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Abstract

A data-adaptive, multiscale version of Rényi’s quadratic entropy (RQE) is introduced for

emotional state discrimination from EEG recordings. The algorithm is applied to scalp EEG

recordings of 30 participants watching 4 emotionally-charged video clips taken from a vali-

dated public database. Krippendorff’s inter-rater statistic reveals that multiscale RQE of the

mid-frontal scalp electrodes best discriminates between five emotional states. Multiscale

RQE is also applied to joint scalp EEG, amygdala- and occipital pole intracranial recordings

of an implanted patient watching a neutral and an emotionally charged video clip. Unlike for

the neutral video clip, the RQEs of the mid-frontal scalp electrodes and the amygdala-

implanted electrodes are observed to coincide in the time range where the crux of the emo-

tionally-charged video clip is revealed. In addition, also during this time range, phase syn-

chrony between the amygdala and mid-frontal recordings is maximal, as well as our 30

participants’ inter-rater agreement on the same video clip. A source reconstruction exercise

using intracranial recordings supports our assertion that amygdala could contribute to mid-

frontal scalp EEG. On the contrary, no such contribution was observed for the occipital

pole’s intracranial recordings. Our results suggest that emotional states discriminated from

mid-frontal scalp EEG are likely to be mirrored by differences in amygdala activations in par-

ticular when recorded in response to emotionally-charged scenes.

1 Introduction

The identification and discrimination of emotional states from EEG is considered notoriously

challenging, mainly due to the difficulty to gauge electromagnetic activity elicited by cortical

structures involved in processing emotional information [1], yet potentially useful for a broad

range of important applications such as diagnosing and treating patients with dysfunctional

processing of emotional information [2], emotion-sensitive interactive games, affective inter-

faces, and emotion-sensitive tutoring systems [3–5]. This article sets out to address these chal-

lenges, but rather than evaluating the power in the standard EEG frequency bands, as is
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traditionally done [6–13], or amplitudes and latencies of event-related potentials (ERPs) in

response to emotion-evoking stimuli [14–19], we conduct the analysis within the realm of

complexity science [20].

Several entropy-based metrics of signal complexity have already been proposed for discrim-

inating emotional states. Aftanas and co-workers [21] showed that, when viewing images evok-

ing negative and positive emotions, higher values of EEG correlation dimension complexity

are observed compared to viewing neutral images. Hosseini and Naghibi-Sistani [22] applied

two entropic metrics (approximate and wavelet entropy) to discriminate between two emo-

tional states (calm-neutral and negative-excited) in response to viewing sequences of emotion

inducing pictures and achieved 73.25% classification accuracy. Jie et al. [23] applied sample

entropy to EEG data obtained from two binary emotion recognition tasks (positive vs. negative

emotion both with high arousal, and music clips with different arousal levels) and achieved

80.43% and 79.11% classification performance.

A promising development in signal complexity analysis is Rényi entropy (RE). Originally

introduced as a generalization of Shannon entropy [24], RE has enjoyed several successful

EEG-based clinical applications [13,25]. However, RE has been less utilised for EEG-based

mental and affective state detection. Sourina and co-workers [26] used an RE-based variant

(Hausdorff dimension) to calculate the fractal dimension of EEG for real time emotion quanti-

fication and classification, and Bajaj and Pachori [27] used RE together with other EEG com-

plexity measures for emotion detection.

However, one should also be aware that, at least according to some authors [28], neither

strictly periodic nor completely random signals should be regarded complex but rather signals

that possess long range correlations across multiple temporal scales. As the cited studies assess

entropy on a single scale, and since the used entropy metrics become maximal for random sig-

nals, their outcome could be confounding randomness with complexity. To avoid this confu-

sion, Costa and co-workers [29] accounted for the interdependence between entropy and scale

and proposed to calculate entropy, in their case sample entropy, on different temporal scales

(whence, multiscale sample entropy, MSE), using the so-called coarse graining approach (aver-

aging the signal over non-overlapping windows of increasing length). However, as the latter

factually corresponds to a smoothing operation, predominantly low-frequency signal compo-

nents were captured. To overcome this, empirical mode decomposition (EMD) [30] and its

multivariate extension (MEMD) [31] have been suggested: a fully data-driven, time-frequency

technique that decomposes a signal into a finite set of amplitude/frequency modulated compo-

nents, called intrinsic mode functions (IMFs). A further improvement is multivariate MSE

(MMSE), to account for both within and cross-channel dependencies, further combined with

MEMD into MEMD-enhanced MMSE [32]. When applying EMD to EEG recordings, entropy

can be estimated in each IMF individually. Sharma et al. [33] recently applied this technique to

several entropic complexity measures, including RE, to predict focal epileptic seizures from

EEG. Also recently, Tonoyan and co-workers [34] used MEMD in combination with MSE to

discriminate 5 emotional states from mid-frontal EEG recordings when viewing emotionally

charged video clips compiled by Schaefer and co-workers [35]. Albeit the results were encour-

aging, MSE-based entropy estimation turned out not only to be sensitive to the choice of win-

dow length but also computationally intensive.

Our aim for this study is to curb these drawbacks by revisiting MEMD-based EEG signal

complexity in response to emotionally charged video clips, but now based on Rényi’s quadratic

entropy (RQE) applied to whole scalp recordings of 30 subjects. We use Krippendorff’s inter-

rater statistic [36] to identify the scalp electrodes that best discriminate between emotional

states across subjects. We also recorded intracranial EEG (iEEG) of the amygdala and the

occipital cortex jointly with scalp EEG of a patient viewing emotional and neutral video clips.
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The amygdala is considered to be strongly involved in emotional processing [37–48]. Moti-

vated by Makeig and co-workers [49], who considered similar signal processing techniques for

analyzing Human Intracranial Electrophysiology (HIE) and scalp EEG, we apply the same

MEMD-based RQE method to the intracranial recordings and verify whether we can discrimi-

nate between the neutral and the emotional movies in a way similar to the jointly recorded

scalp EEG.

2. Materials and methods

2.1 Materials

2.1.1 Video clips. We considered emotionally-charged video clips of the public database

developed by Schaefer and co-workers [35] (http://nemo.psp.ucl.ac.be/FilmStim/) (Table 1).

The spoken language of these video clips was French or dubbed into French. Each video clip in

the database is labeled in terms of emotional category (fear, anger, sadness, disgust, amuse-

ment, tenderness, neutral, further called “standard label”), which Schaefer and co-workers

obtained by asking their participants to report what they personally felt in reaction to the

video clips, not what they believed people would generally feel. The average duration of all

video clips was approximately 3 minutes.

We performed two experiments, further called main and control. For our main experiment,

we selected two sets of 4 video clips (out of 70 video clips), all with top ten scores in their

respective emotional categories. For the first set, 3 out of 4 videos (disgust, amusement, tender-

ness) had, in addition, also top ten positive or negative affect scores (cf., Table 1); the 4th video

(sadness) did not have a top ten affect score. It was selected to verify the statement of Aftanas

and co-workers [21] that higher complexity values can be observed for affective stimuli com-

pared to more neutral ones. As these videos have different emotional labels and affect scores,

we want to see whether this translates into a difference in EEG complexity values. For the sec-

ond study, 4 video clips were chosen but not from the top ten affect score list: as these videos

shared lower affect scores, we used them in our experiment as controls. All videos were pre-

sented in random order to our participants.

For the implanted patient, as the implant serves a medical purpose, the time window that

we could dispose of to perform experiments was restricted. Hence, we used only two video

clips: fragment 3 of ‘Schindler’s list’ as an emotional video (standard labeled as ‘anger’) and the

weather forecast as an example of a more neutral video. The data recorded in this patient was

used as a case study for assessing the differential activation of the amygdala in response to the

two video clips and the putative relation between amygdala activation and scalp EEG.

After watching each video clip, all participants (including the implanted patient) were

asked to categorize the evoked emotion (after providing them with the same list as used in

Schaefer et al.’s: fear, anger, sadness, disgust, amusement, tenderness, neutral). We further call

Table 1. Names, labels and affect scores of the video clips used in our main and control experiments. Name of videos between quotes and scene

numbers between round brackets, standard labels between square brackets, positive or negative emotional affect scores (mean scores between round brack-

ets), and our participants’ self-labels (underlined followed by the number of respondents between brackets). Video clips were taken from http://nemo.psp.ucl.

ac.be/FilmStim/, standard labels and affect scores from Table 1 in [35] or provided by Alexandre Schaefer (personal communication).

Videos [Standard label] self-labels Affect scores

Main Control Main Control Main Control

‘Sleepers’ ‘Schindler’s List (3)’ [Anger] Anger(14)/Disgust (16) [Anger] Anger (6) Negative (2.46) Negative (2.14)

‘Life is beautiful’ (4) ‘The eight day’ [Tenderness] Tenderness (30) [Tenderness] Tenderness (6) Positive (2.49) Positive (2.07)

‘City of angels’ ‘Life is beautiful’ (1) [Sadness] Sadness (30) [Sadness] Sadness (6) Negative (1.51) Negative (2.01)

‘La cité de la peur’ ‘The visitors’ [Amusement] Amusement (30) [Amusement] Amusement (6) Positive (2.31) Positive (2.25)

https://doi.org/10.1371/journal.pone.0186916.t001
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these the ‘self-labels’. Note that our participants were not informed about the video clips’ stan-

dard labels. Only in the case of ‘anger’ the self-labels were not univocal as 16 participants

reported ‘disgust’ instead (‘Sleepers’, i.e., a video about child abuse). To summarize, we have 3

labels (Table 1):

• standard label: the emotional category of each video clip, taken from Schaefer et al.;

• self-label: the emotional category of each video clip selected by our participants from the list

of standard labels used by Schaefer et al.;

• self-reported emotional affect scores of each video, also taken from Schaefer et al.

Unless noted otherwise, we will use the self-labels for labeling the entropy curves.

2.1.2 Participants. The main experiment was performed with 30 healthy volunteers (20

female, 10 male, mean age = 32.48, SD = 15.77, age range 19–70) who master French language

(i.e., French as mother tongue or French-Dutch bilinguals). We also recruited 2 non-French

speaking volunteers (1 Flemish-Dutch speaking 24 yo male, 1 Armenian speaking 28 yo

female). For the experiment with the control videos (with low affect scores), we tested 6 volun-

teers (2 female, 4 male, mean age = 27, SD = 1.6, age range 25–30). Volunteers were recruited

via emails, social media posts, flyers, and billboard announcements. Some were university

graduate students (KU Leuven, VUB), often being regular subjects in our EEG experiments,

and were paid. No participant had any known neurological or psychiatric disorder. Ethical

approval for this study was granted by an independent ethical committee (“Commissie voor

Medische Ethiek” of UZ Leuven, our University Hospital). The study was conducted in accor-

dance with the most recent version of the Declaration of Helsinki (2013). Before participating

in the experiment, all recruited participants were informed about the goal of the study, what

would be their task, and what would be done with the recorded data (privacy), after which

they read and signed the informed consent form that was previously approved by the said ethi-

cal committee. All EEG recordings were performed between 10/12/2014 and 13/05/2015. The

raw scalp EEG recordings are available from https://kuleuven.box.com/v/EntropyEmotion

2.1.3 EEG recording and preprocessing. Participants were tested in a sound-attenuated,

darkened room with a constant temperature of 20 degrees, sitting in front of an LCD screen.

Each participant’s task was to watch the video clips and report the emotional categories. When

viewing the video clips, EEG was recorded5 continuously using 32 active electrodes, evenly dis-

tributed over the entire scalp (positioning and naming convention following a subset of the

extended 10–20 system) using a BioSemi ActiveTwo system (BioSemi, Amsterdam, the Neth-

erlands) as well as an electro-oculogram (EOG) using the set-up of Croft and co-workers [50].

The EEG signals were re-referenced offline from the original common mode sense reference

[51] (CMS, positioned next to electrode Pz) to the average of two additional electrodes that

were placed on the subject’s mastoids. The duration of the experiment excluding electrode

setup was 20 minutes. The EEG signals were filtered using a 4th-order Butterworth bandpass

filter with range 0.5–30 Hz. The original sampling rate of 2048 Hz was downsampled to 128

Hz (including anti-aliasing) to reduce computational costs. Finally, the EOG signal was uti-

lized for removing eye artifacts following the Revised Artifact-Aligned Averaging (RAAA) pro-

cedure described in [50].

2.1.4 Intracranial EEG recording and preprocessing. We also recorded intracranial EEG

(iEEG), also termed Electrocorticography (ECoG), from a patient, scheduled for resective sur-

gery, as part of her epileptic seizure treatment, when viewing an emotional and a neutral video

clip. The patient was implanted with an intracranial electrode (depth electrode with 10 con-

tacts, contact size 2.4/1.1 mm (overall length/diameter) and 4 mm inter-contact spacing) in

the right hippocampus until the amygdala (2 contact points present) and with a subdural
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electrode grid (4x5 electrodes with 4 mm electrode diameter, 2.3 mm electrode exposure and

10 or 15 mm inter-contact spacing) over the right occipital cortex (S5 Appendix). Recordings

were made with a Micromed digital video compatible EEG recording system (Micromed Spa,

Mogliano Veneto, Italy). The sampling frequency of the recording was set to 1028 Hz. Offline

pre-processing and downsampling were done using the same parameters as for the scalp-

recorded EEG, except that a CMS reference per intracranial electrode (10 contacts) and grid

(20 contacts) was used. Ethical approval for this study was granted by an independent ethical

committee (“Commissie voor Medische Ethiek” of UZ Gent) and conducted in accordance

with the most recent version of the Declaration of Helsinki (2013). Before participating in the

experiment, the patient was informed about the goal of the study, what would be her task, and

what would be done with the recorded data (privacy), after which she read and signed the

informed consent form that was previously approved by the said ethical committee. The

recordings were done on 29/02/2016.

2.2 Methods

2.2.1 Sample entropy. We compare 3 entropy-based methods. The first one is Sample

Entropy (SE) [52]. It corresponds to the conditional probability that two sequences that are

similar to each other for m consecutive data points (samples), within tolerance level r, and

remain similar when one more data point to each sequence is added. Formally, SE is expressed

as follows:

SE r;m;Nð Þ ¼ � log
Amþ1ðrÞ
BmðrÞ

where Bm(r) is the probability that the similarity between two sequences of length m obeys the

tolerance level r, Am+1 (r) the probability that the similarity between the same two sequences

but now extended with one data point, thus of length m + 1, also obeys r, and N the number of

sequences. The tolerance level r is usually set to a percentage of the standard deviation of the

normalized data; for our case we selected 15% [31].

In order to estimate sample entropy for a multivariate case (MSE), the sequences are formu-

lated as follows. Recalling multivariate embedding theory [53], for d-variate time series

fxk;ig
N
i¼1
; k ¼ 1; 2; . . . ; d, the multivariate embedded sequence (so-called a composite delay

vector) can be constructed as:

XmðiÞ ¼ ½x1;i; x1;iþt1
; . . . ; x1;iþðm1 � 1Þt1

; x2;i; x2;iþt2
; . . . ; x2;iþðm2 � 1Þt2

; ; xp;i; xd;iþtd
; . . . ; xd;iþðmp � 1Þtd

�

where XmðiÞ 2 R
dm; m ¼

Pd
k¼1

mk, ½m1;m2; . . . ;md� 2 R
d is the embedding vector and

τ = [τ1, τ2, . . ., τd] the time lag vector. The above sample entropy definition is then applied to

the composite delay vector.

In our case, we have d electrode channels, n the number of samples or data points in a

sequence (further called ‘snippet’ as its length is small in practice), and N the number of

sequences. The computational complexity of MSE for multichannel EEG recordings is qubic:

ϑ(dNn + dn).

2.2.2 Rényi’s entropy. Consider a discrete random variable x that adopts n values with

probabilities p1, p2, . . ., pn. When the k-th value delivers Ik bits of information, then the total

amount of information becomes the so-called Shannon’s entropy:

HðpÞ ¼
Xn

k ¼ 1
pkIk: ð1Þ
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In (1), a linear averaging operator is assumed however, in general, for any monotonic func-

tion g(x) with an inverse g-1(x), the general mean associated with g(x) for a set of real values

{xk, k = 1, . . ., n} with probabilities {pk, k = 1, . . ., n} can be written as:

g � 1ð
Xn

k ¼ 1
pkgðxkÞÞ:

Hence, using the general mean, the total amount of information will be:

HðpÞ ¼ g � 1ð
Xn

k¼1
ðpkgðIkÞÞ ð2Þ

with g(x) a Kolmogorov-Nagumo invertible function. Rényi proved that, when the criterion of

additivity of independent events applies to (2), then the range of usable functions g(x) is dra-

matically restricted. There are two possible classes:

• g(x) = c, where c is a constant, so the general mean becomes linear and Shannon entropy (1)

is obtained;

• g(x) = c2(1−α)x, which implies that the entropy definition becomes:

HaðpÞ ¼
1

1 � a
log

2
ð
Xn

k¼1
pa

kÞ; a 6¼ 1; a � 0 ð3Þ

which is called Rényi’s information measure of order α.

We are particularly interested in the case where α = 2, further called Rényi’s quadratic

entropy (RQE), as the term between brackets in (3) corresponds to the expected value of the

probability density function (PDF). We wish to estimate RQE directly from the sampled signal

using a Gaussian kernel for Parzen’s density estimate:

p̂X xð Þ ¼
1

ns

Xn

i ¼ 1
k

x � xi

s

� �
;

with N the number of samples and σ the kernel size or bandwith parameter. Hence, we obtain:

H2ðxÞ ¼ � log2ðIP2ðxÞÞ

IP2;s ¼
1

n2

Xn

i ¼ 1

Xn

j ¼ 1
k

xi � xj

s

� �
:

where IP is the information potential[54]. Note that, for the multivariate case, the average of

the univariate kernels is taken. For ease of reference, we will call it multivariate RQE (MRQE).

The bandwidth σ is a free parameter that can be chosen according to Silverman’s rule:

s ¼ sXð4n� 1ð2d þ 1Þ
� 1
Þ

1
ðdþ4Þ;

where n is the number of data points in a snippet, d the data dimensionality (number of elec-

trodes), and σX the standard deviation.

The computational complexity of MRQE is quadratic: ϑ(dn + n).

2.2.3 Kernel-based Shannon entropy. As a third entropy-based method, we consider

Shannon entropy (ShE):

S ¼ �
X

k
pk logpk

where pk is a probability density function (PDF). As in the case of RQE, we estimate the PDF

Discrimination of emotional states with Renyi entropy
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directly from the samples using a Gaussian kernel for Parzen’s density estimate:

p̂X xð Þ ¼
1

Ns

Xn

i ¼ 1
k

x � xi

s

� �
;

where nis the number of data points in a snippet and σ the kernel size or bandwidth parameter.

Similarly to RQE, we develop the multivariate case with the Shannon entropy (MShE). The

computational complexity of MShE is quadratic as well:ϑ(dn + n).

2.2.4 Multivariate Empirical Mode Decomposition (MEMD). With Empirical Mode

Decomposition (EMD) a signal of length M data points is split into a l = log2M narrow-band,

amplitude/frequency modulated components called Intrinsic Mode Functions (IMFs) [55]:

Signal ¼ IMF1 þ IMF2 þ . . .þ IMFl:

IMF1 corresponds to the highest frequency component and the subsequent IMFs to lower,

more narrow-banded frequency components. The last component, IMFn, is the trend in the

signal and is usually omitted from further analysis. The multivariate extension of EMD

(MEMD) [31] aligns similar frequency bands of multiple channels, thus, providing an assess-

ment of their possible interdependence (mode alignment property).

2.2.5 MEMD-enhanced multiscale, multivariate entropy. There are at least two ways to

compute a multiscale version of entropy when using MEMD: we can compute multivariate

entropy (MSE, MRQE or MShE) for each scale individually (IMFs) or for their accumulated

scales (cumulative IMFs, CIMFs). We explain the algorithm for the CIMF case:

1. obtain the IMFs for each subject’s entire recording length of each video clip (M data points,

with M in our case between 30000 and 52000, depending on video clip length) by applying

the MEMD method to a given number d of EEG electrodes;

2. accumulate the IMFs one by one, starting with the first one, CIMF1 = IMF1, and then add

the second IMF to the first, CIMF2 = IMF1 + IMF2, and so on, until all IMFs are added;

3. for each CIMF, calculate multivariate entropy (d electrodes) for each non-overlapping snip-

pet of a prior defined EEG signal track and take the average over all those N snippets (MSE)

or calculate the univariate entropy per electrode for those snippets and take the average

over all d electrodes (MRQE, MShE);

4. plot the entropy estimates as a function of CIMF1,CIMF2, . . . to obtain the MEMD-

enhanced multiscale, multivariate entropy curve of the targeted EEG signal track (i.e.,

MEMD-enhanced MMSE, MMRQE, MMShE)

Note that the total number of IMFs is log2 M [55] but the used algorithm selects by itself the

number of IMFs in a data-driven, subject-dependent way (in our case, between 15 and 17

IMFs), hence, for clarity’s sake, we decided to show 15 IMFs for all subjects. Both operations

imply that the original signal is only approximated by CIMFn, so their entropies could be

different.

For the interested reader, the Matlab code for the multiscale MSE algorithm can we found

at http://www.commsp.ee.ic.ac.uk/~mandic/research/Complexity_Stuff.htm, and the Matlab

code for the multivariate EMD at http://www.commsp.ee.ic.ac.uk/~mandic/research/emd.htm

2.2.6 Scalp space projection of intracranial recordings. In order to explore the relation

between scalp- and intracranial recordings, in response to emotion-evoking and neutral video

clips, we performed a source reconstruction analysis with the Brainstorm toolbox as it can

work directly with intracranial electrodes. We started with the patient’s post-implantation

MRI headscan to define the standard Montreal Neurological Institute (MNI) stereotactic

Discrimination of emotional states with Renyi entropy
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coordinates of the depth electrode’s contact points in the amygdala-hippocampal complex and

the electrode positions of the grid covering the occipital cortex. Then, we used the patient’s

MRI scan before implantation to extract the cortex envelopes from the MRI scan (inner and

outer skull, scalp surface and cortex) using the Brainsuite software[56]. Fiducial points were

selected manually. For the forward model, Boundary Element Model (BEM) surfaces were cre-

ated using 15000 dipoles on the entire MRI volume so as to include deep sources, using the

OpenMEEG BEM model [57]. For the inverse modeling, as there was no resting state data

available, the identity matrix was selected for the noise covariance, and the sLORETA algo-

rithm used for distributed source modeling [58].

The depth electrode had 10 contact points but, based on anatomical grounds, the first 2

contact points were considered to be in the amygdala. However, as their recordings did not

display a linear relation (no obvious Pearson correlation, see S4 Appendix), but instead the

recordings of the second contact point seemed to correlate with those of contact points 3 to 6,

we only used electrode 1 to simulate data from that contact point to see how its projects back

on scalp space. In order to obtain a sizeable estimate of amygdala activation, we assumed that

1 cm3 of amygdala tissue, in proportion to the entire head volume, corresponds to about 27

amygdala dipoles out of 15000 in total. We put all values of the headmodel to zero, except for

the said 27 dipoles, which we filled with contact point 1’s recordings. As the headmodel for the

entire MRI volume is not constrained in orientation and orientation, but needs to be defined

for our simulations, we chose four possible orientations for simulating our deep source—the

X-, Y-, and Z-directions, and also the equally mixed version, with an equal weight in each

direction—, and projected the result on the entire scalp.

Next, we wanted examine whether the sources that generated the intracranial recordings of

the electrode grid covering the occipital lobe also contribute to the frontal scalp recordings.

For this, we first solved the inverse problem, thus starting from the 20 electrode grid record-

ings, and then addressed the forward problem to see how these sources show up in the frontal

part of the scalp.

3. Results

3.1 Discriminability of emotional categories

MEMD-enhanced multiscale, multivariate entropy estimates of the preprocessed scalp EEG

recordings were computed only over the last 100s of each video clip, as the video clips were

construed by Schaefer and co-workers to have their climax at the very end (see also section

3.5). For the sake of comparison, in the same way as in, we considered electrodes F3 and F4

(mid-frontal area) (d = 2) and also took N = 1000 non-overlapping snippets of length 100 ms

(m = 12), and averaged the entropy estimates across snippets of each participant. The MEMD-

enhanced MMSE, -MMRQE and -MMShE curves for all 30 participants, grouped by their self-

reported emotional categories (see Table 1), are shown in Fig 1. We observe that the complex-

ity curves of the three entropies are similar with similar discriminabilities between emotional

states. We also observe that the curve labeled ‘sadness’ has the lowest entropy values—note it

also has the lowest affect score of all video clips used—, thus, confirming Aftanas and co-work-

ers’ assertion [21]. However, when assessing the effect of snippet length, we observe that the

MEMD-enhanced MMRQE curves are less sensitive to the choice of snippet length compared

to those of the other 2 approaches (see S1 Appendix). We also calculated the entropies of the

original (uniscale) EEG. We observe that the uniscale case exhibits a much lower discrimina-

bility (factually only 2 groups of plots remain), clearly showing the advantage of the multiscale

approach. We also calculated the MEMD-enhanced MMRQE curves for the 2 non-French

speaking participants (S6 Appendix.). The curves are now factually indistinguishable except
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Fig 1. MEMD-enhanced MMSE, MMRQE and MMShE curves, main experiment. Curves are labeled in

terms of our 30 participants’ self-reports (self-labels) and corresponding uniscale entropy values for the

original EEG recordings (cf., horizontal axis tick labeled ‘raw’). Error bars are standard errors of average

MMSE, MMRQE and MMShE values per subject. Results shown for 100 ms snippet length. Color convention:

purple = anger, red = amusement, green = disgust, black = tenderness, blue = sadness.

https://doi.org/10.1371/journal.pone.0186916.g001
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for the ‘Life is beautiful’ video clip (self-labeled as tenderness). Hence, the physical parameters

of the video clips are not explaining the discriminability of the MMRQE curves (see also the

low interrater agreement of the occipital and auditory cortex responses in Fig 2, left panel, dis-

cussed further).

We also computed the MEMD-enhanced MMRQE curves of the 6 participants to the con-

trol experiment (see S7 Appendix). Note that the 4 video clips were not taken from the top ten

list of affect scores (Table 1). The individual curves are much less discriminable and their rank-

ing—in terms of self-labels—is now subject-dependent.

As the peak frequency of IMFi is given by
sampling rate

2iþ1 [55], given the sampling rate of 128 Hz,

the frequency range spanned by the first 6 IMFs is from 1 Hz to 32 Hz and this corresponds to

the bandwidth of our Butterworth filter implemented in the preprocessing (0.5–30 Hz). This

also explains the asymptotic behavior of our entropy curve results, whence, we will further

focus on CIMF6. When applying a linear mixed model [59] to the CIMF6 results of MMRQE,

with self-label, gender and age as fixed effects, and subject as random effect, we found that self-

label is significant (< 0.0001), whereas age (p = 0.083) and gender are not (p = 0.68).

For comparison’s sake, we also considered the case where entropy is plotted as a function of

IMF index, thus, by considering separate scales. The result is shown in S2 Appendix.: we

observe a much lower discriminability between emotional states compared to the cumulative

case (CIMF).

Finally, as the computational complexity of MMRQE is quadratic and that of MMSE cubic

the former is also advantageous for computational efficiency reasons.

3.2 Discriminability of multiscale RQE per electrode

We statistically assessed to what extent the RQEs per self-reported emotional category are in

agreement across subjects (inter-rater reliability, inter-rater agreement). We used the so-called

interval version of Krippendorf’s alpha statistic (using the kriAlpha function in Matlab) for our

30 participants (main experiment), given their 5 self-reported emotional categories (self-

labels), and determined the scalp distribution (per electrode, thus, univariate) of the alpha sta-

tistic of the RQEs and restricted ourselves to CIMF6, to simplify the comparison. The results

are shown in Fig 2 (left panel) when using 100ms snippets on the last 100s of each video, and

Fig 2. Scalp distribution of Krippendorf’s alpha coefficient for the main and control group. The coefficient shows the

degree to which the participants’ RQEs for CIMF6 are in agreement.

https://doi.org/10.1371/journal.pone.0186916.g002
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when computing the EMD for all 32 electrodes jointly (MEMD) and retaining CIMF6. We

observe that the frontal region of the scalp has the highest alpha coefficient with much smaller

values for the occipital and auditory cortices. For comparison’s sake, we also computed the

scalp distribution of the alpha coefficient for the original (uniscale) EEG data (see S3 Appen-

dix: the coefficients now turn out to be negative, implying a disconcordance in the RQE values

between subjects). In order to assess the statistical significance of our results, we compared the

alpha coefficient of each electrode of the main group (30 subjects) with that of the correspond-

ing electrode of the control group (6 subjects). Hereto, we determined a distribution of the

alpha coefficient of the control group using a simple block bootstrap strategy (Matlab’s

bootstrp function) in which the alpha coefficient is computed for 1000 subsets of 5 subjects

(random sampling with replacement). The result for the control group is shown in Fig 2 (right

panel). The scalp plot of the p values resulting from a simple t-test is shown in Fig 3. One

observes that the most discriminative electrodes are F3, FC1, FC5, T7, CP5, CP2, C4, T8, FC6,

F4, F8 (using a 5% significance level).

In order to identify which subset of electrodes best discriminate between the 5 self-reported

emotional categories, we conducted a ‘greedy’ search on the alpha coefficients of the main

group (30 participants) computed from the last 100 seconds of each movie. We started the

search from F3, the most significant electrode in Fig 2 (left panel), computed CIMF6 for

this electrode only (to avoid effects from other electrodes), and plotted its alpha coefficient

based on the main group’s RQE. Then, we added the next most significant channel, F4,

compute CIMF6 for F3-F4, and plotted the alpha coefficient based on multivariate RQE (chan-

nels F3-F4, thus d = 2), and so on (Fig 4). One observes that F3-F4-Fz show best discriminabil-

ity. This confirms that, at least for our case, emotion discrimination can be achieved using

only 3 mid-frontal channels, which also reduces the computational cost for the MEMD-

Fig 3. Scalp distribution of p values of the difference in alpha coefficient between main and control

groups.

https://doi.org/10.1371/journal.pone.0186916.g003
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enhanced MMRQE algorithm (remember that the algorithm’s complexity scales with number

of channels).

3.3 Temporal evolution of multiscale RQE discriminability

We also considered the temporal evolution of Krippendorf’s alpha coefficient of the main

group but now using the entire length of each video clip. We used 100ms snippets, the 3 mid-

frontal (F3, F4, Fz) electrodes selected by our clustering analysis for MEMD calculation (Fig

4), and compute the multivariate RQE (MRQE, d = 3) for CIMF6. We observe from Fig 5 that

the alpha coefficient, and whence the discriminability across participants, increases and

remains relatively stable towards the end of the video clip. This confirms our motivation to

focus on the last 100s of the EEG recordings.

3.4 Multiscale RQE of intracranial EEG

We also computed the MEMD-enhanced MMRQE for the intracranial EEG recordings in the

amygdala (2 contact points) and over the occipital area (20 contact points) when the patient

viewed an emotional- (fragment from ‘Schindler’s list’, self-labeled by the patient as ‘anger’)

and a neutral (weather forecast, self-labeled as ‘neutral’) video clip (Fig 6). As in the scalp EEG

case, we selected the last 100s track of each video clip, determined the MEMD for the 2 amyg-

dala contact points (depth electrode) and separately for the 20 occipital contact points (sub-

dural electrode grid), and finally plotted the multiscale, multivariate RQE (MMRQE) using

Fig 4. Clustering electrodes based on alpha statistics (main group).

https://doi.org/10.1371/journal.pone.0186916.g004
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non-overlapping 100ms snippets. We observe that the MMRQE curves for the amygdala are

well separable compared to those of the occipital area (Fig 6, left vs. right panel).

3.5 Temporal evolution of multiscale RQE for joint scalp/intracranial EEG

Finally, we computed MRQE for CIMF6 using the joint scalp (mid-frontal) EEG and intracra-

nial EEG (amygdala) recorded when viewing both video clips (emotional and neutral). Note

that the MEMD is computed with reference to the listed electrodes in each case. The results

are shown in Fig 7. We observe that, for the ‘anger’ video, the MRQE curves of the intracranial

EEG (amygdala) and mid-frontal scalp EEG seem to converge and even overlap at the end of

the videos (Fig 7, left panel). In order to statistically assess this observation, we modeled the

temporal evolution of both MRQEs for 8 successive, non-overlapping time intervals where

each interval consists of 20 successive recording samples (interval between 2 successive sam-

ples is 1s). Then, for each recording, we adopted a linear mixed model approach [59,60] with

MRQE as continuous outcome and time intervals as fixed effects:

MRQEi ¼ aþ ai þ ðb1 þ biÞ � time interval1i þ � � � þ ðb7 þ biÞ � time interval7i þ εi

Fig 5. Evolution of Krippendorf’s alpha statistic of MRQE for CIMF6 over entire video clips, plotted for

mid-frontal electrodes.

https://doi.org/10.1371/journal.pone.0186916.g005
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where subscript i refers to the modeled recording, α the overall intercept, β1 . . . β7 the overall

time interval-specific slopes, the latent variables ai; bið Þ � N 0;
s2

1
0

0 s2
2

 ! !

random inter-

cept and -slope, and εij~N(0, σ2) random noise. To correct for possible EEG recording-specific

differences, random intercept and random slope were used. Finally, we tested the hypothesis

that the MRQEs of both signals (scalp and intracranial) at a given time interval were from the

same distribution. For all time intervals, expect the two last ones (40 ms in total), the hypothe-

sis is rejected, hence the MRQE curves indeed become indistinguishable at the end of the

‘anger’ video. Note that this also corresponds to the time range producing best discriminability

(alpha coefficient) of the main group’s scalp EEG recordings (section 3.3), where the crux of

the video unfolds. On the contrary, no such overlap is observed for the ‘neutral’ video (Fig 7,

right panel). All analyses were performed using SAS, release 9.4.

In order to gain insight into the origin of the overlap between the two MRQE curves, we

analyzed phase synchrony between the mid-frontal scalp EEG and intracranial amygdala

signals, using the phase locking statistics (PLS) technique introduced by Lachaux and co-work-

ers [61]. The results are shown in Fig 8 (left panel). After a transitional period, at the onset of

both videos, phase synchrony of the emotional video (‘anger’) increases sharply towards the

end, which is not the case for the neutral video as phase synchrony stays constant. As these

results are from only one subject, there is not enough statistical power to decide whether the

difference between the two curves and between the low and high synchrony values of the emo-

tional video are significant. We therefore applied the surrogate data method called Iterative

Fig 6. MEMD-enhanced MMRQE curves for intracranial EEG recordings. Shown are the results for the (a) amygdala- and (b) occipital

implants in a patient viewing emotional and neutral video clips (blue vs. red labeled curves). Error bars correspond to standard errors of

individual snippet MMRQEs.

https://doi.org/10.1371/journal.pone.0186916.g006
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Amplitude Adjusted Fourier Transformed (IAAFT), originally proposed by Schreiber and

Schmitz [62] [63], to the amygdala and mid-frontal recordings of each video. The IAAFT algo-

rithm has ability to generate surrogate signals with identical amplitude distributions and

approximately identical amplitude spectra while the cross-correlation between the original sig-

nals is destroyed. We used Matlab’s Chaotic Systems Toolbox (https://nl.mathworks.com/

matlabcentral/fileexchange/1597-chaotic-systems-toolbox/content/IAAFT.m) with c = 10,

maxiter = 1000, frequency range 0.05–30 Hz, and trial length 200ms.

The results are illustrated in Fig 8 (right panel). It can be seen that the increasing phase syn-

chrony of the emotional video is significantly different from its surrogate distribution whereas

the phase synchrony of the neutral video is indistinguishable from its surrogate distribution.

The high value of the phase synchrony at the end of the emotional video supports the similarity

in MRQE values between the scalp and intracranial recordings (Fig 7): this means that these

recordings exhibit strong phase synchrony and share similar degrees of complexity near the

end of the emotional video.

Finally, using Brainstorm, we simulated for each of the 4 different amygdala source orienta-

tions (see Methods section 2.2.6) the EEG signal (128 channel full scalp configuration) in

response to the available amygdala recordings of both video clips. As above, we computed

phase synchrony between simulated and actually recorded mid-frontal (F3,Fz,F4) EEG and

again applied the IAAFT algorithm to generate surrogates. The results are shown in S8 Appen-

dix for the case where the amygdala dipole orientations are equally weighted in X-, Y-, and Z-

direction (“mixed” case, see Methods section 2.2.6); the results for the X-, Y-, and Z-oriented

dipoles are comparable. We observe that phase synchrony behaves quite similarly to Fig 8. The

Fig 7. Temporal evolution of multivariate RQE. Shown are the results for CIMF6 for amygdala iEEG and mid-frontal scalp EEG (F3, F4,

Fz electrodes) in response to emotional and neutral video clips.

https://doi.org/10.1371/journal.pone.0186916.g007
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phase synchrony result in S8 Appendix supports our hypothesis that, at least for the last part of

the emotional video, amygdala could indeed be contributing to the synchrony observed in our

mid-frontal scalp recordings, but we hasten to add that other sources (which we did not model

here) could be contributing as well. When repeating the exercise for the sources that evoked

the occipital electrode grid response and also simulate their EEG activity on the scalp, we

observed no significant phase synchrony levels for the mid-frontal electrodes neither any dif-

ference between the neutral and emotional videos. This result is also in line with our complex-

ity results (Fig 8).

4. Discussion

Recently, several algorithms were proposed linking EEG signal complexity (in particular

entropy) to distinct emotional states. Jie and co-workers [23] performed emotion recognition

from univariate, uniscale sample entropy (SE) of prefrontal EEG recordings. However, the

EEG recordings of subjects whose emotion self-reports were not in line with the pre-defined

ones were excluded from their analysis. In our previous work [34], we used MEMD-enhanced

multiscale, multivariate sample entropy (MMSE) to discriminate multiple emotional states

from EEG recordings in response to emotion-evoking video clips. Contrary to Jie and co-

workers, we used self-reports of emotional category for labeling the signal complexity results.

Furthermore, unlike previous studies [64], the emotional state was discriminated even from a

single video clip (single-trial design). This strategy was also adopted in the pertinent article but

in the context of MEMD-enhanced MMRQE, a multiscale, multivariate version of Rényi’s qua-

dratic entropy (RQE). Albeit the results were similar, the Rényi-based approach revealed two

Fig 8. Phase synchrony between mid-frontal EEG and amygdala. Shown are the results for the (a) emotional (‘anger’) and neutral

video clips (left) and for the corresponding surrogate signal distributions (right) (red = neural video, blue = emotional video).

https://doi.org/10.1371/journal.pone.0186916.g008
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advantages. Firstly, MMRQE’s computational complexity is quadratic whereas MMSE’s [34]

cubic, which rendered the Rényi-based approach computationally much more feasible for

joint electrode analyses and electrode selection strategies. Secondly, the MMSE-based method

is much more sensitive to snippet length as the discriminability of emotional categories quickly

degrades with snippet length. For MMRQE we observed a much broader range of usable snip-

pet lengths.

It has been claimed that changes in emotional state (also in relation to dysfunctions) can be

discerned from frontal lobe recordings [65,66]. In [67] it was shown that the orbital frontal

cortex plays a critical role in cognitive control of emotion (especially in the case of suppressing

emotional responses), and activity in this region reflects subsequent appraisal processes related

to viewing emotional stimuli (see also [38]). Jie et al. [23] achieved emotion recognition from

prefrontal EEG recordings and Tonoyan et al.[34] from mid-frontal recordings. By using Krip-

pendorff’s inter-rater reliability analysis in combination with a greedy search for optimal elec-

trodes, we showed in the pertinent article that the mid-frontal electrodes F3, Fz, F4 scored best

in discriminating emotional states (Fig 4) but this does not preclude the contribution of central

and temporal electrodes, as reported in other studies [37,44,68]. Interestingly, EEG signals

over the occipital and auditory cortices exhibited a much lower discriminability which implies

that our results are probably not explainable by sensory or auditory activations elicited when

viewing video clips.

The question arises whether EEG signal complexity could be used to ‘label’ arbitrary video

clips in terms of emotional states. There are several observations that demote our expectations.

Firstly, there is the concern on the labeling side: the same video clip could receive different

emotional category reports from different viewers as we observed for the ‘Sleepers’ movie

(Table 1). Another concern, maybe the most important one, is that signal complexity is not

static but rather evolves when watching the video clip and this affected the discriminability of

our signal complexity results in terms of self-reported emotional categories (see Fig 5). How-

ever, we also observed that discriminability increased towards the end of the video clips. This

is in alignment with the way the video clips were constructed by Schaefer and co-workers: the

clips have their climax at the end (roughly the last 100s). We therefore recommend to restrict

EEG complexity analysis to the most affective scenes as for those the highest inter-rater agree-

ment can be expected.

How to interpret signal complexity then? One suggestion is to relate it to affect score: the

affect scores of the video clips we used are available in [35] and are averages of self-reported

affect scores based on 10 positive and 10 negative items (each on a 5 point scale). The video

clip ‘City of angels’ showed both a lower affect score (Table 1) and a lower MMRQE curve (Fig

1) than the ‘La cité de la peur’ video clip, which is in alignment with the assertion of Aftanas

and co-workers [21] that higher complexity values can be observed for more affective stimuli.

However, we could not observe such a relationship for the other video clips. This could be due

to the ways the affect scores of [35] (20 item check list per clip) and our emotional self-scores

were collected (one emotional category per clip), and whether differences in reported affect

scores are significant. (Note that no standard deviations are provided in [35].) Video clips with

low affect score seem to be more difficult to discriminate based on signal complexity, as we

showed for the control experiment S7 Appendix): albeit the range of the RQE values was simi-

lar to that of the main experiment, the MMRQE curves were much less discriminable and

their ranking varied across participants. By using video clips with the highest affect scores (cf.,

3 of the 4 video clips of the main experiment), or by contrasting highest and lowest affect score

video clips (cf., ‘City of angels’ video clip), we could achieve discriminability based on signal

complexity (Fig 1). Affect score, thus, seems to play a role in signal complexity but not

completely. Another suggestion is to relate signal complexity to emotional arousal as these
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self-reports are also available in [35]. As shown in our earlier work, and it also pertains to our

MMRQE results, the relation between signal complexity and emotional arousal was not signifi-

cant (using a linear mixed model regression analysis) neither for the whole video clip (since in

[35] the self-reports were collected in this way) nor for the last 100 s (‘climax’).

In order to shed light on the significance of scalp EEG signal complexity, we also examined

intracranial EEGs from the amygdala recorded in a patient when viewing emotional and neu-

tral video clips. The amygdala is considered to be strongly involved in emotional processing.

Guillory and co-workers [69] reviewed 64 invasive studies on human emotion including

amygdala [37–46]. Moreover, Sergerie and co-workers [47] showed that the amygdala

responds to all visual emotional stimuli regardless of their valence and Aggleton and Mishkin

even claimed it is the gateway to sensory emotion [48]. By applying the same MEMD-based

MMRQE method to the intracranial recordings, we observed a clear discrimination between

the MMRQE curves of the neutral and the emotional movies (labeled by the patient as evoking

anger) for the amygdala but not for the occipital area (Fig 6). This result is in agreement with

several studies that prove the involvement of amygdala in negative emotion processing. Oya

et al. [40] proved that significant changes in gamma power amplitude in amygdala were selec-

tively obtained in response to visual images judged to be aversive but not in response to those

that were judged pleasant or neutral. Naccache and co-workers [42] obtained differential ERP

responses in amygdala to negative emotional words. We observed that the multiscale RQE

computed for the mid-frontal scalp electrodes and the amygdala electrodes overlapped and

their phase synchrony reached a maximum at the end of the emotional video where the crux is

revealed. On the contrary, no such overlap or phase synchrony was observed for the ‘neutral’

video. This was also observed for the phase synchrony between the original- and reconstructed

mid-frontal scalp activations, reconstructed from our amygdala recordings using our head

model. In summary, our findings seem to suggest that emotional state discrimination from

scalp EEG is more likely to be supported by differences in amygdala activation when in

response to emotionally-charged scenes.

Conclusion

We introduced multiscale, multivariate Rényi quadratic entropy (MMRQE) for analyzing EEG

recordings of 30 participants viewing 4 emotionally-charged video clips taken from a validated

database [35]. We compared our approach to the multiscale, multivariate version of sample

entropy (MMSE), and showed that the results were similar but with the advantage that

MMRQE is less computationally intensive and less sensitive to track (snippet) length. We also

applied our method to intracranial EEG recordings of the amygdala and observed that the

RQEs of the emotional and neutral video clips could be discriminated and that the MMRQE of

the emotional video coincided with that of the mid-frontal scalp electrodes at the end of the

clip where the climax of the video is revealed. This was also confirmed by the increasing phase

synchrony levels between the mid-frontal and amygdala recordings. This provides conclusive

evidence of the proposed multiscale entropy-based method in discriminating emotional states.
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