
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 61, NO. 1, JANUARY 2012 221

Identification of Defective Areas in Composite
Materials by Bivariate EMD Analysis of Ultrasound

Marco Leo, David Looney, Member, IEEE, Tiziana D’Orazio, Member, IEEE, and
Danilo P. Mandic, Senior Member, IEEE

Abstract—In recent years, many alternative methodologies and
techniques have been proposed to perform nondestructive inspec-
tion and maintenance operations of moving structures. In partic-
ular, ultrasonic techniques have shown to be very promising for
automatic inspection systems. From the literature, it is evident that
the neural paradigms are considered, by now, the best choice to
automatically classify ultrasound data. At the same time, the most
appropriate preprocessing technique is still undecided. The aim of
this paper is to propose a new and innovative data preprocessing
technique that converts real-valued ultrasonic data into complex-
valued signals. This allows analysis using phase synchrony, a
robust tool that has been previously employed in brain science for
establishing robust features in noisy data. Synchrony estimation is
achieved using complex extensions of empirical mode decomposi-
tion, a data-driven algorithm for detecting temporal scales, thus
facilitating the modeling of nonlinear and nonstationary signal
dynamics. Experimental tests aiming to detect defective areas in
composite materials are reported, and the effectiveness of the
proposed methodology is illustrated.

Index Terms—Aerospace safety, feature extraction, neural net-
works, pattern recognition, ultrasonic imaging.

I. INTRODUCTION

THE CHALLENGE of guaranteeing reliable and efficient
safety checks for engineering structures has received

much attention in recent years in many industrial contexts
mostly owing to the advances in computer technology, as
well as to the emergence of powerful signal processing and
learning methodologies [1]–[3]. In particular, this challenge is
of crucial importance for a number of industrial applications
including manufacturing processes, hazardous waste manage-
ment systems, inspection and maintenance of aircraft, and
electrical power lines where unpredictable behavior, such as
poor performance or even unsafe operation, can result from
abnormal deviations and/or anomalies in components, sensors,
and actuators [4].
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Traditionally, abnormal deviations and/or anomalies are de-
tected by trained human operators, but, unfortunately, this
approach does not ensure an adequate reliability level, and at
the same time, it requires prohibitive amounts of time and high
costs. In addition, humans cannot detect cracks or any other
irregularities in the structure components which are not visible
to the naked eye.

To address the aforementioned problems, many alternative
methodologies and techniques have been proposed to per-
form nondestructive inspection (NDT) and maintenance op-
erations. These are based on the analysis of different signals
such as ultrasonics, acoustic emissions, thermography, laser
ultrasonics, X-radiography, eddy currents, shearography, and
low-frequency methods [5]. In particular, in the last decade,
ultrasonic techniques have shown to be very promising for
NDT and the control of components in engineering systems,
becoming an effective alternative to such traditional and well-
studied approaches such as thermography, eddy currents, and
shearography.

Most of the works in the literature describing ultrasound-
based techniques for inspection and evaluation purposes con-
centrate on the study of data acquisition and manipulation
processes in order to prove the relationship between data and
structural defects or composition of the material [6]–[11].
Some of the work is based on the a posteriori analysis of the
ultrasound data in order to (fully or partially) refer to some
computational algorithm the automatic recognition of material
composition, operative conditions, presence of defects, and
so on. Works concerning this subject, on which this paper
is focused, are less developed, and moreover, their level of
inspection reliability is still inadequate, particularly for those
sectors (namely transportation) where an error can have serious
health and safety consequences.

The pioneering works on the a posteriori analysis of ultra-
sonic data date back to the early 1990s: they suggested that
solutions to the problem of automatic ultrasonic NDT data
interpretation could be found by expert systems which embody
the knowledge of human interpreters [12], [13]. More effective
approaches, based on advanced signal processing and artificial
intelligence paradigms, have been proposed in the last decade.
In [14], the authors addressed the flaw detection problem by
using a radial basis function neural network, and they tried to
demonstrate that a neural-based approach overcame the clas-
sical threshold-based approach for flaw detection problems. In
[15], the wavelet transform was used in conjunction with an ar-
tificial neural network to distinguish the ultrasonic flaw echoes
from those scattered by microstructures. A similar approach
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was introduced in [16] which addressed the problem of pipe
inspection by ultrasonic guided waves. The automatic detection
of internal defects in composite materials with nondestructive
techniques based on ultrasonic techniques was addressed also
in [17]. The authors proposed a preliminary iterative normal-
ization procedure in order to manage materials of different
thickness and a two-level set of neural classifiers that segment
defective areas from sound areas and determine the different
defect characteristics (such as defect position and the defect
type). The author’s idea in [18] was, instead, to cluster the sig-
nals in the similarity space (using the Kohonen self-organizing
algorithm to cluster data sets in an unsupervised manner) and
then to use this result in order to distinguish between signals
corresponding, respectively, to nondefects, flat defects (cracks),
and volumetric defects. A high-resolution pursuit-based signal
processing method was proposed in [19] for detecting flaws
close to the surface of strongly scattering materials, such as
steel and composites, in NDT applications. In [20], an approach
to nondestructive pipeline testing using ultrasonic imaging was
proposed. In [21], an evaluation of various types and config-
urations of neural networks developed for the purpose of as-
sisting in accurate flaw detection in steel plates was illustrated,
whereas, in [22], a neural network was trained, by using the
time/space variations in a sequence of thermographic images,
to extract the information that characterizes a range of internal
defects in different types of composite materials.

Despite the large effort that has been put into devising
efficient algorithms for this purpose, there is still a lot of work
to do in order to satisfy the performance requirements of the
considered application context where noise, complexity, and
uncertainty play a major role. The use of multiple sensors in
conjunction with advanced data fusion (the classifier operates
on either the raw data or features extracted directly from the
multiple sensor measurements obtained from associated data-
bases, if appropriate) or decision fusion approaches (the deci-
sions from the individual classifiers for different data channels
are combined) [23], recently introduced in somewhat related
applications (e.g., understanding and interpreting biomedical
signals for healthcare), could be an effective way to pursue im-
proved accuracies and more specific inferences [24] but, on the
other hand, introduce a potentially overwhelming quantity of
data that requires further investigation to reduce computational
cost and required storage space [25].

In summary, it is evident that the neural paradigms are
considered the best choice to classify ultrasound data in an auto-
matic inspection system. At the same time, the most appropriate
preprocessing technique is still undecided. As widely demon-
strated in recent related works involving automatic pattern iden-
tification using neural paradigms [26], [27], the wavelet-based
approaches appear to be the most promising, but, considering
that in the considered context an error could waste time, money,
and even endanger someone’s life, further efforts have to be
done in order to increase reliability.

The aim of this paper is to propose a new and innovative data
preprocessing technique to explore the patterns embedded in
the data. A methodology is first proposed to obtain a complex-
valued representation for each of the ultrasound signals. By
design, the complex representation highlights the presence or

absence of defects in the analyzed material. This representa-
tion is then decomposed using complex/bivariate extensions
of empirical mode decomposition (EMD) [28], [29] into a set
of complex-valued oscillating components, known as intrinsic
mode functions (IMFs). In this way, the phase information
for the real and imaginary components can be defined locally
[30]. This facilitates the detection of phase synchrony, that
is, the temporal locking of phase information between the
components, which is an established tool in brain science for
performing feature extraction [31]. The existence of phase
synchrony, across time and frequency, is used to characterize
the degree of shared dynamics between the components of the
complex representation and is consequently used to detect the
possible presence of defects.

It is this methodology of converting a real-valued data source
into a complex signal in order to obtain a set of synchrony fea-
tures that is novel to our work. The new data representation is
then applied as an input to a supervised neural classifier trained
to recognize the defective areas from the nondefective ones.
To demonstrate the effectiveness of the proposed approach,
it has been applied to detect and classify internal defects in
composite materials and, in particular, in a honeycomb structure
containing different inserts placed to simulate some of the most
common defective situations in composite materials.

The remainder of this paper is organized as follows:
Section II describes EMD and its extensions while Section III
describes the process by which phase synchrony is estimated.
Section IV describes the proposed approach, and Section V
describes the experimental setup and reports the results of
different experiments which demonstrate the effectiveness of
the proposed approach with respect to the related techniques
from the literature. Finally, in Section VI, conclusions and
future research directions are considered.

II. EMD AND EXTENSIONS

The following sections describe EMD and bivariate EMD
(BEMD).

A. EMD Algorithm

EMD [28] is a data-driven time-frequency technique which
adaptively decomposes a signal, by means of a process called
the sifting algorithm, into a finite set of AM/FM modulated
components. These components, called “IMFs,” represent the
oscillation modes embedded in the data. By definition, an IMF
is a function for which the number of extrema and the number
of zero crossings differ by at most one, and the mean of the two
envelopes associated with the local maxima and local minima
is approximately zero. The EMD algorithm decomposes the
signal x(t) as

x(t) =
M∑
i=1

Ci(t) + r(t) (1)

where Ci(t), i = 1, . . . ,M , represents the IMFs and r(t) is the
residual. The first IMF is obtained as follows [28].

1) Let x̃(t) = x(t).



LEO et al.: IDENTIFICATION OF DEFECTIVE AREAS IN COMPOSITE MATERIALS BY BEMD ANALYSIS 223

2) Identify all local maxima and minima of x̃(t).
3) Find an “envelope” emin(t) [respectively, emax(t)] that

interpolates all local minima (respectively, maxima).
4) Extract the “detail”d(t)= x̃(t)−(1/2)(emin(t)+emax(t)).
5) Let x̃(t) = d(t), and go to step 2); repeat until d(t)

becomes an IMF.

Once the first IMF is obtained, the procedure is applied
iteratively to the residual r(t) = x(t) − d(t) to obtain all the
IMFs. The extracted components satisfy the so-called mono-
component criteria, and the Hilbert transform can be applied
to each IMF separately. This way, it is possible to generate
analytic signals, having an IMF as the real part and its Hilbert
transform as the imaginary part, that is, x + jH(x), where H(·)
is the Hilbert transform operator. Equation (1) can therefore be
augmented to its analytic form given by

X(t) =
M∑
i=1

ai(t) · ejθi(t) (2)

where the trend r(t) is purposely omitted, due to its over-
whelming power and lack of oscillatory behavior. Observe that,
now, from (2), the time-dependent amplitude ai(t) and phase
function θi(t) can be extracted. By plotting the amplitude ai(t)
versus time t and instantaneous frequency fi(t) = dθi/dk [32],
a time–frequency-amplitude representation of the entire signal
is obtained, the so-called Hilbert–Huang spectrum.

B. Complex Extensions of EMD

Several extensions of EMD to the field of complex numbers
have been recently developed. These include “complex EMD”
[33], “rotation-invariant EMD (RIEMD)” [34], and “bivariate
EMD (BEMD)” [29]. However, only RIEMD and BEMD oper-
ate directly in C making them suitable in practical applications
[35]. In particular, BEMD facilitates enhanced local mean es-
timation compared to RIEMD [35] and was used in synchrony
analysis.

In order to obtain a set of M complex/bivariate IMFs γi(t),
i = 1, . . . , M , from a complex signal z(t) using BEMD, the
following procedure is adopted [29]:

1) Let z̃(t) = z(t).
2) To obtain Q signal projections, given by {pθq

}Q
q=1,

project the complex signal z̃(t), by using a unit complex
number e−jθq , in the direction of θq as

pθq
= �

{
e−jθq z̃(t)

}
, q = 1, . . . , Q (3)

where �{·} denotes the real part of a complex number
and θq = 2qπ/Q.

3) Find the locations {tqj}
Q
q=1 corresponding to the maxima

of {pθq
}Q

q=1.
4) Interpolate (using spline interpolation) between the max-

ima points [tqj , z̃(tqj)] to obtain the envelope curves

{eθq
}Q

q=1.
5) Obtain the mean of all the envelope curves m(t) and sub-

tract from the input signal, that is, d(t) = z̃(t) − m(t).

Let z̃(t) = d(t), and go to step 2); repeat until d(t)
becomes an IMF.

Similarly to real-valued EMD, once the first IMF is obtained
γ1(t), the procedure is applied iteratively to the residual r(t) =
z(t) − d(t) to obtain all the IMFs.

Once the IMFs have been obtained, the real and imaginary
components can be treated as two sets of IMFs: �{γi(t)} and
�{γi(t)}. The instantaneous amplitudes, namely, �{ai(t)} and
�{ai(t)}, and phases, namely, �{θi(t)} and �{θi(t)}, for each
set of IMFs can then be determined.

Consider a complex signal z = x1 + jx2. The real and imag-
inary parts of z are given, respectively, in the first panels of
Fig. 1(a) and (b). The real part of the decomposition obtained
using BEMD for z is shown in the subsequent panels of
Fig. 1(a), and the imaginary part is shown in the subsequent
panels of Fig. 1(b). Note that, for convenience, not all the high-
frequency IMFs have been displayed. For example, the second
panel of Fig. 1(a) shows the summation of the first six real-
valued IMFs

∑6
i=1 �{γi}. Observe how the BEMD operation

presents a data-driven framework to compare the temporal
scales of z.

III. PHASE SYNCHRONY

Phase synchrony between two signals is defined as the
temporal locking of phase information. That is, for a given
frequency, phase synchrony exists if the phase difference re-
mains constant over a period of time. It is a popular tool in
brain science for robustly modeling any shared dynamics that
exist between the sources. To measure the phase synchrony
between x1 and x2, BEMD is first applied to the complex signal
x1 + jx2. The instantaneous phase difference between the real
and imaginary parts of each IMF component is given by ψi(t).
The degree of phase synchrony between x1 and x2 is given
by [30]

φi(t) =
Hmax − H

Hmax
(4)

where H = −
∑N

n=1 pn ln pn represents the Shannon entropy
of the distribution of ψi(t − (W/2) : t + (W/2)) defined by a
window of length W , N is the number of bins, and pn is the
probability of ψi(t − (W/2) : t + (W/2)) within the nth bin
[36]. The maximum entropy Hmax is given by

Hmax = 0.626 + 0.4 ln(W − 1). (5)

The value of φ is between zero and one, with one indicating
perfect synchrony and zero a nonsynchronous state. An addi-
tional step can be incorporated to model simultaneously for
component relevance

φi(t) =
{

0, if �{ai(t)} < ε
0, if �{ai(t)} < ε

(6)

where ε is an appropriate threshold. Once the phase synchrony
information has been estimated, it can be conveniently repre-
sented by the matrix ρ(f, t), which denotes the phase synchrony
at index t and frequency f .
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Fig. 1. Decomposition of z = x1 + jx2, shown in the top panels of (a) and (b), into a set of complex IMFs γi using BEMD. (a) Real component. (b) Imaginary
component.

IV. PROPOSED APPROACH

Ultrasonic inspection uses sound signals at frequencies be-
yond human hearing (more than 20 kHz) to estimate some
properties of the irradiated material by analyzing either the
reflected (reflection working modality) or transmitted (trans-
mission working modality) signals. A typical ultrasonic inspec-
tion system consists of several functional units: pulser, receiver,
transducer, and display devices. A pulser is an electronic device
that can produce a high-voltage electrical pulse. Driven by the
pulser, the transducer generates a high-frequency ultrasonic
wave which propagates through the material. In the transmis-
sion modality, the receiver is placed on the opposite side of the
material from the pulser, whereas, in the reflection modality,
the pulser and the receiver are placed on the same side of the
material.1

Ultrasonic data can be collected and displayed in a number of
different formats. The three most common formats are known
in the NDT community as A-scan, B-scan, and C-scan pre-
sentations. Each presentation mode provides a different way of
looking at and evaluating the region of material being inspected.

1Inspection devices may or may not be in contact with the material. In the
former case, a liquid or a paste (couplant) is used to facilitate the transmission
of ultrasonic vibrations from the transducer to the test surface. In noncontact
ultrasound, ambient air is instead the only acoustic coupling medium.

In this paper, the analysis of ultrasonic data acquired from
the reflection working modality and A-scan representation is
reported. This means that, for each point of the inspected mate-
rial, we have a continuous signal that represents the amount of
received ultrasonic energy as a function of time.

The temporal evolution of the ultrasound signal x(t) is the
input to the core of the proposed approach that consists of
two main steps: the preprocessing of the data in order to
emphasize the characteristics of the signals belonging to the
same class, and the following neural classification. Fig. 2 shows
the different procedures involved in the proposed approach.
In the preprocessing step, a methodology is first proposed to
extend each real-valued ultrasonic signal xu,v(t), where (u, v)
denotes a point in the material, to the complex domain Zu,v(t).

Consider first an ultrasonic signal for an area of the material
that is defect free; see Fig. 3(a). Observe that there are large
extrema at the beginning and at the end. These changes in
ultrasound energy are caused by the transmitted signals being
reflected by the boundaries of the material. These boundary
extrema are referred to as toolside and bagside peaks, respec-
tively. The ultrasonic signal for an area of material that contains
defects is, instead, given in Fig. 4(a). Note that, in addition
to the boundary extrema, the signal contains extrema at other
time locations caused by defective components. A defect-free
area of material is therefore characterized by a data set which
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Fig. 2. Schematic representation of the different procedures involved in the
proposed approach.

Fig. 3. (a) Example of a nondefective ultrasonic signal and (b) its complex
extension.

is symmetrical about its center and contains boundary extrema
only. Thus, it is proposed to divide each data set about its center

Fig. 4. (a) Example of a defective ultrasonic signal and (b) its complex
extension.

x(T/2), thus producing two segments, namely, x1 and x2, by
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Note that each segment is additionally extended by KR

points at the right-sided edge (t = T/2). These segments are
then extended at the left-sided edge by KL points. These
segments are denoted by x̂1 and x̂2 and are dependent on the
position of the toolside peak and bagside peak, respectively. If,
for example, the boundary extremum relevant to x1(t), that is,
the toolside peak, occurs at t = e1, then x̂1(t) is given by

x̂1

(
e1, . . . ,

T

2
+ KR

)
= x1

(
e1, . . . ,

T

2
+ KR

)
x̂1(e1 − 1, . . . , e1 − KL) = x1(e1 + 1, . . . , e1 + KL) (8)

where x̂2(t) is constructed in a similar fashion around the
bagside peak. The extended components for the ultrasonic
signals shown in Figs. 3(a) and 4(a), are shown, respectively,
in Figs. 3(b) and 4(b). Thus, the complex extension of the real-
valued ultrasound signal, for point (u, v), is given by Zu,v(t) =
x̂1(t) + jx̂2(t).

The signal Zu,v(t) is decomposed into a set of complex os-
cillation modes (IMFs) γi(z), where i = 1, . . . , M , by applying
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a complex extension of EMD, i.e., BEMD [29]. The real and
imaginary parts of the decomposition �{γi(t)} and �{γi(t)}
denote the IMFs for x̂1(t) and x̂2(t), respectively. By construc-
tion, the phase information for each IMF is well defined at each
instant t and facilitates a highly localized comparison between
the phase information of x̂1(t) and x̂2(t) [30]. The degree of
phase synchrony, which is the temporal locking of phase infor-
mation between �{γi(t)} and �{γi(t)}, is then determined to
characterize the dynamics of Zu,v(t), that is the symmetry of
the original ultrasound signal about its center as well as the
location of its extrema. The information is represented by a
matrix ρu,v(f, t) which denotes the synchrony at index t and
frequency f .

In the analysis, two additional preprocessing steps were per-
formed on the complex data representation, Zu,v(t), in order to
facilitate more robust synchrony estimation. Synchrony analy-
sis involves the calculation of entropy for phase distributions
which requires long data lengths so Zu,v(t) was initially up-
sampled. Furthermore, a noise-assisted EMD facilitates a more
natural separation of scale components [37]. For this reason,
white Gaussian noise was added to the real and imaginary com-
ponents before applying BEMD, and ρu,v(f, t) was obtained
by averaging the synchrony results over several realizations
of noise.

The synchrony matrix for each ultrasound signal ρu,v(f, t)
is then vectorised and downsampled. Principal component
analysis (PCA) is then applied to reduce dimensionality giving
a feature vector Yu,v = [y1, y2, . . . , yN ] for each ultrasound
signal. The M most informative components are finally given as
the input to a neural classifier trained with a back propagation
algorithm to distinguish defective from nondefective areas.

V. EXPERIMENTAL SETUP AND RESULTS

To illustrate the effectiveness of the proposed approach, a
set of ultrasound measurements on a composite material has
been considered. The material has a honeycomb structure with
Nomex Core and 128 ply thicknesses (each ply has a thickness
of 0.19 mm). Ultrasonic data was obtained by an ultrasonic
reflection technique that uses a single transducer serving as
transmitter and receiver (5 MHz).

The collected data are relative to defective and nondefec-
tive areas: defective areas contain artificial defects introduced
during the manufacturing process and are composed of the
following materials: brass foil (0.02 ± 0.01 mm thick), pressure
sensitive tape,2 and dry peel ply (0.12 mm thick). In particular,
brass inserts, dry peel ply, and adhesive tape were introduced
to represent voids and delamination, inclusions by means of
reflection techniques, and inclusions by means of transmission
techniques, respectively. In the following, [A] stands for tape,
[F] stands for peel ply, and [B] stands for brass. The typical
insert locations are the following:

1) one and two plies from toolside surface for brass and pres-
sure sensitive Tape and 1016 mm from toolside surface
for peel ply (Top);

2American Biltrite 6782, Tape Product Division, American Biltrite, Inc.,
105 Whittendale, Moorestown, NJ, 08057

2) midpart thickness (Mid);
3) one and two plies from bagside surface for brass and pres-

sure sensitive tape and 1016 mm from bagside surface for
peel ply (Bottom).

Each x(u,v)(t), which is the ultrasound signal corresponding
to point (u, v), contains 77 temporal samples. This signal
was converted into a complex signal Z(u,v)(t), and synchrony
analysis was performed on the IMFs obtained by applying
BEMD to the upsampled signal. Because of the initial
upsampling, only low-frequency synchrony information was
considered in the analysis. Each synchrony matrix ρ(u,v)

was then vectorised and downsampled obtaining a 1198-long
feature vector. This is the input of the classification step
involving PCA data reduction and neural classification of
defective and nondefective points.

First of all, the experimental data set consisting of 2620
ultrasound signals was built. Specifically, the data set was
composed of 1920 signals acquired for the three different
types of defect (640 signals for each defect type: [A], [B],
and [F]) and 700 signals obtained from areas which did not
contain any defects. For each defect type, the points in the
data set were equally relative to the defects placed at midthick-
ness level, at the top, and at the bottom of the inspected
material.

The aim of the preliminary experimental phase was to deter-
mine the values of some important parameters of the proposed
framework. The number of required principal components
(PCs) was first considered. This is a crucial step considering
that underestimation of this number would discard valuable
information, whereas overestimation could result in a large
number of spurious components carrying useless information
that could compromise further steps in data classification. A
popular ad hoc rule is to plot the eigenvalues in decreasing order
(scree plot) and search for a peak which denotes that the signal
eigenvalues are on the left side and the noise eigenvalues are
on the right. Another approach is to compute the cumulative
percentage of the total variation explained by the PCs and retain
the number of PCs that represents 70% or 80% of the total
variation [38]. The choice of the number of components to
retain could be also seen as a problem of model selection. This
probabilistic reformulation of PCA permits many extensions
[39]. Two interesting approaches were formulated in [40] and
[41]: the authors developed a model selection criterion for
estimating the true dimension of the observed data set (or the
number of PCs to retain) where “true dimension” denoted the
sufficient dimension to fully describe the information available.

In Fig. 5, the variance and the cumulative variance of the first
200 PCs computed from the considered data set are plotted.
In Fig. 6, a probabilistic analysis of the PCs is reported. The
dashed curve shows the likelihood relative to different data
dimensionality computed by the method proposed in [40],
which makes use of Bayesian model selection, and for this
reason, it is referred to as the Bayesian information criterion. In
a similar way, the solid curve indicates the likelihood computed
by the method proposed in [41] and is referred to as Laplace
(it makes use of the Laplace’s method to get model parameter
estimation). Statistical and probabilistic information in Figs. 5
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Fig. 5. Variance and cumulative variance of the first 200 PCs.

Fig. 6. Probabilistic analysis of the PCs.

and 6 indicate that the optimal number of PCs that should be
retained is 70.

Once the number of significant PCs was fixed, the feature
vector Y(u,v) = [y1, y2, . . . , y70] for each ultrasound signal was
calculated. The next step was to select the most appropriate
neural architecture for the considered problem. A three-layer
feedforward network, with tansig activation functions in the
hidden layer and linear activation functions in the output layer,
is often used in the literature. Considering that the problem
requires binary classification and that there exists a sufficient
amount of data examples for each of the two classes, the back
propagation algorithm was used to train the neural network. The
number of neurons of the input layer was set to the number
of input variables (i.e., 70), and the number of neurons in the
output layer was one. The network was trained such that the
output value 1 denoted a defective signal and the value −1
denoted a nondefective signal.

The network size has a strong influence on the network
performance: setting too few hidden units causes high training
errors and high generalization errors due to underfitting, while
too many hidden units results in low training errors but still high
generalization errors due to overfitting. Despite this, there is
no straightforward way to obtain the correct number of hidden
layer neurons for the considered task. Several researchers have
proposed some ad hoc solutions to this problem. However, such
rules are not applicable in most circumstances as they do not
consider the training set size (number of training pairs), the
complexity of the data set to be learnt, etc. It is argued that

Fig. 7. Overall classification error obtained with different numbers of neurons
in the hidden layer of the network architectures.

the optimal number of hidden units depends on the numbers
of input and output units, the number of training cases, the
amount of noise in the targets, the complexity of the function or
classification to be learned, the architecture, the type of hidden
unit activation function, the training algorithm, etc. Thus, in the
experiments, different neural architectures (with the number of
hidden neurons ranging from 1 to 50) were considered, and their
classification performances were evaluated.

The experimental phase made use of a training set consisting
of 500 ultrasonic signals: 300 signals were relative to defective
points, whereas the remaining 200 were relative to nondefective
points. The 300 defective training points belonged to the three
defect types (100 for [A], 100 for [B], and 100 for [F]), and for
each type, 40 of them were relative to defects placed at the top,
40 to defects placed at the bottom, and 20 to defects placed in
the middle part of the material.

The ability to classify the remaining 2120 signals of the data
set as defective or nondefective was then evaluated in the first
experimental phase. In Fig. 7, the correct classification rate for
each neural architecture is shown. It is possible to observe that
the best rate (84.15%) was obtained with eight neurons in the
hidden layer. This demonstrated that, while a lower number of
neurons limited the knowledge of the input data (underfitting),
a higher number of neurons made it difficult for the classifier to
generalize that knowledge (overfitting).

In Table I, classification performance using the optimal
neural architecture is shown. The left column states the type and
the thickness level placement of the testing signals. For exam-
ple, [A]-m refers to signals extracted from [A]-type defective
areas placed at the midthickness level. In the same column, the
signals extracted from areas which did not contain any defects
are referred as “ND.” The middle and right columns report
the classification results (in terms of defective/nondefective
signals) obtained by the proposed approach.

Although the correct defect identification rate is high, it can
be deduced that the performance of the proposed methodology
depends on both the following:

1) the defect type;
2) the defect location in the inspected material.

Table I illustrates that defective areas at the midthickness
level are always better classified than those located either at
the top or at the bottom. The defect location is one of the most
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TABLE I
CLASSIFICATION PERFORMANCES WITH THE OPTIMAL

NEURAL NETWORK ARCHITECTURE

Fig. 8. Two signals pointing out the different acoustic reflection coefficient
for two different defect types. (a) Example of acoustic reflection for an
[A]-type defect. (b) Example of acoustic reflection for an [F]-type defect.

important factors in ultrasound inspection. The defects placed
either at the top or at the bottom of the inspecting structure are,
in general, the most difficult to detect since their echo is mixed
with the toolside or the bagside echo. However, defective areas
in the midpart of the material thickness produce a distinct peak
in the signal trend that is straightforward to identify [compare
Figs. 3(a) and 4(a)].

From Table I, it is clear that the defect type also affects the
classification rate. Each defect type has a different acoustic
reflection coefficient. The larger this acoustic coefficient, the
more prominent it will be in the ultrasound data and the
more straightforward the defect is to detect. In particular, it
is observed that [A]-type defective points were better iden-
tified than [B]. The most poorly identified was the [F]-type

TABLE II
CORRECT DEFECT IDENTIFICATION RATE FOR

THE THREE COMPARED APPROACHES

defects. In Fig. 8, the different acoustic reflection behavior for
[A]-type [Fig. 8(a)] and [F]-type [Fig. 8(b)] defects is shown.
The [A]-type defect reflects much more acoustic energy than
the [F]-type as is illustrated by both the higher amplitude of the
central echo and the lower amplitude of the bagside echo.

The second experimental phase compared the proposed ap-
proach with the methods that are among the most effective
in automatic defect identification. In particular, two other ap-
proaches were considered. For the first method, the ultrasonic
signals were classified by a neural network without any pre-
processing (specifically, the 77 available samples for each point
were given as input to the net after the normalization in the
range [−1,1]). For the second method, classical preprocessing
based on the wavelet decomposition was applied to the ul-
trasonic signal, and selected coefficients were supplied to the
neural classifier.3 The same neural architecture as before was
used to classify the features obtained for both methods. The
optimal number of hidden neurons was experimentally found
to be 30 for the wavelet-based approach and 15 for the direct
approach with no preprocessing.

Table II compares results for the three approaches, obtained
using the same data set as before. On the one hand, the proposed
BEMD-based approach gave the best defect identification rate
(for all considered defect types and defect locations), but, on the
other hand, it also generated a larger number of false positives
for nondefective points.

In particular, it is evident that BEMD preprocessing can ac-
curately detect certain defective points, placed at the top and at
the bottom of the considered material, which are not detectable

3The DB3 family was used, and the decomposition was carried out until
level 3. The resulting 92 coefficients were then used to represent the ultrasound
signal.
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Fig. 9. Different echoes in the case of (a) a nondefective ultrasonic signal and
(b)–(c) two [B]-type ultrasonic defective signals relative to defect areas placed
at different location into the inspecting composite material. (a) Nondefective
ultrasonic signal. (b) Ultrasonic signal relative to a defect placed two plies from
toolside surface. (c) Ultrasonic signal relative to a defect placed two plies from
bagside surface.

using direct-input and wavelet-based approaches. In Fig. 9,
we report a nondefective ultrasonic signal [Fig. 9(a)] together
with two [B]-type defective signals obtained from two areas
placed two plies from the toolside surface [Fig. 9(b)] and two
plies from the bagside surface [Fig. 9(c)]. The similarity of the
three signals is quite evident and causes standard preprocessing
techniques to fail. The proposed complex-valued representation
of the ultrasonic signals highlights the small differences that
can be found in the toolside and bagside peaks, and the phase
synchrony analysis detects the presence of defects. Using the
BEMD-based approach, only a very small percentage of de-
fective points was missed. This performance is useful in the
considered inspection context (particularly, for transportation

purposes) where it is important to detect all the defective areas
even at the cost of increasing the number of false positives.

The benefits of the proposed approach are further illustrated
in the third experimental phase in which the neural architec-
tures trained with the three different approaches were used to
fully inspect a small part of the considered honeycomb struc-
ture with Nomex Core. The inspected part contains different
defective insertions as shown in Fig. 10(a). Fig. 10(b)–(d) show
the inspection results obtained using the direct-input, wavelet,
and BEMD approaches, respectively.

Clearly, the BEMD-based approach can more accurately de-
tect all defective areas, but it also results in a higher number of
false positives. Considering that these false detections are iso-
lated and do not form connected regions having a considerable
area value, the elimination of these points is straightforward if
some a priori knowledge about the minimum expected size of
the defective areas is available. For example, in Fig. 11(a)–(c),
the inspection results, after a filtering process based on the
connectivity analysis of the detected defective regions and a
selection criterion based on removing the regions having an
area less than 20 pixels, are shown. Observe that the direct
input approach completely missed three (placed on the top
and on the bottom of the materials) of the nine defective
insertions [see Fig. 11(a)]. Wavelet preprocessing was able to
detect two of the missed insertions but still missed the [B]-type
insertion placed at the top of the material [see Fig. 11(b)]. The
BEMD preprocessing facilitated an increase in the percentage
of detected defective points such that all the defective areas
were identified [see Fig. 11(c)].

The proposed method is significantly more computation-
ally complex than the other considered approaches.4 However,
the aim of this paper is to facilitate highly accurate analysis
at the expense of computation cost. It would be possible to
reduce the complexity of the EMD operation using linear
envelope interpolation or adjusting stopping parameters, but
this is outside the scope of this paper.

VI. CONCLUSION

The aim of this paper is to propose a new and innovative data
preprocessing technique that converts real-valued ultrasonic
signals into complex-valued signals, making them suitable to
apply phase synchrony analysis using complex/bivariate exten-
sions of EMD, a data-driven algorithm for detecting temporal
scales in nonlinear and nonstationary data. It has been illus-
trated experimentally that the proposed preprocessing approach
is suitable for detecting defective components in composite ma-
terials. Obtaining the complex-valued representation, a defect-
free component is characterized by a unique similarity between
the real and imaginary parts at a given time and frequency. Thus,
the application of BEMD facilitates a highly localized time–
frequency analysis of the complex representation, and the
subsequent calculation of phase synchrony can be used to

4As a data-driven operation, EMD does not have a rigorous mathematical
derivation, meaning that, for example, the number of decompositions cannot
be controlled directly and makes accurate analysis of the computation cost
difficult.
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Fig. 10. Results of the inspection of (a) a honeycomb structure by using the three methods (b), (c), and (d). (a) Layout of the defective regions. (b) Inspection
results obtained using the direct input. (c) Inspection results obtained using the wavelet preprocessing. (d) Inspection results obtained using BEMD preprocessing.

Fig. 11. Effect of a filtering process based on the connectivity analysis of the detected defective regions using a selection criterion based on the removal of points
with a surrounding area value of less than 20 pixels. (a) Inspection results obtained using the direct input and a further area-based region filtering. (b) Inspection
results obtained using wavelet preprocessing and a further area-based region filtering. (c) Inspection results obtained using BEMD preprocessing and a further
area-based region filtering.

quantify the degree of similarity between the real and imaginary
parts.

Different experiments were carried out to compare the pro-
posed preprocessing methodology with the most common and
effective preprocessing techniques found in the literature. The
results have demonstrated that the BEMD-based preprocessing
approach performs better in terms of defect detections and
allows the recognition of defective areas at difficult-to-detect
locations such as near the top or the bottom of the material,
scenarios which can cause standard approaches to fail.

Future work will focus on investigating the defect-
identification capability of the proposed BEMD-based
approach. This will be achieved by extending the analysis
to material with different thicknesses and different defective
insertions. In the future, we will also investigate the possibility

of using an unsupervised-learning approach in order to reduce
human intervention.
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