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ABSTRACT

Empirical mode decomposition (EMD) is a fully data driven
technique for decomposing signals into their natural scale
components. Given its ability to separate spatial frequencies,
it is natural to consider EMD for image fusion. However the
problem ofuniqueness, caused by the empirical nature of the
algorithm and its sensitivity to parameters, makes it difficult
to perform fusion of data from heterogeneous sources. A
recently proposed solution to this problem is to use complex
extensions of EMD which guarantees the same number of
decomposition levels, that is the uniqueness of the scales.
A new fusion rule based on the inherent properties of the
decompositions is proposed. The methodology is used to
address the fusion of images from different modalities (visual
and thermal).

Index Terms- empirical mode decomposition (EMD),
complex-valued signal processing, image fusion, thermal
imaging

1. INTRODUCTION

A significant challenge in data and information fusion is the
ability to fuse images from different modalities. With the in­
creasing availablitiy of different image acquisition devices,
a wide number of techniques [1],[2] ,[3] have been applied
to the problem. The fused image ideally retains all relevant
information from the input images while suppressing any un­
wanted artifacts such as noise. Specifically, the increasing
availability of thermal cameras has let to a development of
fusion techniques to combine visual and thermal images. Ex­
amples include Wavelet [4] and principal component analysis
(PCA) [5] based algorithms.

The recently proposed empirical mode decomposition
EMD [6] is a fully data driven technique which decomposes
the signal into narrow-band components called intrinsic mode
functions (IMFs). Unlike Fourier or wavelet based methods
that project signals onto a fixed basis set, EMD makes no
prior assumptions about the data and as such it belongs to
the class of Exploratory Data Analysis (EDA) techniques [7].
The original algorithm was successfully applied to a number
ofproblems which require high resolution but are separable in
the time-frequency domain, such as in ocean engineering [8],
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biomedical signal processing [9],[10] and seismics [11]. Fur­
thermore the algorithm does not make unrealistic assumptions
of strict orthogonality, unlike PCA, and instead the decompo­
sitions are said to be locally orthogonal [6].

Because of its ability to separate spatial frequencies, it is
natural to consider EMD for the problem of heterogeneous
image fusion. In [12] the use of EMD was proposed for
the fusion of visual and thermal images. It was shown how
EMD compared favourably with wavelet and peA based ap­
proaches, particularly in retaining edge-based information
from the different image modalities. Although the work [12]
yielded good results and clearly illustrated the potential of
EMD, an automated scheme for fusion was not presented and
it relied on visual inspection to determine the most informa­
tive components. Furthermore, no guarantee could be made
on the number of IMFs. More recent work [13] considers a
2D (two-dimensional) extension for the related task of multi­
spectral image fusion. Although fusion is performed in an
automatic fashion, the solution does not address the problem
of uniqueness.

The fully adaptive and empirical nature of EMD as well
as a sensitivity to parameters (such as stopping criteria or en­
velope estimation), compromises the uniqueness of the de­
composition. For this reason, signals with similar statistics
often yield different numbers of IMFs. This makes a multi­
scale comparison of IMFs from different sources unfeasible.
A possible solution to this problem is a limiting on the num­
ber of performed sifting operations. In this way, although the
exact number ofdecompositions can be controlled, it may ad­
versely affect the component properties so that they no longer
satisfy IMF criteria. Furthermore, a guarantee on the num­
ber of IMFs is only a necessary requirement which does not
uniquely facilitate a physically meaningful comparison be­
tween decompositions. Instead, a set of common frequency
scales must be found between data sources.

It was proposed in our previous work [14] to utilise recent
complex extensions of the algorithm [15] [16] to address the
problem of uniqueness. This was achieved by finding a set of
frequency scales common to each of the image sources. Fu­
sion of images with different focus points was subsequently
achieved in an automated fashion by comparing the local vari­
ance of the real and imaginary components of the IMFs. In
this paper, we extend the theory by proposing a new fusion

Authorized licensed use limited to: Imperial College London. Downloaded on November 2, 2008 at 06:15 from IEEE Xplore.  Restrictions apply.



rule based on a more natural property of the complex IMFs
which facilitates fusion in a block by block fashion. The pro­
posed fusion rule is therefore more computationally light and
lends itself to real time operation. We demonstrate the effec­
tiveness of the algorithm by applying it to the fusion of ther­
mal and visual images and making a comparison with other
techniques. •••

ORI IN L

2. THE EMD ALGORITHM

1. Let x(k) == x (k);

where ci(k), i == 1, ... , M, is the set ofIMFs and r(k) is the
residual. The first IMF is obtained as follows [6].

Empirical mode decomposition [6] is a data driven time­
frequency technique which adaptively decomposes a signal,
by means of a process called the sifting algorithm, into a
finite set of AM/FM modulated components. These compo­
nents, called "intrinsic mode functions" (IMFs), represent the
oscillation modes embedded in the data. By definition, an
IMF is a function for which the number of extrema and the
number of zero crossings differ by at most one, and the mean
of the two envelopes associated with the local maxima and
local minima is approximately zero. By EMD the signal x(k)
is expressed as

08

•••

•••
•••

•••
(1)

M

x(k) == L ci(k) + r(k)
i=1

2. Identify all local maxima and minima ofx(k);

3. Find an "envelope," emin(k) (resp. emax(k)) that in­
terpolates all local minima (resp. maxima);

4. Extract the "detail," d(k) == x(k) - (1j2)(emin(k) +
emax(k) );

5. Let x(k) == d(k) and go to step 2); repeat until d(k)
becomes an IMF.

Once the first IMF is obtained, the procedure is applied re­
cursively to the residual r(k) == x(k) - d(k) to obtain all
the IMFs. An example of EMD is shown in Fig. 2 which il­
lustrates the decomposition process. An image is converted
into a vector by concatenating the rows. The IMFs obtained
from the decomposition of the vector have been reconverted
into the original 2D form, creating a set ofscale images which
are shown in Fig. 2. Note how each of 'Image Modes' repre­
sents the frequency scales within the image. The higher index
IMFs contain high frequency detail such as noise and the im­
age edges while slowly oscillating effects such as illumination
are contained within the low index IMFs.

•••
••

Fig. 1 III stration 0 t e si ting process ia EMD oran orig­
inal image (top Ie t Note 0 eac 0 t e IMFs 0 1 - 0 19

represents t e Ie ency scales it in t e image T e ig er
index IMFs contain ig re ency detail s c as noise and
t e image edges ile slo ly oscillating e ects s c as ill ­
mination are contained it in t e 10 index IMFs
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Fig. 2. EMD applied to a sinusoid corrupted by white
Gaussian noise (denoted by U) and the extracted IMFs (where
the kth IMF is denoted by Ck and r denotes the residual). The
signals in (a) and (b) are both signals with similar statistics,
yet the EMD algorithm has produced a different number of
decompositions, M == 5 in (a) and M == 9 (of which 7 are
shown) in (b). Consequently, the original signal of interest
(sinusoid) can be located in different modes for different de­
compositions, C2 in (a) and C2 , C3 and C4 in (b).

recently developed: "Complex Empirical Mode Decompo­
sition" [20], "Rotation Invariant Empirical Mode Decom­
position" [15] and "Bivariate' Empirical Mode Decomposi­
tion" [16].

Complex EMD, the first extension to be introduced, is
derived from the inherent relationship between the positive
and negative frequency components of a complex signal and
the properties of the Hilbert transform. The idea behind this
approach is rather intuitive: first note that a complex signal
has a two-sided, asymmetric spectrum. The complex signal
can therefore be converted into a sum of analytic signals by
a straightforward filtering operation that extracts the opposite
sides of the spectrum. Direct analysis in C can subsequently
be achieved by applying standard EMD to both the positive
and negative frequency parts ofthe signal. Although it retains
important properties ofunivariate EMD, such as its behaviour
as a dyadic filter bank, it is difficult to interpret the meaning of
extracted IMFs and the approach is not suitable for extensions
to higher dimensions.

By comparison, rotation invariant EMD (RIEMD) oper­
ates completely within C based on the direct application of
complex splines. The complex envelope approximation is
characterised by the definition of suitable extrema in C. This
is not straightforward since C is not an ordered field [21], and
RIEMD uses a locus where the angle of the complex-valued
first derivative becomes zero, that is, it is based on a change
in the phase of the signal. This definition is equivalent to the

3. PROBLEM OF UNIQUENESS

Due to the fully adaptive and empirical nature of EMD, as
well as a sensitivity to parameters, signals with similar statis­
tics often yield different decompositions both in terms oftheir
number and their properties. This is known as the problem of
uniqueness and it is a significant obstacle in applications of
EMD. To demonstrate the problem of uniqueness, we con­
sider a sinusoid with additive white Gaussian noise (AWGN)
given by cos(k) + v(k) where cos(k) denotes the sinusoid
and v(k) the noise. The M == 5 extracted IMFs are given
in Fig. 2(a). Note that the original noise-free sinusoid corre­
sponds to the second IMF and that a standard fusion algorithm
would be to retain this component and omit the rest. Perform­
ing EMD on the same sinusoid corrupted by different AWGN
but with the same statistics as·before (mean,variance), we ob­
tain a different number ofIMF components. Seven ofthe nine
IMFs are shown in Fig. 2(b).

Note that in addition to a change in the number of IMFs,
the signal ofinterest is contained within different components
(C2 , C3 and C4 ) compared to the previous decomposition.
This specific phenomenon whereby similar modes appear
across different frequency scales is known as scale-mixing
which even recent advances in stopping criteria cannot fully
address [17].

The issue of uniqueness is a common problem that can
be addressed by placing bounds on the number of performed
sifting operations. However this is clearly sub-optimal as it
affects the properties of decompositions. Other solutions in­
clude Ensemble EMD [18] and genetic based algorithms [19].
However their computational complexity is a significant dis­
advantage. In short it is clear that in order to use EMD for
fusion, the following problems must first be addressed.

• The number of IMFs from each source must be equal

• The IMF attributes (frequency) from each source
'should also be equivalent to enable a meaningful com­
parison

The solution proposed in [14] is to decompose data from
heterogeneous sources simultaneously, thus finding a set
of common scales which are unique to the sources being
analysed. This not only guarantees the number of IMFs but
also ensures a physically meaningful comparison is possi­
ble. Recent hyper dimensional extensions of empirical mode
decomposition [20],[15],[16] make it possible to determine
such a set of common scales.

4. COMPLEX EXTENSIONS OF THE EMD
ALGORITHM

As the need for multi-dimensional signal processing has be­
come more apparent, several extensions of EMD have been
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5.1. Test Sets

Fig. 3. Simultaneous decomposition of two test signals
(IR{U} and IT{U}) is achieved using bivariate EMD. The real
part of the IMF components is given on the left side, and the
imaginary part on the right side. Note that where common
frequencies exist between ~{U} and IT{U}), they appear si­
multaneously in the real and imaginary IMFs (C2 and C3 ).

in the next experiment we performed bivariate EMD on a
complex signal, the real and imaginary components ofwhich
are shown respectively in the top panels (denoted by ~{U}
and IT{U}) of Fig. 4. The real component was a sinusoid cor­
rupted by AWGN. The imaginary component was the same
sinusoid, shifted by some arbitrary phase value, corrupted by
different AWGN but with the same statistics as the AWGN
affecting the real component. The set of complex IMFs are

In the first experiment, we constructed two signals from a
set of three sinusoidal components. These signals are visi­
ble in the top panels (denoted by ~{U} and IT{U}) of Fig. 3.
Common to each test signal were the frequencies of two of
the sinusoids, although their amplitude and phase were differ­
ent. A third high frequency sinusoid was added to ~{U} only.
Performing bivariate EMD on the complex signal constructed
from each of these signals (~{U}+ JIT{U}), a set ofcomplex
IMFs were obtained, for which the real and imaginary values
of which are shown in Fig. 3.

Observe the high frequency sinusoid, contained only
within ~{U}, in the real part of the first IMF. On the other
hand, the imaginary component, IT{C1}, shows comparatively
less high frequency content. The meth6dology can determine,
however, common frequency scales as is evident by compar­
ing ~{C2} and IT{C2} as well as ~{C3} and IT{C3}. Note that
the approach is robust to changes in scale amplitude as well
as phase and also that the individual components approximate
standard real IMFs. To address the problem of uniqueness,
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5. TOWARDS FUSION OF VISUAL AND THERMAL
IMAGES

Unlike complex EMD, the IMFs of rotation invariant EMD
possess a physical meaning as is illustrated by its analysis of
real world complex quantities such as wind data [15].

Bivariate EMD [16] operates in a similar fashion to rota­
tion invariant EMD. By projecting the data in k directions, the
approach can consider extrema in several directions and con­
struct a 3D tube to enclose them. The local mean is defined
as the center of the tube which is described, at each interval,
by k points (with each point being associated with a specific
direction). Assuming k == 4 directions, the center of the tube
at a point is given by either the barycenter of the four points
or the intersection ofstraight lines passing through the middle
ofthe tangents. RIEMD and bivariate EMD are equivalent for
the case of k == 2. In addition the real and imaginary com­
ponents of the IMFs tend to approximate standard real IMFs
themselves

Like rotation invariant EMD, bivariate EMD generates an
equal number ofIMFs for the real and imaginary parts making
it suitable for the analysis of multi-dimensional data. Since
bivariate EMD can operate for k > 2, we will use this method
for image fusion.

LZ(t) == 0 =} L {x(t) +J' y(t)} == 0

=? tan-1 ~~:~ = 0 =? y(t) = 0 (2)

It was proposed in [14] to regard data from multiple sources
as a single multi-dimensional entity which, for two sources,
facilitates the use ofa complex extension ofEMD (either [15]
or [16]). Under the assumption that the analysis determines
common oscillations on a scale by scale level, the complex
extensions can be used to determine which source contains lo­
cally the most information by performing a suitable compari­
son between the real and imaginary components of the IMFs.
This is because salient features such as edges or lines will be
highlighted by large variations in the amplitudes ofthe scales.
The fusion rule used in [14] was based on the local variance
of the IMFs. Here, it is instead proposed to base the decision
on instantaneous amplitude, a natural choice given the nature
of the decomposition. This is similar to wavelet-based fusion
which retains decompositions which correspond to the largest
coefficients. For rigour, simulations were initially performed
on artificially generated data sets so as to illustrate the poten­
tial ofbivariate EMD in finding "common data scales." Next,
an automatic fusion algorithm using instantaneous amplitude
is described and applied to a real world fusion problem, that
of fusing thermal and visual images.

extrema of the imaginary part, that is, for a complex signal
Z (t) (for convenience we here use a continuous time index t)
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displayed component-wise on Fig. 4.
Note that by design most of the noise is contained within

the first IMF and the signal of interest (sinusoid) is spread
across subsequent IMF components. This result demonstrates
that although the approach can be affected by the problem of
scale mixing, it is irrelevant as it occurs simultaneously in
each channel as indicated by components O2 and 0 3 • Thus,
its robustness facilitates a meaningful comparison between
scales even if scale-mixing occurs, and forms the basis for
the proposed image fusion algorithm.

Fig. 5. Simultaneous decomposition of two image blocks us­
ing bivariate EMD.IR { . } II{ . }
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Similarly, Qi == 0 and ~i == 1 if IA{Ai} < IA{Bi}.· This
methodology is applied to each block.•Thus, the fused image
retains locally dominant features (in this case determined by
instantaneous amplitude) at each scale.

5.3. Existing Fusion Methods

Before giving fusion results using the EMD-based method­
ology described above, it is first necessary to outline some
existing fusion procedures using PCA and wavelets so as to
provide comparisons.

Fig. 4. Simultaneous decomposition of two test signals
(~{U} and K{U}) is achieved using bivariate EMD. Although
affected by the problem of scale mixing, it is irrelevant as it
occurs simultaneously in each component (02 and 0 3 ).

5.2. EMD Image Fusion

Simultaneous decomposition of a set of visual and thermal
images is proposed as follows. The images are divided into
a set of N x N blocks. Consider two such image blocks, A
and B, which refer respectively to the visual and thermal im­
ages. The rows of each of the images are concatenated so
as to construct two vectors (vI and v2) and, using bivariate
EMD, the complex vector vI + jv2 is decomposed into M
complex IMFs. Separating the IMFs into their real and imag­
inary components and reconverting each into their original2D
form gives a set of M scale images for both A and B, denoted
by Ai and Bi for i == 1, ... , M. This is illustrated in Fig. 5.
The fused image block, F, is then given by

• Pixel averaging across the thermal and visual images,
highlighted by [12], can be used as a straightforward
benchmark for image fusion.

• Image fusion using PCA is implemented as follows in
our analysis. The image pixels from the visual and
thermal images are arranged as columns of a matrix
P. Eigenvalue analysis is performed on the correlation
matrix of P. The matrix P is projected in the direction
of strongest linear variance using the largest principal
component, which provides the fusion output.

• Using the wavelet transform, the visual images are de­
composed into an equal number of levels using a pre­
selected basis function. For our analysis, a straightfor­
ward operation based on the decomposition level was
selected [4] to perform fusion. Decompositions cor­
responding to the largest coefficients at each level are
retained.

where Qi and ~i are weighted coefficients which satisfy Qi
+ ~i == 1. The values for the coefficients are determined by
comparing the total instantaneous amplitude for each scale
(denoted by IA{Ai} for Ai and IA{Bi} for Bi).

IfIA{Ai} ~ IA{Bi} then Qi and (3i are both set to 0.5.
If, however, IA{Ai} > IA{Bi} then Qi == 1 and {3i == o.

M

F == L[QiAi + ~iBi]
i=l

(3)

6. RESULTS

Fig. 6 shows visual and thermal images obtained from [12].
On the one hand, the visual image clearly depicts a pair of
scissors partially obstructed by a· plastic covering. On the
other hand, the scissors is fully visible in the thermal image
but overall it lacks the definition of the visual image. Addi­
tionally it is more susceptible to noise.

Fig. 7 shows the fused image using averaged pixel values.
Clearly this is suboptimal as it is equivalent to a low pass
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filtering operation and therefore distorts edges and other high
frequency detail. Fig. 7 shows the results using peA which,
firstly, is not a great improvement over pixel averaging and,
secondly, contains no colour information.

Fig. 9 and Fig. 10 shows respectively the fusion results
using the wavelet based approach and the proposed EMD
approach, which are both clearly superior to the results ob­
tained using straightforward pixel averaging and PCA. Note
that the results are similar due to the similarity of the two
fusion schemes. However, the fully data driven approach of
EMD means that high frequency content can be more accu­
rately analysed and compared. This is illustrated by Fig. 10
which retains sharp edges and detail while also maintaining
an overall reduction in high frequency artifacts compared to
the wavelet approach. Note for example, the 'block artifacts'
around the markers and the left sticker in Fig. 9.

Fig. 6. A visual image (above) and a thermal image (bottom).

Fig. 7. An fused image achieved by performing pixel averag­
ing.

Fig. 8. An fused image achieved by PCA.
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Fig. 9. Wavelet based fusion

Fig. 10. Fusion using complex extensions ofEMD

7. CONCLUSION

The potential ofhigher dimensional EMD for the purposes of
fusing visual and thermal images has been illustrated. A set
of common frequency scales can be determined by simulta­
neously decomposing sources using the complex valued ex­
tensions of the algorithm which facilitates heterogeneous fu­
sion. In this paper, a fusion rule has been proposed based
on the instantaneous amplitudes of the components, a funda­
mental property of the decomposition. The proposed method­
ology facilitates a "block by block" comparison between im­
age inputs. It has been demonstrated by simulations on real
world data how it gives a superior performance over PCA
and straightforward pixel averaging, and is matched only by
a wavelet fusion scheme. However, the data driven nature of
EMD means it has a greater potential tOr the analysis of high
frequency content and its "block by block" methodology fa­
cilitates a near real time fusion operation. In future work, it
is hoped to explore other fusion schemes that can take full
advantage of the local nature of the algorithm.
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