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A real-time approach for the identification of second-order noncircularity (improper-

ness) of complex valued signals is introduced. This is achieved based on a convex

combination of a standard and widely linear complex adaptive filter, trained by the

corresponding complex least mean square (CLMS) and augmented CLMS (ACLMS)

algorithms. By providing a rigorous account of widely linear autoregressive modelling

the analysis shows that the monitoring of the evolution of the adaptive convex mixing

parameter within this structure makes it possible to both detect and track the complex

improperness in real time, unlike current methods which are block based and static.

The existence and uniqueness of the solution are illustrated through the analysis of the

convergence of the convex mixing parameter. The analysis is supported by simulations

on representative datasets, for a range of both proper and improper inputs.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Complex valued statistical processing is a well-estab-
lished area; it deals with detection, estimation and adaptive
signal processing, and has found a large number of applica-
tions across the engineering disciplines. For instance, in
signal processing for communications the data symbols are
complex by design, and many problems related to arrays
and multipath processing in wireless communications are
conveniently represented by both the amplitude and phase,
thus complex. Directional processes (radar, sonar, vector
fields, bearings only estimation), where both the ‘‘intensity’’
(amplitude) and ‘‘direction’’ (phase) components carry
the information, are also most conveniently analysed as
complex valued [1].

Statistics in C are typically treated as a straightforward
extension of real-valued statistics, leading to the same
ll rights reserved.

lfs).
generic solutions for most classic estimators. For instance,
the covariance matrix Czz ¼ EfzzHg of a zero mean complex
vector z 2 CN�1 is obtained by replacing the vector trans-
pose operator ð�ÞT in the real covariance matrix EfxxTg

with the Hermitian transpose in C. Whereas most prac-
tical algorithms have been developed based on this
assumption [2,3], the statistics of complex variables show
that this approach is optimal only for second-order
circular (or proper) complex random processes [4,5], for
which the probability distribution is rotation invariant,
thus limiting the number of applications [6].

Recently, ‘‘augmented’’ complex statistics have estab-
lished that for optimal second-order statistical modelling
of the generality of complex signals we need to take into
account both the covariance matrix Czz and pseudocovar-

iance matrix Pzz, defined as Pzz ¼ EfzzTg. These two
matrices are conveniently combined into the ‘‘augmented
covariance matrix’’, calculated as

Rzz ¼ EfzazH
a g ¼

Czz Pzz

Pn

zz Cnzz

" #
, ð1Þ
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where the augmented complex vector za is given by

za ¼ ½z, zn�T , ð2Þ

and the symbol ð�Þn denotes the complex conjugation.
The rotation invariant distributions associated with

circular signals imply equal powers in the real and
imaginary part, and thus a vanishing pseudocovariance
matrix of a proper zero mean random complex signal,1

that is, Pzz ¼ 0. Notice that complex circularity is a wider
notion than properness—it is a property of the probability
density function (rotation-invariance) while properness is
a second-order property indicating a vanishing pseudo-
covariance matrix [7]. Thus, the modelling of noncircular
data based on the covariance matrix only is generally
inadequate2 [5], whereas the modelling of proper com-
plex processes based on augmented statistics 1 is second-
order optimal but involves additional computational
complexity. Therefore, the identification and tracking of
the nature of complex valued signals (degree of noncir-
cularity) are a key to efficient statistical signal processing
and should ideally be performed in real time.

Signal modality characterisation has been developed in
Physics to reveal changes in the nature of real-world data
(nonlinear, sparse, deterministic, stochastic [8]), and is
only just being adopted in signal processing [9,10].
Statistical hypothesis testing based measures for the
validity of complex representation do exist [11,6], how-
ever, such tests are difficult to generalise for measuring
the degree of noncircularity. Existing measures of the
degree of noncircularity are typically block-based deter-
ministic functions, based e.g. on multivariate associations
in real-valued vectors as a measure of the linear depen-
dence between z and zn. The circularity index in [12] was
introduced as a function of canonical correlations; it was
subsequently made more flexible based upon likelihood
measures, such as the generalised likelihood ratio tests
(GLRT) in [13] and [14]. Whereas such block-based tests
are accurate and intuitive for off-line processing of sta-
tionary signals, they are unsuitable in real-time proces-
sing and for real-world applications.

To this end, we extend our earlier work in [15,16] to
propose a flexible method for the identification and track-
ing of the degree of (non)circularity of the generality of
complex valued signals. The proposed approach employs a
collaborative adaptive filter, based on a convex combina-
tion of the complex least mean square (CLMS) [3] and
augmented CLMS (ACLMS) [17], thus facilitating real-time
adaptive mode of operation. The evolution of the convex
mixing parameter within this structure is shown to
quantify the time varying degree of improperness of a
complex signal. The analysis is supported by illustrative
simulations on both synthetic signals and real-world wind
modelling.
1 For illustration, consider a complex number z¼ xþ Ey. Then

zzT ¼ x2�y2, which for s2
x ¼s2

y vanishes upon applying the statistical

estimation operator.
2 Unless we have a special case of a standard autoregressive process

driven by a doubly white noise with different powers in the real and

imaginary part, as shown in Section 2.
2. Widely linear estimation and autoregressive
modelling

Consider the standard mean square error (MSE) esti-
mator of a real-valued signal y in terms of another
observation x, that is

ŷ ¼ E½y9x�: ð3Þ

For zero mean, jointly normal y and x, the solution is the
linear estimator

ŷ ¼ hT x, ð4Þ

where h is a coefficient vector and x is the regressor
vector. By continuation, in standard MSE in the complex
domain (based on only the covariance matrix), it is
assumed that3

ŷ ¼ Efy9zg - ŷ ¼ hHz:

However, it is important to realise that both the real and
imaginary parts of the complex number z¼ zrþEzi can be
estimated using a real MSE estimator in (3), thus giving
[18]

ŷr ¼ E½yr9zr ,zi� and ŷi ¼ E½yi9zr ,zi�,

thus ŷ ¼ E½yr9zr ,zi�þ EE½yi9zr ,zi�: ð5Þ

Upon employing the identities zr ¼ ðzþznÞ=2 and
zi ¼ ðz�znÞ=2E, we arrive at

ŷ ¼ E½yr9z,zn�þ EE½yi9z,zn�, ð6Þ

yielding the ‘‘widely linear’’ estimator for general complex
signals (both proper and improper) in the form

ŷ ¼ hT zþgT zn, ð7Þ

where h and g are the coefficient vectors of the widely
linear model. For more detail on augmented complex
statistics, widely linear models, and their applications in
adaptive signal processing see [6,19–21].
2.1. Performance bounds of the standard autoregressive

model

The standard autoregressive AR(n) model of order n

(in R or C) is described by

zðkÞ ¼ a1zðk�1Þþ � � � þanzðk�nÞþqðkÞ ¼ aT zðkÞþqðkÞ, ð8Þ

where a¼ ½a1, . . . ,an�
T are the fixed AR coefficients,

zðkÞ ¼ ½zðk�1Þ, . . . ,zðk�nÞ�T the regressor vector, and q(k)
the driving doubly white Gaussian noise (proper or
improper). Using the Yule–Walker equations, the AR
coefficients can be found from [22]

an ¼ C�1
zz c
3 Both y¼ hT z and y¼ hHz are correct, yielding the same output and

the mutually conjugate coefficient vectors. The latter form is more

common and the former was used in the original CLMS paper [3]; in

this work we will use the first form.
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2
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3
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cð1Þ

cð2Þ

^

cðnÞ

2
66664

3
77775 ð9Þ

where c¼ ½cð1Þ,cð2Þ, . . . ,cðnÞ�T is the time shifted correla-
tion vector. Observe that using the model in (8) it is
possible to generate both proper and improper linear
processes, depending on the nature of the doubly white
driving noise q(k).

To evaluate the advantage of widely linear over strictly

linear stochastic modelling, consider again the linear and
widely linear estimates of a random process z(k) given
respectively by [23]

ẑlðkÞ ¼ aT zðkÞ, ð10Þ

ẑwlðkÞ ¼ hT zðkÞþgT znðkÞ: ð11Þ

Then, the corresponding optimal AR estimation errors are
given by

e2
l ¼ E 9zðkÞ92

h i
�E 9ẑ lðkÞ9

2
h i

¼ cTCn�1

zz cnþs2
q�cTCn�1

zz cn ¼ s2
q ,

e2
wl ¼ E 9zðkÞ92

h i
�E 9ẑwlðkÞ9

2
h i

¼ cTCn�1

zz cnþs2
q�rTRn�1

zz rn,

ð12Þ

where s2
q denotes the driving noise variance and r¼

½cð1Þ, . . . ,cðnÞ,pnð1Þ, . . . ,pnðnÞ�T is the corresponding time
shifted correlation vector of the augmented covariance
matrix Rzz, defined in (1).
Fig. 1. Distributions of an AR(4) process for different realisations of the driving

noncircular noise. (c) AR(4) driven by general noncircular noise.

Fig. 2. Covariance (top) and pseudocovariance (bottom) of a standard AR(4) m

circular noise. (b) AR(4) driven by doubly white noncircular noise. (c) AR(4) dr
2.2. Processes generated by standard strictly AR models

In standard autoregressive modelling in the complex
domain, the only requirement on the driving noise q(k) is
its double whiteness, that is, the real and imaginary part
are jointly white and uncorrelated—there are no require-
ments on the particular distributions or variances in the
noise channels. Depending on the nature of the driving
noise (doubly white circular, doubly white noncircular,
general noncircular) there are three possible scenarios for
the circularity properties of the processes generated by
the standard AR model.
�

noise

odel d

iven
Doubly white circular noise (Fig. 1(a)): in this case
Pqq ¼ 0, qrðkÞ ? qiðkÞ, and s2

qr
¼ s2

qi
; The resulting AR

process is also circular (Fig. 2(a)), and from (12) we have

e2
l ¼ e2

wl, ð13Þ

and thus such process can be optimally modelled by a
standard AR model.

�
 Doubly white improper noise (Fig. 1(b)): in this case
Pqqa0, qrðkÞ ? qiðkÞ and s2

qr
4s2

qi
. The resulting AR

process is therefore second-order noncircular, as
shown in Fig. 2(b). From (10)–(12) the error of the
standard linear AR process driven by q(k) is

eðkÞ ¼ zðkÞ�ẑlðkÞ ¼ qðkÞ: ð14Þ

Since the innovation e(k) is uncorrelated with zðkÞ and
znðkÞ, then the standard AR model is second-order
. (a) AR(4) driven by circular noise. (b) AR(4) driven by doubly white

riven by different driving noises. (a) AR(4) driven by doubly white

by general noncircular noise.



Fig. 3. Covariance (top) and pseudocovariance (bottom) of the Ikeda map models. (a) Original Ikeda map. (b) Widely linear AR(4) model of the Ikeda map.

(c) Standard linear AR(4) model of the Ikeda map.
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optimal and, therefore, the errors of the standard and
widely linear estimator are equal

e2
l ¼ e2

wl ¼ s
2
q , ð15Þ

illustrating that when noncircular linear processes are
generated by a doubly white noncircular noise which
drives standard AR models, there is no advantage in
using the widely linear model [24].

�
 General noncircular driving noise (Fig. 1(c)): in this case
Pqqa0 and the resulting standard AR process is non-
circular (Fig. 2(c)). The advantage of the widely linear
model over the linear model is then assessed from

de2 ¼ e2
l �e2

wl

¼ E 9zðkÞ92
h i

�E 9ẑlðkÞ9
2

h i
�ðE 9zðkÞ92

h i
�E 9ẑwlðkÞ9

2
h i

Þ

¼ E 9ẑwlðkÞ9
2

h i
�E 9ẑlðkÞ9

2
h i

¼ rTRn�1

zz rn�cTCn�1

zz cn, ð16Þ

Following the approach in [18], as shown in Appendix
A, this can be rewritten as

de2 ¼ ½p�Pn

zzCn
�1

zz cn�H½Czz�PzzCn
�1

zz Pn

zz�
�1½p�PzzCn

�1

zz cn�:

ð17Þ
Figs. 1 and 2 illustrate the properties of distributions and
correlation structures for the processes generated by a
standard AR model, driven by the three classes of noises
discussed.

2.3. Widely linear autoregressive modelling

The widely linear AR (WLAR) model caters for the
complete (augmented) second-order complex statistics,
and is given by (based on (7))

zðkÞ ¼ h1zðk�1Þþg1znðk�1Þþ � � � þhnzðk�nÞþgnznðk�nÞþqðkÞ:

ð18Þ

The Yule–Walker equations for the coefficients of the
widely linear model are then given by

hn

gn

" #
¼
Czz Pzz

Pn

zz Cnzz

" #�1
c

pn

" #
, ð19Þ

where h denotes the coefficient vector of the standard
complex AR model and g the coefficient vector of the
conjugate part of the WLAR. To illustrate the second-order
optimality of this method, we shall apply the widely
linear normal equations (19) to estimate parameters of a
WLAR (4) model generated from the nonlinear and non-
circular Ikeda map, described by

xðkþ1Þ ¼ 1þu½xðkÞ cos tðkÞ�yðkÞ sin tðkÞ�, ð20Þ

yðkþ1Þ ¼ u½xðkÞ sin tðkÞþyðkÞ cos tðkÞ�, ð21Þ

where u is a parameter and

tðkÞ ¼ 0:4�
6

1þx2ðkÞþy2ðkÞ
: ð22Þ

The resulting covariance and pseudocovariance functions
are shown in Fig. 3; observe that unlike the standard AR
model, the WLAR model caters for improper signals, as
indicated its ability to model both the covariance and
pseudocovariance.

3. Collaborative adaptive filter for the tracking of
noncircularity

The proposed approach for the assessment of the
signal noncircularity is based on a collaborative combina-
tion of CLMS and ACLMS trained subfilters, and is an
extension of our earlier work in [16]. All the filter
parameters are updated by minimising the cost function

J ðkÞ ¼ 1
2 9eðkÞ9

2
¼ 1

29dðkÞ�yðkÞ92
: ð23Þ

The CLMS is described by [3]

ecðkÞ ¼ dðkÞ�ycðkÞ,

ycðkÞ ¼ hT
c ðkÞzðkÞ,

hcðkþ1Þ ¼ hcðkÞþmcecðkÞz
nðkÞ, ð24Þ

where hðkÞ ¼ ½h1ðkÞ,h2ðkÞ, . . . ,hNðkÞ�
T is the filter coefficient

vector, d(k) and ec(k) are the desired response and output
error at time instant k and m is the learning rate. The
ACLMS utilises the full second-order statistical informa-
tion available by using the widely linear model and is
given by [17,25]

eaðkÞ ¼ dðkÞ�yaðkÞ,

yaðkÞ ¼ hT
a ðkÞzðkÞþgT

a ðkÞz
nðkÞ,



Fig. 4. Hybrid filter structure.

4 In practice this is seldom necessary.
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haðkþ1Þ ¼ haðkÞþmaeaðkÞz
nðkÞ,

gaðkþ1Þ ¼ gaðkÞþmaeaðkÞzðkÞ: ð25Þ

The collaborative filter, shown in Fig. 4, consists of two
independently adapted subfilters, operating in the pre-
diction setting, sharing the common input z(k) and the
desired signal d(k). The convex combination of the sub-
filter outputs yc(k) and ya(k) forms the overall output y(k),
given by

yðkÞ ¼ lðkÞycðkÞþ
�
1�lðkÞ

�
yaðkÞ, 0rlðkÞr1, ð26Þ

where lðkÞ is the real-valued convex mixing parameter,
whose update is obtained from

lðkþ1Þ ¼ lðkÞ�mlrlJ ðkÞ9l ¼ lðkÞ, ð27Þ

where ml is the step size. Since the input to the filters is
complex, the error e(k) is also complex, and therefore the
gradient

rlJ ðkÞ9l ¼ lðkÞ ¼ eðkÞ
@enðkÞ

@lðkÞ
þenðkÞ

@eðkÞ

@lðkÞ

� �
: ð28Þ

can be evaluated as

@eðkÞ

@lðkÞ
¼ ycðkÞ�yaðkÞ, ð29Þ

@enðkÞ

@lðkÞ
¼ ðycðkÞ�yaðkÞÞ

n, ð30Þ

yielding the update of the mixing parameter in the form

lðkþ1Þ ¼ lðkÞþml½eðkÞðycðkÞ�yaðkÞÞ
n
þenðkÞðycðkÞ�yaðkÞÞ�:

ð31Þ

Due to the convex nature of the collaborative filter,
providing at least one of the subfilters converges the
collaborative filter is guaranteed to converge [26], pro-
vided the mixing parameter remains within the range
[0,1]. Several approaches have been proposed for this
purpose, however, as our aim is to track the behaviour
of the mixing parameter, we cannot interfere with the
evolution of l, and a hard bound4 on the values of l is
used when l41 or lo0.

3.1. Convergence of the mixing parameter

The convergence of the CLMS and ACLMS for both
proper and improper inputs has been analysed in [27,28],
and a rigorous account of the convergence of collaborative
filters in [26]. Since the linear and widely linear adaptive
filter are adapted independently, results in [27,28] also
apply to the CLMS and ACLMS subfilters within the
collaborative filter in Fig. 4. We therefore only need to
illustrate the ability of the collaborative filter to identify
the noncircularity of the input in real time; for the
structure in Fig. 4 this means that for proper signals the
output of a collaborative filter is dominated by the strictly
linear CLMS and l-1, and for improper signals the
ACLMS trained subfilter prevails and l-0.

Without loss in generality assume that the desired
response can be expressed as [29]

dðkÞ ¼ hT
ozðkÞþgT

oznðkÞþqðkÞ, ð32Þ

where ho and go are the optimal Wiener filter weights and
q(k) is doubly white noise, so that the minimum mean-
squared error Jmin ¼ s2

q . In the steady state both the
subfilters converge towards the optimal values of their
respective coefficient vectors hco, hao and gao.

We next illustrate the principle of the proposed solu-
tion for the two extremes—purely circular and purely
noncircular inputs.
�
 Circular input signal. In this case hco ¼ hao ¼ ho and
gao ¼ go ¼ 0, and from (26) in the steady state, the
overall instantaneous output error becomes

eðkÞ ¼ hT
o zðkÞþgT

oznðkÞþqðkÞ�lðkÞycðkÞ�
�
1�lðkÞ

�
yaðkÞ

¼ hT
ozðkÞþgT

oznðkÞþqðkÞ�lðkÞhT
ozðkÞ�

�
1�lðkÞ

�
hT

o zðkÞ

¼ qðkÞ: ð33Þ
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Substitute into the update for the mixing parameter
in (31) to yield the evolution of the mixing parameter
in the form

lðkþ1Þ ¼ lðkÞþml eðkÞ
�
ycðkÞ�yaðkÞ

�n
þenðkÞ

�
ycðkÞ�yaðkÞ

�h i
¼ lðkÞþmlqðkÞ

�
hH

o znðkÞ�hH
o znðkÞ

�
þmlqnðkÞ

�
hT

ozðkÞ�hT
o zðkÞ

�
¼ lðkÞ: ð34Þ

Since the CLMS initially converges faster than the
ACLMS [28], and therefore in the beginning of adapta-
tion the collaborative filter favours the CLMS trained
subfilter, the convex mixing parameter l-1, thus
correctly reflecting the circular nature of the input.

�
 Noncircular input signal. For noncircular inputs, upon

convergence hao ¼ hoahco and gao ¼ go, and the over-
all output error becomes

eðkÞ ¼ hT
ozðkÞþgT

oznðkÞþqðkÞ�lðkÞycðkÞ�
�
1�lðkÞ

�
yaðkÞ,

¼ hT
o zðkÞþgT

oznðkÞþqðkÞ�lðkÞhT
cozðkÞ

�
�
1�lðkÞ

��
hT

o zðkÞþgT
oznðkÞ

�
¼ qðkÞþlðkÞ

�
hT

o zðkÞþgT
o znðkÞ�hT

cozðkÞ
�
: ð35Þ

Substituting this result into the update of the mixing
parameter (31) gives

lðkþ1Þ ¼ lðkÞþml
�
eðkÞ

�
ycðkÞ�yaðkÞ

�n
þenðkÞ

�
ycðkÞ�yaðkÞ

��
¼ lðkÞþmleðkÞyn

c ðkÞ�mleðkÞyn

aðkÞþmlenðkÞycðkÞ

�mlenðkÞyaðkÞ,

¼ lðkÞþml qðkÞhH
coznðkÞþqnðkÞhT

cozðkÞ
h

�qðkÞhH
o znðkÞ�qnðkÞhT

o ðkÞzðkÞ�qðkÞgH
o zðkÞ

�qnðkÞgT
o ðkÞz

nðkÞþ2lðkÞ
�
hT

cozðkÞhH
o znðkÞ

þhT
cozðkÞgH

o zðkÞ�hT
cozðkÞhH

coznðkÞ

þhH
coznðkÞhT

ozðkÞþhH
coznðkÞgT

o znðkÞ

�hT
ozðkÞhH

o znðkÞ�hT
ozðkÞgH

o zðkÞ

�gT
oznðkÞhH

o znðkÞ�gT
o znðkÞgH

o zðkÞ
�i
: ð36Þ

On applying the statistical expectation operator and
employing the standard independence assumptions,5

we have

E
�
lðkþ1Þ

�
¼ E
�
lðkÞ

�h
1þ2ml

�
E
�
hT

cozðkÞzHhn

o

�
þE
�
hT

cozðkÞzT ðkÞgn

o

�
�E
�
hT

cozðkÞzHðkÞhn

co

�
þE
�
hH

coznðkÞzT ðkÞho

�
þE
�
hH

coznðkÞzHðkÞgo

�
�E
�
hT

ozðkÞzHðkÞhn

o

�
�E
�
hT

ozðkÞzT ðkÞgn

o

�
�E
�
gT

o znðkÞzHðkÞhn

o

�
�E
�
gT

oznðkÞzT ðkÞgn

o

�	i
:

ð37Þ

For clarity,6 define the inverse Schur complement
of the conjugate augmented covariance as A¼
ðCzz�PzzCn

�1

zz Pn

zzÞ
�1 and An

¼ Cn�1

zz þCn
�1

zz Pn

zzAPzzCn
�1

zz ,
Fig.
proc

origi

Namely that the input signal and filter coefficient vectors are zero

, stationary, jointly normal and with finite moments; the succes-

increments of filter weights are independent of one another and the

and input vector sequences are statistically independent of one

her [30,22,31].

For more detail see Appendix A.
then from (A.4) and (A.5) we have

ho ¼ ½Cn
�1

zz þCn
�1

zz Pn

zzAPzzCn
�1

zz �½c
n�Pn

zzC�1
zz p�

¼ Cn�1

zz cn�Cn�1

zz Pn

zzApþCn�1

zz Pn

zzAPzzCn
�1

zz cn, ð38Þ

hn

o ¼ A½c�PzzCn
�1

zz pn�, ð39Þ

go ¼A½p�PzzCn
�1

zz cn�, ð40Þ

gn

o ¼ ½Cn
�1

zz þCn
�1

zz Pn

zzAPzzCn
�1

zz �½p
n�Pn

zzC�1
zz c�

¼ Cn�1

zz pn�Cn�1
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zzAPzzCn
�1
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Substitute into (37) to give the expression for the
evolution of the mixing parameter l for improper
signals, in the form
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�
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where de2 denotes the performance advantage of the
widely linear model over the standard linear model, as
shown in (17). Since both the learning rate ml and de2 are
positive, the mixing parameter lðkÞ converges towards
zero (favouring the ACLMS trained subfilter) whenever
the widely linear filter outperforms the standard filter,
that is, for second-order noncircular (improper) inputs.
These two cases reflect the ability of a collabora-
tive CLMS–ACLMS filter to identify and track the
5. Evolution of the mixing parameter l for the linear circular AR(4)

ess, the WLAR(4) model of the Ikeda map (improper) and the

nal noncircular Ikeda signal.
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circular/noncircular nature of real-world inputs. Due to
the convexity of the mixing parameter l, by continuity
the analysis is also valid for any degree of noncircularity
and for processes with time varying statistics. The useful-
ness of this approach is illustrated through representative
simulation studies.
Fig. 6. Evolution of the mixing parameter l for a standard linear AR(4)

model driven by noises of different nature.

Fig. 7. Evolution of the mixing parameter l for signals alternating from

linear AR(4) to either widely linear AR(4) model of the Ikeda process or

the original Ikeda signal.

Fig. 8. Evolution of the mixing parameter l for a signal alternating from a pro

duration.
4. Simulations

For all the simulations ma ¼ mc ¼ 0:001, ml ¼ 0:05 and
the initial value of l¼ 0:5 (neither proper or improper).
Recall that l-1 corresponds to the filter being dominated
by the CLMS subfilter (indicating a circular signal),
whereas l-0 indicates the collaborative filter is domi-
nated by the ACLMS subfilter, indicating a noncircular
input. All the simulations based on synthetic data were
averaged over 100 independent trials while the real-
world wind example was analysed over a single trial.

Fig. 5 shows the evolution of the mixing parameter l
for an AR(4) process, a WLAR(4) model of the Ikeda signal,
and for the original noncircular Ikeda signal. The linear
circular AR(4) process was a standard AR model driven by
doubly white noise, while the WLAR(4) process was
calculated from (18)–(19). As desired, for the linear
AR(4) signal the value of the mixing parameter l was
between 0.8 and 0.9, indicating its circular nature,
whereas for the original Ikeda process, the value of the
mixing parameter approached zero indicating its second-
order noncircular (improper), also illustrated in Fig. 3. For
the WLAR(4) model of the Ikeda signal (improper), the
mixing parameter moved initially upwards, indicating the
faster convergence of the CLMS, but then settled to
approximately l¼ 0:1, illustrating that the widely linear
model of the improper Ikeda process is better modelled
by the ACLMS. This behaviour of l is also in line with the
convergence analysis in Section 3.1.

In the next set of simulations, the effect of the nature
of the driving noise on the proper/improper nature of the
standard AR(4) model was investigated, in order to verify
the proposed solution on the three classes of data elabo-
rated in Section 2.2. Fig. 6 shows that both the cases
per AR(4) to an improper linear AR(4) process with a varying segment

Fig. 9. Wind recordings in a complex (speed, direction) representation.



Fig. 10. Wind over a 24 h period in an urban environment. (a) Wind speed readings. (b) Wind magnitude.

Fig. 11. Normalised covariance (top) and pseudocovariance (bottom) for 1 h sections of wind data. (a) Calm wind. (b) High wind.

7 The wind data was provided by Prof. Kazuyuki Aihara and Dr.

Yoshito Hirata from the Institute of Industrial Science, University of

Tokyo.
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driven by the doubly white noise were optimally mod-
elled by a standard AR model, conforming with the
analysis in ((13)–(17). Although, theoretically such inputs
are equally modelled by CLMS and ALCMS (in the steady
state), the CLMS is initially faster converging and was thus
the dominant subfilter, as indicated by l evolving towards
unity. The improper AR signal driven by a general non-
circular noise was correctly better modelled by the widely
linear ACLMS algorithm, as reflected in the value of the
convex mixing parameter l approaching zero, indicating
the improper nature of the output.

The previous two sets of simulations were conducted for
static processes. To illustrate the ability of the collaborative
filter to track changes in the circularity of a signal, in a
dynamically changing environment, in the next experiment
the input was alternated between the proper AR(4) process
and the improper Ikeda map in the first setting, and
between the same AR(4) signal and the improper WLAR(4)
model of the Ikeda signal in the second setting with the
segment length fixed to 1000 samples. The results shown in
Fig. 7 illustrate that the proposed approach was able to
accurately track these changes. Finally, Fig. 8 shows the
behaviour of the convex mixing parameter l when the
segment length of the alternating proper/improper inputs
changed over time, illustrating flexibility and real-time
tracking ability of the proposed approach.

4.1. Improperness of wind data

Wind modelling is a key in several renewable energy
applications; wind is normally measured as a bivariate
process of direction and speed [32]. From Fig. 9 it is clear
that wind can be represented as a vector of speed and
direction components in the north–east coordinate sys-
tem; the wind speed v and direction y are then combined
to form a complex signal

V¼ v � eEy: ð43Þ

The wind data used was measured over a 24 h period
sampled at 50 Hz in an urban environment.7 The wind
speed readings (Fig. 10(a)) were taken in the north–south
(VN) and east–west (VE) directions, where

v¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

EþV2
N

q
and y¼ arctan

VN

VE

� �
, ð44Þ

were used to give the complex signal (43). The magnitude
of the complex signal obtained from combining the two
speed readings V is shown in Fig. 10(b). It can be seen
from the recordings that there is a distinct ‘calm’ period in
the wind diagrams in the late evening and the early
morning between 18:00 and 08:00 compared to the rapid
fluctuations in the wind at other times. To best assess the
performance of the collaborative filter for detecting the
level of noncircularity of the wind data, two periods of 1 h
duration each were assessed, one from the ‘calm’ period
between 04:00 and 05:00 and one from the ‘high’ wind
dynamics between 16:00 and 17:00. The covariance and
pseudocovariance plots for both sections, shown in
Fig. 11, show that the ‘calm’ wind section has a close to
zero pseudocovariance indicating the near-circular nature



Fig. 12. Evolution of the mixing parameter lðkÞ for 1 h of ‘calm’ wind

and 1 h of ‘high’ wind.
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of ‘calm’ wind and an improper nature of ‘high’ wind. The
comparison of the evolution of the mixing parameter l for
the ‘calm’ and ‘high’ sections of wind are shown in Fig. 12.
As desired, for the ‘calm’ wind the value of l-1, indicat-
ing its proper nature, whereas for the ‘high’ wind, the
value of l indicated its rapidly changing and predomi-
nantly improper nature.
5. Conclusions

We have proposed an online adaptive test for the
identification and assessment of the proper/improper
nature of complex valued signals. By revisiting widely
linear AR modelling this has been achieved based on a
collaborative adaptive filtering approach, whereby each
subfilter has been chosen so as to be optimal for either
proper or improper input processes. It has been shown
that for circular data the convex mixing parameter within
this structure favours the standard, strictly linear, sub-
filter whereas for noncircular data it favours the widely
linear subfilter. The analysis has addressed the conver-
gence of the solution when identifying such processes,
and the simulations illustrate that the evolution of the
mixing parameter correctly reflects the proper/improper
nature of the data. It has also been shown that unlike the
existing static, block based, approaches the proposed
method has the ability to both identify and track the
degree of circularity of a signal in real time, a crucial
feature in time-varying scenarios, such as in wind model-
ling for renewable energy applications.
Appendix A. Advantage of widely linear model over
standard linear model

To quantify the advantage of the WLAR model over the
standard linear AR model when modelling improper pro-
cesses, we start from the normal equations for the widely
linear AR model and find the augmented covariance matrix
Rzz from

Rn

zz

h

g

" #
¼ rn,
Cnzz Pn

zz

Pzz Czz

" #
h

g

" #
¼

cn

p

" #
, ðA:1Þ

CnzzhþPn

zzg¼ cn �! h¼ Cn�1

zz ½c
n�Pn

zzg�, ðA:2Þ

PzzhþCzzg¼ p�!g¼ C�1
zz ½p�Pzzh�: ðA:3Þ

Solving this system of equations gives
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zz C�1
zz ½p�Pzzh�

h i
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½Cnzz�Pn

zzC�1
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zz Pzz�
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n�1
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Using these values of h and g, the difference between the
squared estimation errors in (16) becomes

de2 ¼ cT ½Cnzz�Pn

zzC�1
zz Pzz�

�1½cn�Pn

zzC�1
zz p�

þpH½Czz�PzzCn
�1

zz Pn

zz�
�1½p�PzzCn

�1

zz cn��cTCn�1
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which can be rewritten as

de2 ¼ ½p�Pn

zzCn
�1

zz cn�H½Czz�PzzCn
�1

zz Pn

zz�
�1½p�PzzCn

�1

zz cn�:

ðA:7Þ

Thus, as the matrix ½Czz�PzzCn
�1

zz Pn

zz� is positive definite, the
term de2 ¼ 0 only when either ½p�Pn

zzCn
�1

zz cn� ¼ 0 or
½p�PzzCn

�1

zz cn� ¼ 0.
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