATE
REAL-VALUED COUNTERPARTS

Covariance matrix Cqqa = F{aq"™} Cq. = E{aq'™}
R{-} Cqo +Cq, +Cq. +Cq, Cqo +Cqy, —Cq. —Cq,
gz{} Cqua - CQaqb + CCldCIc - chqd Cclbqa - CQaqb + CqCQd - Cqu(‘.
(‘}J{} Cclcqnz - CQan + CQbCId - CCldCIb anq(. + CQL‘Q& - CcldCIb - Cqde
%H{} Cqua - C‘]a‘ld + chqb - Cqch quqa + anqd + Cqqu + quqb
TABLE I

STRUCTURES OF THE QUATERNIONVALUED COVARIANCE MATRICES IN TERMS OF THEIR QUADRIVARIATE
REAL-VALUED COUNTERPARTS

Covariance matrix Cqy = E{aq’™} Car = E{qq""}
R{-} Cao —Ca, +Ca. — Cay Caq —Ca, —Cac +Cay
%1{} CQan + CQqu + Cq(iQC + CQCQd CQan + CQaQb - Cch(i - Cq(iQC
g]{} CQCQ& - CQan + Cq[in - CQde anqc + CQCQa + CQde + Cqu(l
%“{} CQan, + anqd - Cqch - chqb Cqua - anqd + C‘lch - CQ(:qb

property. Similarly, thej-covarianceC,, and thex-covarianceC,, are respectively-Hermitian

and k-Hermitian, that is

Cq = C;Ij
Cy = CF

These properties do not arise in the statistics of compléxedarandom variables [14], [17],

and are unique to the quaternion domain.

B. Duality between quaternionic and quadrivariate statisti

Advances in the statistics of complex variables have shdahthe covariance matrix alone is

not adequate to completely describe the second ordertstltiproperties of general complex-
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valued random vectotsz = z, + 1z,. Picinbono showed that the complete description of the
second order statistics i@, catering for both proper and improper signals, can be aetie

if the real valued bivariate covariance matrices can be cdetpfrom their complex valued
counterparts (see pp. 118-119 [26]). In Section II, we h&wesve that components of a composite
quadrivariate real variable corresponding to the quaterniariableq cannot be completely
expressed based on onjyand ¢*, and to be able to introduce augmented statisticslirve
need to consider an augmented basis comprising the invo&it andg’ and¢”. Following on
these results, we can obtain a complete second order isttidescription inH, provided that
the quadrivariate real-valued correlation matrices ohesingle componeny,, q;, q. andq, of

the quaternion random vectgrcan be expressed in terms of the quaternion-valued coearian

and the complementary covariance matrices as

1 1
an = Z%{qu + qu + qu + que} Cqb = Z%{qu + qu - qu - an}

1 1
c = Z%{qu - qu + qu - an} CQd = Z%{qu - qu - COU + Cqﬂ}
10 1(\
Cqbqa = Z\fl{cqq + qu + qu + an} chqa = Z\Sy{cqq + qu + Cou + an}

Ca

1 1
CQan = Z%H{qu + qu + qu + an} chqb = Zgn{cqq + qu - qu - an}
1 1
qu% = _Z%J{qu + qu - an - an} Cquc = Z%l{cqq - qu + CQJ - Cqﬂ} (17)

3In the complex domain, both the covariarGe= E{zz"} and the pseudocovarian@® = FE{zz”} should be used, that is
1 1
Czﬂl - iﬁ{cz + pz} Czb = 5%{61 — Pz}

Czazb = %C\\fz{,])z - Cz} Czbza = CT

ZaZp
whereC,, andC,, are respectively the componentwise covariance matrices of the rdakpand the imaginary parky,
wherea<’,,., andC.,., denote the cross-covariance matrices.

“If a different basis, e.g{q, ¢*, ¢'*, ¢”*} is chosen, the full description of the second order statistics is still achiagezhown

in Appendix X-A; this applies to any other combination of quadruples basefly, ¢*,¢*, ¢’, ,¢"}.
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10

The augmented quaternion-valued covariance matrix of ayjmaunted random vectoq® =

[q” g7 @’ g"T]" (see also (9) is therefore given by,

Caa Ca Cay Car

Cli C 1qe C ? C eTad
Ca=Blqiq}y = | @ " e Paa (18)
qu C(Uql CQJQJ quqn

H
L Cq/i CCINCIZ CQKCU anq;{ _

where the submatrices in (18) are calculated according to
Cg = E{q(iH} Cag = E{aﬁH}
d€{d.d q"} a,B€{aq,q,d’,q"} (19)

To verify that the augmented covariance matrix in (18) pilegi a complete second order
statistical description, we need to show that it permitsaictinvertible one-to-one mapping

with the corresponding real valued quadrivariate covaeamatrixCr, defined as

an CCIaqb CQa dc qulqd

Cba Cb CbCCb(i
Cr=Bla'qT}=| ¥ " T 08 (20)

CqCQa CQCQb ch CQCQd

L CQdCIa CQdCIb CCIdQc C‘ld
Based on the relationship between the augmented quateraioed vectorq® and the corre-
sponding real valued ‘composite’ vectqf in (9), and since from (10y" = A~'q® = iAHq“,
the real valued covariance matrix can indeed be expressednts of the augmented quaternion
valued covariance matrix in (18) as
Crp = A‘lch‘H

1

—A"CIA 21

62 Ca (21)
where A~ = (A*l)H. This completes the derivation of the augmented quatersiatistics,

suitable for the description of both proper and improperteumon random processes.

V. QUATERNION WIDELY LINEAR MODEL

To exploit the complete second order statistics of quadermalued signals in linear mean-

squared error (MSE) estimation, we need to consider a fijemodel similar to the widely
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11

linear model developed for the complex case [27]. Based oraiff) (18), it is the augmented
random vectorx® = [xT x7 x/T x*T|T that contains all the required second order statistical
information. Then, the quaternion widely linear model (QWdan be constructed as

aH _a
Yy = WX

= gflx +hflx' +ufx? + vix" (22)
The MSE solution based on the QWL model (22) is then given by

w = B{x"x“" 1 p{x"d*} (23)
demonstrating that the QWL solution has the same form as émelatd solution, but is based on
the augmented covariance matdg in (18). On the other hand, the corresponding real-valued
guadrivariate model relies on the real-valued covarianagirin (20) [28]. This correspondence
can be used to establish the relationship between the eigsenies ofCr andC,,. Based on
the roots ofCp — MI = 0, the relationship (21), and the fact thht= A~'A = A7 A /4, we
obtain

1

Cp— A = 1—6AH[C§; — 4NIJA (24)
that is, the eigenvalues of the augmented quaternion @n@ei matrix are four times those
of the quadrivariate real-valued correlation matrix. Heni€¢ the quaternion least mean square
(QLMS) algorithm exploits the widely linear model, it willbaverge four times faster than its

multichannel counterpart, for the same learning rate ($s®[&0]).

V. SECOND ORDER STATIONARITY

Recall that a real-valued quadrivariate variable is wideseestationary if all its four components
are wide-sense stationary [29]. Since the four quaterm@ued covariance matrices (12)-(15)
provide a full description of the second order statistios,o&n now state that a quaternion-valued
random procesg(n) is wide-sense stationary, provided
1) The mean is constant,= E{q(n)} = K Vn
2) The covariance and its complementary matrices are fumcif only the lagr, that is
Caa(n, 7) = E{a(n)a” (n + 1)}
Cai(n,7) = E{a(n)a™ (n + 1)}
Cqy(n,7) = E{a(n)g’ (n + 1)}
Cax(n,7) = E{a(n)q™(n + 1)}
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12

3) The covariance matrix is finit€,q(n) = £{q(n)q(n)} <oco Vn
Observation. It is sufficient to define stationarity in terms 6fq, Cq, Cq;, andCq,, as they

provide the complete description of second order stassi(t7).

VI. SECOND ORDER CIRCULARITY INH AND Q-PROPERNESS

The notion of second order circularity (or properness) em¢bmplex domain refers to complex-
valued variables having rotation-invariant probabilitgtdbutions, and consequently a vanishing
pseudocovariance [12]. The two conditions imposed on a t®mriablez = z, + 12, to be

proper (C-proper) are therefore

ol = o2
E{zz} = 0 (25)

that is, the real and imaginary part are of equal power anccaotlated, which amounts to a

vanishing pseudocovariance matix= E{zz"}.

By continuity, a quaternion-valued second order circul@spfoper) variable should satisfy the
two conditions in (25) of aC-proper variable for the six pairs of axet,:}, {1,s}, {1,x},
{1,7}, {k,} and{k,:}, where 1’ represents the real axis angd), x denote the corresponding
imaginary axes. In other words, the probability distribatiof a Q-proper variable is rotation-
invariant with respect to all these six pairs of axes, legdim the properties of &-proper
variable summarised in Table Il [18].

The first property, P1, states that all the four componenta Qf-proper variable have equal
powers. The property P2 implies that all the componentg afe uncorrelated. Property P3
indicates that the pseudocovariance matrix does not vdars@-proper signals, in contrast to
the complex case. Finally, the fourth property illustrateat the covariance of a quaternion
variable is a sum of the covariances of the process companiotice that properties P1 and

P2 imply properties P3 and P4.

SHowever, if another basis was chosénr instance{q, ¢*, ¢'", qJ*}), then another set of covariance matric(éslq,Pq =
E{aq"}, P4 = E{aq'"}, P} = E{aq’"}) would be employed to define stationarity.
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TABLE 1l

PROPERTIES OF AQ-PROPER RANDOM VARIABLE

Property Mathematical description

P1 E{qi} = E{¢} = 0" Vé,e=abecd

P2 E{gsq:} =0 V e =a,b,c,d andd # ¢
P3 E{qq} = —2E{q}} = —20° Vé=a,b,ecd

P4 E{|q|*} = 4E{q3} = 40 Vé=abecd

For quaternion random vectorg’ and q” to be jointly proper, the composite random vector
having q” and q” as subvectors also has to be proper. In addition, any sulvetta proper
random vector is also proper. To guarantee the jQkgiroperness, each element of the vectgts
andq" should satisfy properties P1 and P2 in Table 1ll, and the elegmshould be uncorrelated
in the sense that their jointj-x-covariance matrices vanish. This is discussed in moreildeta

below.

A. Augmented Statistics ari@properness

Following on the notion of proper complex variables (as itkedain Section IIIA of [11]), we
now extend this definition to quaternion random vectors. @ansa Q-proper random vector
q= g ¢ -qv]t € HY*L Then,Q-properness implies that the quaternion veejois not

correlated with its vector involutiong’, ¢’, g, that i$,

E{aq"} =0 E{qq}=0 E{qq""} =0 (26)

In other words, &)-proper signal has a vanishing complementary covarianddaes, specified
in Table | and Table II. Also, the invariance of@&proper random vector under a linear or affine
transformation (shown in Appendix X-B) is similar to that inet complex case (see Lemma

3 [11]). This invariance arises due to the properties in (@6§l the condition of vanishing

®Similarly, for a complex-valued random vectey C-properness means thatis not correlated withz* in ‘complex sense’,
becauseF{z(z*)"} = E{zz"} = 0.
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1—covariance matrixCq, = 0, in (13) is equivalent to the conditions

_ T _ T
CQan - Cqan CQCQd - C

quqa = —C,, Cqch = —Cy, (27)
Similarly, the vanishingi—covariance matrixCy, = 0, in (14) implies

CQan = _CT quld = _CT

qbQda

chqa =Cl quqb =Cl

qcda

chzqa =-C} Cqch =-C} : (28)

ddda

whereas, the vanishing the-covariance matrixCq,, = 0, in (15) yields

Cqbqa = —C} chqd =—C;

qbQa

_ T _ T
chqa - CCICCIa CQde - Cqub
_ T _ T
Cqua - CQan Cquc - CCIch (29)

Observe thatCq,q, = —Cl . for (28)-(29), whereag’y,q, = CL . for (27), meaning that
Cq,q. = 0. Similar observations can be made for the other componsatwaal-valued cross-
correlation matrices. In other words, the conditions (29} mean that for &-proper signal, all
the real-valued cross-correlation matrices of the comptng,, q;, q., andq, need to vanish.
This, in turn, means that all the four individual componesitseach quaternion variablg are
uncorrelated(property P2 in Table IDI. This also means that the componentsofind ¢, are
uncorrelated forY # p (in contrast to the complex case [11], [12]). We can theeefaonclude
that the augmented covariance matixof a Q-proper random vectay is real-valued, positive

definite, and symmetric.
For a Q-proper random vector, it follows from properties P2 and R4Table lll, that the

covariance matrices (12-(15)) are real-valued and didgama the covariance matrix of @-

proper process is positive definite, leading to a simplarcttire of the augmented covariance

November 18, 2009 DRAFT



15

matrix Cg of a Q-proper random vector, given by viz.

C* = = 40’1 (30)

0 0 0 Carar ]
Notice that the cross-covariance matricggs also vanish and the determinant can be readily

expressed adet(C) = (402)*V.

VIlI. A M ULTIVARIATE GAUSSIAN DISTRIBUTION FOR(Q-PROPER ANDQ-IMPROPER

VARIABLES

In the complex domain, based on the duality between a conyaleablez = z,+:z, € C and a
corresponding composite real variable= [z,,2,] € R?, Van Den Bos proposed a generic
complex-valued Gaussian distribution to cater for b&tproper andC-improper processes
[13]; this was further elaborated by Picinbono [30]. In tlene spirit, we address probability
distributions of both proper and improper processesHinand propose a generic Gaussian

distribution for multivariate quaternion valued variatle

We say that a quaternion valued random variable is Gauskialh its components are jointly

normal, and their joint Gaussian probability distributiengiven by

1 1
as y Yey - 1 €X . as y Yes 31
P(Qa; G, e, ) 20N der(C)? P{=5/(da: @ Ae; da)} (31)
where
f(Qa, 9, de,a0) =47 Cr'a" = q""CR'q" (32)

It is assumed thaty,, q»,q9. and q; € RV*! have zero mean, but this does not restrict the
generality of the results. To make the Gaussian distribu(®il) cater for bothQ-proper and
Q-improper signals, we need to express it in terms of the aatgdequaternion valued vector
q” (9). To this end, the determinant of the quadrivariate davaeCr and the quadratic function

(32) need to be further investigated.

To examine the duality between the real-valued quadritanaatrixCr (20), and the augmented
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quaternion-valued covarian®, from (21), we shall first express the determinantCef as a

function of Cg, that is
det(Cr) = det(A'CLA™™) (33)
= det(A7") det(CS) det(A~T) (34)
where A is given in (9). From (11)det(A) = 16" and sincedet(A™!) = det(A)~!, the above

expression can be further simplified to

2N
det(Cp) — (1—16) det(C?) (35)

The quadratic function (32) can be also expressed as a dunofi the augmented quaternion-

valued random vectog®, given by
fl@a @, a000) = aCr'd
- () (wrea) (ae)
= q"C¢q" = f(a.q", 9", @) (36)

By substituting (35) and (36) into (31), we can express thesGian probability density function

for an augmented multivariate quaternion-valued randootovey® as

]_ 1 H -1
r(a@*) =pla,q9",9",q") = - exp{—59“"Cq q° 37
(") = )= e et O o 37)
For aQ-proper vector, it can be shOV\(szing (30) that the Gaussian distribution (37) simplifies
to
p(a,q",q",q") = S (38)
B (2mo2)2N 202

that is, the argument in the exponential is a function of dily thus highlighting the corre-

spondence with the real and proper complex Gaussian disoris [14].

VIII. A NOTE ON INFORMATION THEORETIC MEASURES
A. Entropy for Quaternion-valued Random Vectors

Based on Section VII and the results in [11], we can now geiserahe maximum entropy
principle to the quaternion-valued multivariate case [1B]L]. The entropy of a genericQt

proper or Q-improper) quaternion-valued Gaussian random vector carexpressed as (the
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derivation is included in Appendix X-C)
H(q) = log [(me/2)*" det(C§)?] (39)
The upper bound on the entropy of a quaternion valued randmtorq is given by
H(q) < 2N log [(2mec?)] = Hproper (40)

The equality (40) holds, if and only iig is a centered)-proper Gaussian random vector (as
shown in Appendix X-D). It is straightforward to show thaetkntropy of a quaternion random
vector with an arbitrary probability density functign(q) cannot be greater than that of the
Gaussian distribution(40), thus confirming that &-proper Gaussian process attains the upper
entropy limit, as shown in Appendix X-D. In addition, the fdifence in entropy is due to the
improperness of a quaternion-valued Gaussian randomrvemtobe quantified by the difference
between (40) and (39).

B. Beyond Mutual Information - Interaction Information

Another important information theoretic measure is mutudibrmation (MI). Standard Mi

considers only two variables, and we next provide its gdisatéon to higher dimensions using

the so-called ‘interaction informatio [33]. Unlike mutual information, interaction information

7 can be negative; physical meaning of a positivean be interpreted as the consequence of

an increase in the degree of association between the \s@hte multivariate quantity, when

one variable is kept constant. The reverse applie€fer0 [33]. The interaction informatiod

between quaternion-valued Gaussian random veetoeg, ¢’ andq® can be measured as
(80)™ ]

det(C2)?

+H(da; A, Gc) + H(a, A, da) + H(da, Ae, qa) + H(qe, Qv; da)

—H(qe,q5) — H(da,9e) — H(Aa, 9a) — H(qp, qc) — H(qp, qa) — H(qe,qq) (41)

I(q;q9q’;q%) = log {

which clearly attains the value &f = 0, for Q-proper signals. The derivation is included in
Appendix X-E.

"The proof given on see p. 336 of [32].
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IX. CONCLUSION

Second order statistics and information theoretic meastoe general quaternion-valued ran-
dom variables and processes have been revisited. To makef esmplete information within
guaternion-valued second order statistics, complememstatistical measures thecovariance,
the j-covariance, and the-covariance matrices have been employed. The so introdacgd
mented statistics has served as a basis for a widely lineatequon model, and the concept
of Q-properness (second order circularity) has been addrdsasetl on the properties of the
augmented covariance matrix. Further, the generic Gaussidtivariate distribution has been
extended to quaternion-valued data, so as to cater for @egphoper andQ-improper variables
and vectors. The upper bound on the entropy of multivariatgarnion-valued processes has been
provided, and it has been shown that this bound is attaine@4proper processes. Comparative

analysis with real quadrivariate statistics supports thdirfigs.

X. APPENDIX
A. The complete description of second order statistics witlaléernative basisq, ¢*, ¢"*, ¢’* }

We can express the componentwise real-valued correlatairices of each single component
d., 95, 9. andqy of the quaternion random vectqrin terms of the quaternion-valued covariance
and pseudocovariance matricBg = E{qq" }, P, = E{qq""}, P} = E{qq’"} as

Ca = sRACa TP} Coy = SR{Cq — Py}
Ca = gR(Ca—PL}  Ca, = R{Ca} — (Cas + Cay + Ca)
Caan = 53ilCat Pal  Coua = 535{Ca+ P}
Casta = 53K{Ca+ Pa  Coray = 594{Ca— P}
Casae = 33i{Ca =P} Caray = —535{Ca— P%) @2)

This illustrates the validity of the above basis in augmeérgaaternion valued statistics.

B. Invariance ofQ-proper random vectors under an affine or linear transforimiat

Consider an affine process = Aq + b, whereq is a Q—proper random vectoe HY,

A ¢ HM*N andb € HM are constant. Based on the proof of Lemma 3 of [11] and the @peci
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properties of complementary covariance matrices in (6% also aQ—proper random vector,

as shown by
Cy, = E{yy"'}=AC, A" =0
Cy, = E{yy""}=AC, A" =0

Cyr = E{yy™ = ACu A" =0

C. Derivation of the maximum entropy of a quaternion-valuaddom vector

Let pa(q) be an arbitrary probability density function apfq) the Gaussian distribution (37).
For convenience (with a slight abuse of notation), we derfofe/ [--- [ [ [ [ by § and
dqa1dqy1dqe1dqa - - - dga, NdGy Ndqe ndgan DY dq

foatalon [slda = §pala)ion[(n/4)" der(Cy)t expl5a'C; "} da

Q

7§ pa(Q)log [(72/4)N det(C2)} exp{2N}]dq

~ log [(m%e?/4)N det(Cg)%] j{pA(CI)dq

~ log [(me/2)*N det(Cg)%] (43)
For a Q-proper Gaussian random vector, the augmented covariaratexninas the special
structure (30), its determinant iet(C2) = (40%)*", and the expression (43) can be further

simplified into

D. Maximisation of entropy for &)-proper random variable

To demonstrate that the entropy @f= q, + 1q, + Jq. + Kqa € H is maximised, for aQ-
proper random variable, we first address the maximum entodplye corresponding real-valued
quadrivariate vecto’ = [q. ¢ ¢. q4)’. According to the maximum entropy principle, the

entropy ofq’, satisfies (see p. 234 [31])
H(q)) < %log [(2me)* det(Cr)] (45)

where the equality holds, if§. is a centered Gaussian random vector. Upon evaluating the

corresponding entropies fa¥ = 1, observe that the real quadrivariate covariance matgixn
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(20) is positive definite and has a special block structure

I' B
Cr= (46)

which implies that (see p. 478 [34])
det(Cr) = det(T)det(C — BT 'B)
< det(T) det(C) (47)
and is maximised (equality holds) wh&h= 0, yielding
E{qage} = E{¢aga} = E{qac} = E{qpqa} =0 (48)

Since for the twa x 2 matricesdet(T") = E{¢*} E{¢?} — F{q.q}* anddet(C) = E{¢*}E{q>}—
E{q.qq}?, the determinantlet(Cr) satisfies

det(Cr) < [E{}E{g} — E{q.0}?] [E{?} E{q7} — E{qcqa}’]

< BloE{a}E{e:} E{aq} + E{9.0}* E{geqa)” +
s
—B{q.0}* E{@?} E{a3} — F{q.0a}* E{a?} E{a}} (49)
X T
By examining (49), and factorising and y as
¢ +x = E{quw}’ | E{qcqa}’ — E{¢}E{q3}| <0 (50)
the maximum value ob + x = 0 indicates that either
E{qqs}> = 0 (51)
or B{g.qa}® = 0 (52)

The same statement can be madedarr < 0. Therefore, equations (48), and (51)-(52) satisfy

property P2 of a)-proper variable (see Table Ill), and the determinan€ gfis upper bounded
by
det(Cr) < BE{q:}E{a}E{a}E{qi} (53)

Using constrained equality based optimisation (Lagrangéiptiers), we show below that in-

equality (53) is maximised when condition P1@fproperness in Table 1l is satisfied, yielding

det(Cr) < (%q'g}) (54)
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This optimisation problem can be posed as
o { det(Ca) p = max { E() BB G} ) }
subject to E{q:} + E{g;} + B{¢:} + E{qi} = E{lq|*}
and can be solved using Lagrange multipliers as

/ (E{qz}, Bla}. B{¢®}, B{qd). A) = B B BV B+

A(BA&) + L&) + B2} + B} - (1) ) (55)
Set the derivativelf = 0, to yield the system of equations
0
Wf;}g} = E{g}E{¢}E{gi} + A =0 (56)
B N N
JE(E] E{ga} E{q:} E{qz} + A =0 (57)
0
aE{J;g} = E{¢}E{¢;} E{gi} + A =0 (58)
8f _ 2 2 2 _
8E{q3} - E{Qa}E{Qb}E{QC} + )‘ =0 (59)
O~ B+ B+ B + B}~ B{laP) = 0 (60
Solving the equations (56)-(59) leads to
E{q;} = E{a;} = B{¢2} = E{q3} (61)
which when replaced in (60) yields the solution
B¢t} = Bla}} = E{?) = B{g3) = T01 (62

Since the functionlog(-) is monotically increasing, we can substitute the maximurnues/af
det(Cr) from (54) into (45), to obtain the upper entropy bound in thenf

2 2E 212
Hi) < tog [EIL]
< log |:47T2€204:| (63)
This upper bound is equivalent to the entropy @d-groper Gaussian quaternion random variable
(40) whenN = 1, thus illustrating that the entropy of a quaternion vagapis maximised for
Q-proper random variables. This also confirms the validityhef introduced form of probability

density function (37) for quaternion random variables.
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E. Interaction InformatiorZ(q; q*; q’; q*)

Prior to the formulation ofZ(q; q’; 9’; q*), note that the interaction informatiah of q* =

[q”

q” 7 7" € H*N*! is equivalent to that of]” = [q q] q q}]" € R*N*!, due to

their deterministic relationship

The matrix A does not contribute to the interaction informationgdf and therefore,

I(q;q99’;9") = Z(da; d; de; a)

(1]

(2]

(3]

(4]

(5]

(6]

= H(qd) + H(qw) + H(q.) + H(da) — H(qa, D, de, Aa)
Hprope:H(Q)

+H(qq, b, 9c) + H(da, 9, 9a) + H(das e, da) + H (e, Db, da)

—H(qq, ) — H(da,9:) — H(da, 94) — H(qp, qc) — H(qp, da) — H(qe, qa)

— log [%]

+H<qa7 Qv Qc) + H(Qaa Qv qd) + H(qau Q. Qd) + H(q07 Qb Cld)

—H(qa,9) — H(qa,qc) — H(qa, qa) — H(qy, qc) — H(qp,9a) — H(qe, qa)
(64)
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