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Human-Centred Multivariate Complexity Analysis
David Looney, Mosabber U. Ahmed, and Danilo P. Mandic

Abstract—Signatures of changes in dynamical system complex-
ity, in the response of a living system to their environment,are
reflected in both the within- and cross-channel correlations in
observed physiological variables. Only a joint analysis ofthese
heterogeneous variables yields full insight into the underlying
system dynamics. We illuminate the abilities of the multivariate
multiscale entropy (MMSE) method to model structural richness,
and illustrate its usefulness in human centred applications -
complexity changes due to constraints (cognitive load, stress).

Index Terms—multivariate sample entropy, complexity, cou-
pling and causality, cognitive load, stress, Yarbus experiment.

I. I NTRODUCTION

Physiological responses of a living organism are a widely-
studied form of complex system [1]. The analysis is not trivial
and is conducted from heterogeneous physiological variables,
from spiking neuronal activity to respiratory waveforms, with
different dynamics, degrees of coupling and causality, andat
multiple temporal and spatial scales [2].

The ‘complexity-loss’ theory states that the severity of
constraints on a living system, caused by e.g. illness or ageing,
is manifested by changes in the complexity of its responses
- a natural measure of structural richness [3]. Standard en-
tropy measures, such as Shannon entropy, Kolmogorov-Sinai
entropy or approximate entropy, assess signal regularity (cf.
randomness) but not true system complexity - represented by
coupled dynamics at different scales. The multiscale entropy
(MSE) method evaluates univariate sample entropy across
multiple temporal scales revealing long range correlations -
a key property of complex systems [4], [5] - and has been
applied to estimate the complexity changes in physiological
time series for numerous applications (congestive heart failure,
Alzheimers disease and postural sway dynamics [6], [7]).

The above methods only cater for single-channel data and
therefore fail to account for dynamical relationships thatexist
betweenthe physiological variables. This limits their potential
in e.g. medical applications - a medic would routinely examine
brain and heart responses as well as eye and muscle activity.
The recent multivariate multiscale entropy (MMSE) method
was developedspecifically to cater for both the within- and
cross-channel dependencies for any number of data chan-
nels [6], [7], revealing coupled dynamics not observable using
standard single-channel estimates (Gestalt).

We here revisit MMSE and illuminate its use in both classic
and novel human-centred applications, focusing on identifying
complexity signatures from physiological recordings caused by
increased cognitive load and stress. The approach is validated
both for homogeneous and for heterogeneous multivariate
physiological variables.
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II. MULTIVARIATE MULTISCALE ENTROPY

Multivariate multiscale entropy (MMSE) estimation (Matlab
code available from [8]) is performed by two steps [6], [7]:

1) The different temporal scales are defined by coarse-
graining (moving average) thep-variate time series
{xk,i}

N
i=1, k = 1, 2, . . . , p, with N samples in each

variate. For a scale factorǫ, the corresponding coarse
coarse-grained time series:yǫk,j = 1

ǫ

∑jǫ

i=(j−1)ǫ+1 xk,i,
where1 ≤ j ≤ N

ǫ
andk = 1, . . . , p.

2) The multivariate sample entropy,MSampEn, is evalu-
ated for each intrinsic scale within the multivariateyǫk,j ,
and is plotted as a function of the scale factorǫ.

A. MSampEn Calculation

For a p-variate time series,{xk,i}
N
i=1, k = 1, 2, . . . , p of

length N , the calculation ofMSampEn is described in
Algorithm 1 [6] [7], where the multivariate embedded vectors
are constructed as:

Xm(i) = [x1,i, x1,i+τ1 , . . . , x1,i+(m1−1)τ1 , x2,i, x2,i+τ2 ,

. . . , x2,i+(m2−1)τ2 , . . . , xp,i, xp,i+τp , . . . , xp,i+(mp−1)τp ],

andM = [m1,m2, . . . ,mp] ∈ R
p is the embedding vector,

τ = [τ1, τ2, . . . , τp] the time lag vector, and the composite
delay vectorXm(i) ∈ R

m (m =
∑p

k=1 mk).

Algorithm 1 Multivariate sample entropy ( MSampEn)
1: Form (N − δ) composite delay vectorsXm(i) ∈ R

m,
wherei = 1, 2, . . . , N − δ andδ = max{M} ×max{τ}
and define the distance between any two vectorsXm(i)
andXm(j) as the maximum norm;

2: For a given composite delay vectorXm(i) and a thresh-
old r, count the number of instancesPi for which
d[Xm(i), Xm(j)] ≤ r, j 6= i, then calculate the fre-
quency of occurrence,Bm

i (r) = 1
N−δ−1Pi, and define

Bm(r) = 1
N−δ

∑N−δ

i=1 Bm
i (r);

3: Increasemk → (mk+1) for a specific variablek, keeping
the dimension of the other variables unchanged. Thus, a
total ofp×(N−δ) vectorsXm+1(i) in R

m+1 are obtained;
4: For a given Xm+1(i), calculate the number of vec-

tors Qi, such thatd[Xm+1(i), Xm+1(j)] ≤ r, where
j 6= i, then calculate the frequency of occurrence,
Bm+1

i (r) = 1
p(N−δ)−1Qi, and defineBm+1(r) =

1
p(N−δ)

∑p(N−δ)
i=1 Bm+1

i (r);

5: Finally, for a tolerance levelr, estimateMSampEn as

MSampEn(M , τ , r, N) = −ln

[

Bm+1(r)

Bm(r)

]

. (1)
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Fig. 1. Geometry behindMSampEn. Scatter plots for a2-variate gaze signal (see Fig. 4(c)) for (m = 2) and the two3-variate subspaces for (m = 3).

B. Geometric Interpretation of MSampEn

Underpinning the multivariate sample entropy method is
the estimation of the conditional probability that two similar
sequences will remain similar when the next data point is
included. This is achieved by calculating the average number
of neighbouring delay vectors for a given tolerance level
(r) and repeating the process after increasing the embedding
dimension, from (m) to (m + 1), a geometric interpretation
of which is shown in Fig. 1. Fig. 1(a) shows the set of delay
vectors for a2-variate gaze signal ([x(n), y(n)] withτ = [1, 1]
& M = [1, 1]) and illustrates the neighbours1 for the point
[x(64), y(64)]. Upon increasing the embedding dimension
from (m = 2) to (m = 3), we have two different subspaces
spanning: (i) the vectors [x(n), x(n+1), y(n)] (Fig. 1(b)) and (ii)
the vectors [x(n), y(n), y(n+1)] (Fig. 1(c)). TheMSampEn

algorithm accounts fully for both within- and cross-channel
correlations by examining the composite of all such subspaces.

C. Interpretation of the MMSE curves

The complexity of multi-channel data is assessed from the
MMSE plots (MSampEn as a function of the scale factor). A
multivariate time series is more complex than another one if
for the majority of the time scales the multivariate entropy
values are higher than those of the other time series. A
monotonic decrease of the multivariate entropy values with
the scale factor indicates that the signal in hand only contains
useful information at the smallest scale and has no structure,
and is therefore not dynamically complex (white noise).

III. S IMULATION RESULTS

The potential of the MMSE method can be conveniently
illustrated on a6-variate time series, where originally all
the data channels were realizations of mutually independent
white noise. We then gradually decreased the number of
variates that represent white noise (from 6 to 5, 3, 1 and 0)
and simultaneously increased the number of data channels of
independent 1/f noise (from 0 to 1, 3, 5 and 6). The 1/f noise
exhibits long range correlations and is therefore complex [4],
[5]. Fig. 2 shows that as the number of variates representing1/f
noise increased, theMSampEn (complexity) at higher scales
also increased, and when all the six data channels contained

1Neighbouring vectors at a point in anm-dimensional space can be
represented by the points enclosed by anm-sphere or anm-cube, for the
Euclidean and maximum norm respectively.

1/f noise, the complexity at larger scales was the highest. The
more variables/channels had long range correlations the higher
the overall complexity of the underlying system - a key feature
for use in human centred scenarios.
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Fig. 2. MMSE analysis for 6-channel data containing white and 1/f
noise, each with 10,000 data points. The curves represent anaverage of20
independent realizations and error bars standard deviation (SD). Figure insert
in top right shows the robustness ofMSampEn estimates for white noise
and illustrates that, the greater the number of channels, the more robust the
MSampEn estimate (errorbars become smaller).

Fig. 3 illustrates that, unlike standard MSE, multivariate
MSE caters for cross-channel correlations - a crucial advantage
of the algorithm. Indeed, the complexity of the correlated
bivariate 1/f noise with maximum correlation coefficient (cc =
1) was the highest at large scales; the complexity decreased
as the degree of correlation between the channels decreased
and was lowest for the uncorrelated white noise.
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Fig. 3. Multivariate multiscale entropy (MMSE) analysis for bivariate white
and 1/f noise, each with 10,000 data points. The curves represent an average
of 20 independent realizations and error bars the standard deviation (SD).
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A. Analysis of Eye Gaze Dynamics

Psychologist Alfred L. Yarbus famously illustrated the im-
pact of cognitive load on scanning eye patterns by presenting
subjects with an image (see Fig. 4(a)) and recording gaze
trajectories in response to different instructions [9]. Tore-
investigate this classic study from a completely novel perspec-
tive, we set out to examine whether cognitive load is reflected
in the complexity of the gaze dynamics. Seven healthy, naive
subjects were asked to both examine the image in Fig. 4(a)
freely and to complete six different instructions over100 s
trials (see [9] for more details), while bivariate (vertical and
horizontal) eye gaze was recorded (a segment of which is
shown in Fig. 4(c)).

Fig. 4(d) shows the average gaze complexity over all sub-
jects, for both constrained and free examination, and illustrates
that the cognitive instructions can be uniquely identified in the
gaze complexity space. Compared to all instruction trials,the
gaze complexity of free examination was the highest over high
scale factors (>10), supporting the general ‘complexity-loss’
theory, that is, the less constrained the cognitive task thehigher
the complexity.

(a) Unexpected visitor (b) Gaze intensity map
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Fig. 4. Average MMSE analysis of the classic ‘Yarbus experiment’ illustrat-
ing that induced cognitive load reduces the gaze complexity. (a) The presented
image. (b) Gaze intensity map for the instruction relating to the ages of the
people. (c) Segment of raw gaze data, both horizontal and vertical components.
(d) Average complexity results for ‘free examination’ and instructions (i)
estimate the material circumstances of the familyand (ii) remember positions
of people and objects in the room, where the errorbars denote the standard
error - std/sqrt(num. of trials).

B. Heart and Respiratory Function During Stress

Stress-induced illnesses are a major concern in modern
mankind, the American Institute of Stress estimates that 75-
90% of all visits to primary care physicians are for stress
related problems. Stress is manifested by changes in several
psycho-physiological modalities - a perfect match for the
multivariate nature of the MMSE method.

Three naive, healthy subjects participated in a study (two
parts each lasting20mins), in which respiration waveforms
and electrocardiography (ECG) were recorded while the sub-
ject was seated comfortably and instructed not to talk or move

unnecessarily. The baseline physiological response was estab-
lished (‘normal state’) by engaging the subject in a relaxing

task - watching a movie. Next, the subject was presented with
a series of demanding mathematical logic questions and was
instructed to respond via a keypad as quickly and accurately
as possible (‘stressed state’). An increased level of background
noise and verbal interference from the experiment coordinator
were used to increase the level of subject engagement.

Fig. 5 shows the average complexity results obtained for
the bivariate data2 [ECG, respiration] for both the ‘normal’
and ‘stressed’ states. The MMSE approach was clearly able
to separate the two states in the complexity-space.
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Fig. 5. Average MMSE analysis for ‘normal’ and ‘stressed’ states, based on
heart and respiratory functions. Error bars denote the standard error.

IV. CONCLUSION

The recently introduced multivariate multiscale entropy
(MMSE) method has been illuminated as an enabling tool for
the complexity analysis of real-world multivariate data. It has
been shown to model the dynamical couplings between physi-
ological variables, giving an insight into the underlying system
complexity, a feature not achievable using standard univariate
measures. The advantages of MMSE have been exemplified
for detecting signatures caused by increased cognitive load and
stress, highlighting its appeal in human-centred applications.
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2For each subject and sub-experiment, the data was divided into 100 s
segments and at least 5 artifact-free segments were extracted and analysed.
The ECG was bandpass filtered to occupy the frequency range (0.5 - 20) Hz
and the respiration data was bandpass filtered to occupy the frequency range
(0.05 - 3) Hz. All data was recorded at1200Hz and downsampled to120Hz.


