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Dynamically-Sampled Bivariate Empirical
Mode Decomposition

Naveed ur Rehman, Muhammad Waqas Safdar, Ubaid ur Rehman, and Danilo P. Mandic

Abstract—A novel scheme for selecting projection vectors in
bivariate empirical mode decomposition (BEMD) is proposed in
order to enable accurate signal decomposition at lower computa-
tional complexity. Unlike existing algorithms which use a static
uniform scheme for the distribution of projection vectors, the
proposed scheme examines local curvature in multidimensional
spaces to produce a data-adaptive set of direction vectors for
taking signal projections. This is achieved by aligning the density
of projection vectors according to the empirical distributions of
angles where the signal exhibits highest local dynamics. We show
that the proposed methodology outperforms the existing schemes
for a small number of signal projections. The proposed algorithm
is verified via illustrative simulations demonstrating accurate local
mean estimation and mode extraction.

Index Terms—Bivariate EMD, inverse transform sampling,
Menger curvature.

I. INTRODUCTION

T HE empirical mode decomposition (EMD) [1] is an estab-
lished data-driven method for multiscale analysis of non-

linear and nonstationary time series. It represents an arbitrary
signal via a sum of its inherent oscillatory modes ,
termed intrinsic mode functions (IMFs), and a residual as

(1)

The IMFs are zero-mean AM/FM modulated compo-
nents which lend themselves to highly localized time-frequency
(T-F) estimates by combining EMD and the Hilbert transform
(HT)–the so called Hilbert-Huang spectrum. Another advan-
tage is that the EMD makes no a priori assumptions regarding
input data, making the algorithm popular in a wide range of
applications.
Recent developments in sensor and data acquisition technolo-

gies have enabled routine recordings of multivariate signals, yet
algorithms which can cater for nonlinear and nonstationary mul-
tivariate data are scarce. In the EMD context, for bivariate data
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(containing two data channels) these include: i) Complex EMD
(CEMD) [2]; ii) Rotation-invariant EMD (RI-EMD) [3]; and
iii) Bivariate EMD (BEMD) [4]. The computation of the local
mean is the most important and challenging step in developing
such methods since the complex field is not ordered and the
relations “ ” and “ ” have no meaning. To this end, RI-EMD
and BEMD take projections of a bivariate signal in multiple
directions, and subsequently calculate signal envelopes by in-
terpolating the extrema of those projections. Finally, the local
mean is computed by averaging these multiple univariate en-
velopes. Owing to its fully complex nature, both RI-EMD and
BEMD produce equal number of IMFs for real and imaginary
components, however, they differ in the number of projections
they take to calculate the local mean: while RI-EMD takes only
two projections, BEMD can employ any number of projections
in 2D and is thus better suited to handle fast-changing signal
dynamics. More recently, a fully multivariate [5] extension of
EMD has been proposed, which extends the BEMD principle to
multivariate signals containing any number of data channels.
The BEMD andMEMD algorithms have already been proven

in a wide range of applications, ranging from environmental
condition monitoring to brain-computer interface (BCI). How-
ever, they employ static distributions of direction vectors for
taking signal projections in multidimensional spaces, not con-
sidering any information regarding the changing dynamics of
the signal at hand. While their global sampling strategy pro-
duces accurate results for a large number of projections, in cases
where computational complexity is an issue, sampling strategies
should be local and data dependent. To address this issue, a non-
uniform sampling scheme for the BEMD was recently intro-
duced which employs non-circular statistics of a complex signal
to identify the principal directions for taking signal projections
[6]. Albeit an improvement over uniform sampling strategies,
this approach considers global information about the correlation
and power of individual data channels, and is thus best suited
for stationary data, hence limiting its usefulness for real world
applications.
To resolve this issue, we propose here a novel scheme to

determine the direction vectors for taking signal projections
based on local signal dynamics. This is a local scheme which
assigns the distribution of direction vectors according to the
angles where the signal exhibits maximum variations. We show
that this not only produces more accurate estimates of the local
mean but also results in significant savings in computational
complexity, as fewer projections are required to obtain the local
mean. The proposed method operates by first estimating an
empirical cumulative distribution function (CDF) of direction
vectors (angles) based on the local signal curvature; subse-
quently, samples are drawn from the estimated empirical CDF
using the inverse transform sampling (ITS) method, yielding a
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set of angles where maximum signal variations are exhibited.
The proposed method is shown to outperform standard bivariate
EMD via simulations on both synthetic and real world signals.

II. BIVARIATE EMD (BEMD)

The BEMD algorithm [4] extends the notion of ‘oscilla-
tions’ in standard EMD to ‘rotations’ in 2D and attempts to
decompose a bivariate signal in terms of slower and faster
rotations through a process referred to as the sifting algorithm.
It takes multiple projections of input signal along
uniform angle set and computes corresponding bivariate enve-
lope curves by interpolating between the maxima
points of the projections; subsequently a nonlinear elementary
operator is applied on the signal until some stopping criterion
is met, yielding multiple bivariate components in the process.
Algorithm 1 lists the steps involved in the BEMD algorithm.

Algorithm 1 The sifting process in BEMD

1: Given a bivariate signal , obtain signal projections,
, along uniform directions via

(2)

where denotes the real part of a complex number, and
for ;

2: Find the locations corresponding to the maxima
of ;

3: Interpolate (using spline interpolation) between the
maxima points component-wise, to obtain the
bivariate (complex-valued) envelope curves ;

4: Calculate the bivariate mean, , of all the envelope
curves

(3)

5: Subtract the mean to give .

III. DYNAMICALLY-SAMPLED BEMD (DS-BEMD)

The rationale behind the proposed DS-BEMD method is to
incorporate the information regarding local signal dynamics
into BEMD by generating a set of angles (directions) where
the input signal exhibits maximum variation. The aim is to
enable accurate local mean estimation for a smaller number of
projection vectors , increasing the overall efficiency of the
method. The proposed method employs: 1) Menger curvature
measure to model local signal dynamics resulting in the dis-
tribution of angles (directions) exhibiting high-dynamics, and
2) Inverse Transform Sampling (ITS) to generate angles from
that distribution.

A. Estimating Local Dynamics via Menger Curvature

The curvature of a function measures its local deviation from
a straight line, and is a natural choice to quantify local signal dy-
namics, since intuitively, the larger the deviation from straight
line, the higher the dynamics (variations) of a signal (function).
A convenient means of estimating curvature for real world sig-

Fig. 1. Computation of Menger curvature (a) For three points , , and
on a curve, the curvature is calculated through curvature radius (eq. (4)), the
triangle (eq. (5)), and the angle (eq. (6)). (b) Low dynamics case cor-
responding to high curvature radius . (c) High dynamics case corresponding
to low curvature radius .

nals is through the Menger Curvature, which defines the cur-
vature radius as the limit of the radius of a circle containing
three points of a curve, as shown in Fig. 1(a). The radius of
the osculating circle, defined as a circle at a point on a curve
which passes through the point and some infinitesimally

close points to on , is inversely proportional to the curva-
ture of the curve at the middle point , given by:

(4)

Considering a triangle passing through the three points
( , , ) of a curve, the side lengths , , and
and the area of the triangle are related as:

(5)

Another way of computing the Menger curvature is through the
identity:

(6)

where denotes the angle corresponding to the Y-corner of the
triangle and is the length of the hypotenuse, as
shown in Fig. 1(a). From eq. (4) and Fig. 1, observe that an
osculating circle with a higher value of corresponds to lower
curvature and slower dynamics (Fig. 1(b)), whereas a circle with
a smaller value of corresponds to higher curvature and faster
dynamics (Fig. 1(c)).
In the proposed method, the Menger curvature measure

is computed via eq. (5) to quantify local signal dynamics of
an input bivariate signal at each point

. Subsequently, points exhibiting high dynamics
are selected and their corresponding angles are calcu-
lated via eq. (2). The empirical cumulative distribution, ,
of those angles is then estimated which is used a reference
to compute the angles exhibiting high dynamics via the ITS
method [7], as demonstrated next.

B. Selecting Angle Set via Inverse Transform Sampling

The ITS is a popular method to produce random variates with
an arbitrary distribution and we shall employ it to generate de-
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terministic angle set based on the distribution of signal
angles exhibiting high dynamics. It operates on by: i) gen-
erating a set of uniformly sampled points in the range [0, 1];
ii) finding the smallest integer such that ; and iii)
returning the desired angle set as . This way, we
obtain angles exhibiting maximum signal variation. For very
small values of , the uniform samples may not cover the
whole range of [0, 1] adequately and hence the proposedmethod
selects the first angles corresponding to the maximum values
from the histogram of . The steps involved in the computation
of the angle set in DS-BEMD are outlined in Algorithm 2.
The angle set then replaces the uniform angle set (eq. (2))
used in the standard BEMD in step 1; the rest of the operations
of the DS-BEMD, including the computation of local mean, are
the same as those in standard BEMD (steps 2-5 in Algorithm 1).

Algorithm 2 Dynamically-Sampled BEMD (DS-BEMD)

1: Estimate the curvature of an input bivariate/complex
signal , with and being sampled at the
same rate and each of length , using eq. (5);

2: Select first points exhibiting top curvature values;

3: Find L angles corresponding to the selected data
points exhibiting high dynamics via eq. (2);

4: if then

5: Generate histogram with number of bins of
the resulting angles ;

6: Select the first angles, corresponding
to the peak values of ;

7: else

8: Find the CDF of the resulting angles ;

9: Generate deterministic uniform samples in the
range [0, 1];

10: Find the smallest integer such that ;

11: Choose where .

12: end if

Fig. 2 illustrates the operation of DS-BEMD for both bal-
anced circular white Gaussian noise (WGN) and a non-circular
synthetic combination of sinusoids. The scatter plot of circular
WGN data is shown in Fig. 2(a) and has equal powers in both
data channels resulting in an approximately uniform histogram
and a linear CDF, as shown in Figs. 2(c) and (e) respectively.
The DS-BEMD, therefore, yielded uniformly distributed direc-
tion vectors along a circle, as shown in Fig. 2(g).
The operation of DS-BEMD on a benchmark non-circular bi-

variate signal, used in [8], is also shown in Fig. 2(b) and
Fig. 2(d), which show respectively the original signal and the
histogram of its angles according to data dynamics, together
with the kernel smoothing estimate of the histogram (dashed
line). Observe that the histogram of direction vectors now has
peaks at and , resulting in the corresponding
empirical CDF exhibiting ‘jumps’ at those angles, as shown in

Fig. 2. projection vectors obtained from the DS-BEMD for circular
white Gaussian noise (WGN) and synthetic non-circular bivariate data. The cor-
responding histograms and CDFs are given respectively in (c-d) and (e-f).

Fig. 2(f). For an optimised and fully data driven BEMD op-
eration, the distribution of projection angles should therefore
be denser along the angles and , which is
achieved by the proposed method as demonstrated in Fig. 2(h).

C. Computational Aspects of DS-BEMD

Increasing the number of projections improves the accu-
racy of local mean estimation in BEMD, but at the same time
it significantly increases the computational complexity of the
algorithm. This can be observed from the following relation
which gives the numerical complexity of BEMD [8] as a func-
tion of the input signal length , number of projections ,
total number of IMFs , and the number of detected extrema

in the th projection of th IMF and th iteration:

(7)

The proposed DS-BEMD reduces the complexity of BEMD by
significantly decreasing the number of projections for the
same accuracy, owing to its projection scheme which matches
signal dynamics. The added computational cost of DS-BEMD
includes: a) computation of Menger curvature of order ;
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Fig. 3. Local mean estimates for real world bivariate data obtained from stan-
dard BEMDmethod (dotted lines) and the proposedmethod (dashed lines) using

and projection vectors. The reference local mean estimate
(dashed-dotted line) is also shown.

TABLE I
PAIRWISE EUCLIDEAN DISTANCE FROM REFERENCE LOCAL MEAN

b) estimation of cumulative distribution function of order
, where ; and c) ITS computation of order
, where . The benefits of reducing the value

of in eq. (7) typically outweigh the added computational costs
of DS-BEMD, making it more cost effective and accurate as
compared to the standard BEMD.

IV. SIMULATION RESULTS

We next illustrate the advantages of the proposed DS-BEMD
method on both real world and synthetic data.

A. Local Mean Estimation

In the first set of simulations, we analysed a real world posi-
tion record data1 from a buoyant subsurface float used to track
the motion of dense salty water from the Mediterranean sea
during the “Eastern Basin” experiment [9]. Fig. 3 shows the
local mean estimates obtained from standard BEMD (dotted
lines) and the proposed DS-BEMD (dashed lines) by using
and projection vectors for a single sifting iteration. The
plots of the original data (black thick line) together with the es-
timates of true local mean or ground truth (green dashed-dotted
line) are also shown. The true local mean was estimated by
taking a very large number of direction vectors
in standard BEMD. It can be noticed that while DS-BEMD pro-
vided a more accurate estimate of the local mean at point ex-
hibiting high dynamics, the local mean obtained from standard
BEMD for went even outside of the signal boundaries
at the location , highlighting the need for
data-dependent local mean estimation.
Table I quantifies the accuracy of the local mean estimates ob-

tained from BEMD and DS-BEMD for a range of values of .
The sum of the standardized Euclidean distance, termed ,
between pairs of observations corresponding to the reference
local mean and those obtained from the standard and proposed
methods was used as the performance metric. The lower the
value of , the smaller the deviation from the true local mean.

1We added a few data points synthetically in order to introduce some sharp
dynamics in the input data at around .

Fig. 4. Mode extraction error (given in eq. (8)) plots of dynamically sampled
vs standard BEMD algorithm for a range of and .

Observe that the proposed method produced much more accu-
rate estimates of the local mean, especially for small to medium
number of projection vectors . For large values of , both
methods converged to the true local mean, as indicated by very
small values of in those cases.

B. Intrinsic Mode Extraction

We next evaluated the performance of DS-BEMD against the
standard BEMD method in terms of the accuracy in signal ex-
traction. The input bivariate data was a synthetic data set
used in [8]. The performance criterion was an error signal , a
sum of individual component errors, given by:

(8)

where and denote respectively the desired (ground
truth) and extracted IMF. Fig. 4 illustrates the mode extraction
errors for the standard and the DS-BEMD methods, produced
by varying both the number of projections and the sifting it-
erations . Observe that the proposed method performed signif-
icantly better than the standard BEMD over the whole range of
values of and ; in fact, the proposed method converged for a
very small number of projection vectors and sifting itera-
tions . On the other hand, the standard BEMD exhibited
significant error for small to moderate values of and , mainly
due to the mode mixing problem. The improvement in standard
BEMD for higher was expected, since for a large number of
direction vectors the static distribution of projections is also ca-
pable of tracking data dynamics, yielding smaller errors.

V. CONCLUSIONS

We have introduced a novel algorithm for selecting projection
vectorswithin thebivariateEMDmethod.Thishasbeenachieved
by incorporating information from local signal dynamics so as
to yield enhanced estimation of the local mean, a key step in
EMD algorithms. The proposedmethod is local and employs the
curvature in multidimensional spaces to generate an empirical
nonuniformdistributionof angles corresponding to thedynamics
of input data,wherebyprojectionvectors (angles) in directionsof
highest curvature are selected for localmean estimation by using
the inverse transform sampling (ITS). The performance advan-
tage of DS-BEMD over standard BEMD has been shown to be
significant for a lownumber of projections, a typical case in prac-
tical applications due to computational complexity constraints.
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