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ABSTRACT

Empirical mode decomposition (EMD) is a fully data driven
method for decomposing signals into a set of AM-FM com-
ponents known as intrinsic mode functions (IMFs). Despite
its usefulness in the analysis of real world signals, the process
is rather deterministic and sensitive to parameters such as lo-
cal envelope estimation. A combination of EMD and machine
learning is proposed which provides an algorithm that is more
robust to EMD parameters. In addition, the proposed exten-
sion is fully adaptive and facilitates the “data fusion via fis-
sion” mode of operation. The derivation and analysis of the
proposed framework is supported with simulations in denois-
ing and prediction applications.

Index Terms— empirical mode decomposition (EMD),
machine learning, feature fusion, adaptive filtering

1. INTRODUCTION

The recently proposed EMD [1] is a fully data driven tech-
nique which decomposes the signal into narrow band com-
ponents called intrinsic mode functions (IMFs). Unlike the
Fourier based methods that project signals onto a fixed basis
set, EMD is a unique signal decomposition tool that makes
no prior assumptions about the data. It has proven to be par-
ticularly effective in the time frequency analysis of nonlinear
and non-stationary data [1]. Recent work [2] illustrates that
EMD provides a unifying framework for information fusion
via fission (the phenomenon by which observed information
is decomposed into a set of its components) for the purposes
of signal restoration or alternatively to find relevant features
within the data. However fusion via EMD has several limita-
tions caused by potential errors in determining the IMFs and
weak fusion procedures.
‘Correct’ estimation of the IMFs has long been a focus in

the literature, since errors can arise from interpolation within
envelope estimation, or an unsuitable choice of stopping cri-
teria. Thus, EMD is not unique and the sifting algorithm can
yield different numbers of IMF components for small changes
to the stopping criteria. Noise assisted EMD or Ensemble
EMD [3] addresses some of these issues but its computational
complexity is a significant disadvantage.
A lack of rigorous mathematical treatment regarding the

significance of extracted IMFs implies that many existing

EMD based fusion techniques are not based on any optimal-
ity criterion and often rely on visual inspection to determine
‘relevant’ IMFs. Only recently has research concentrated
on automated procedures for EMD fusion. A partial re-
construction approach (PREMD) for the purposes of signal
restoration, or denoising, has been proposed in [4]. It fol-
lows the behaviour of EMD as a dyadic filter bank for white
Gaussian noise [5],[6], and the fact that the IMF log-variance
follows a simple linear model controlled by the Hurst expo-
nent. In [4], the use of confidence intervals which determine
the level of noise energy in each of the IMF components was
discussed for fusion by simply omitting IMFs dominated by
noise energy. Although effective, the method is not based on
any optimality criterion.
A recent solution for signal approximation using EMD

followed by a weighting of IMFs was proposed in [7]. Two
extensions of the algorithm were provided which fused the
IMF components to produce the best estimate of the original
signal in the least squares sense. The first, termed optimal
EMD (OEMD), determined a set of weights for each of the
IMF components so as to approximate the signal by linear
combination. The other algorithm, termed bidirectional opti-
mal EMD (BOEMD), takes into account the temporal struc-
ture of the signal and determines an optimal two-dimensional
weight matrix so as to facilitate approximation by window
based filtering. The advantages to this approach include en-
hanced performance over partial reconstruction in applica-
tions such as signal denoising, however, OEMD and BOEMD
are limited by their block based nature. The relevance of the
IMFs typically change with time and an adaptive approach
would be more appropriate for real world signals.
Despite the inherent “fission” properties of EMD (that is

the decomposition of a signal in hand into a number of os-
cillatory IMF components), the way to optimally fuse these
features remains unclear. Most IMF fusion approaches are
not based on optimality criteria, and typically relevant IMFs
are selected by visual inspection or empirically (by applying
binary weighting of IMFs). Other techniques, such as OEMD
and BOEMD, perform optimisation in a least squares sense,
but are not capable of local feature fusion due to their static
nature. Adaptive algorithms are therefore not only desirable,
but also necessary in order to make use of the full potential of
EMD. In addition, fusion must be robust to some indetermi-
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nacies within EMD, such as sensitivity to parameter selection.
Given that machine learning facilitates optimal and adaptive
processing at the data level [8], it would therefore be benefi-
cial to combine EMD and machine learning to perform fusion
of the IMFs in an automated way that is based on a predefined
optimality criterion. The simplest and best understood ma-
chine learning technique is adaptive filtering, which is used
in this work in order to enhance the performance and scope of
EMD.

2. THE EMD ALGORITHM

Empirical mode decomposition [1] is a technique to adap-
tively decompose a given signal, by means of a process called
the sifting algorithm, into a finite set of AM/FM modulated
components. These components, called “intrinsic mode func-
tions” (IMFs), represent the oscillation modes embedded in
the data. By definition, an IMF is a function for which the
number of extrema and the number of zero crossings differ
by at most one, and the mean of the two envelopes associ-
ated with the local maxima and local minima is approximately
zero. The decomposition of a signal x(k) is given by

x(k) =

M∑

i=1

ci(k) + r(k) (1)

where ci(k),i = 1, . . . , M , is the set of IMFs and r(k) is the
residual. The first IMF is obtained as follows [1].

1. Let x̃(k) = x(k);

2. Identify all local maxima and minima of x̃(k);

3. Find an “envelope,” emin(k) (resp. emax(k)) that in-
terpolates all local minima (resp. maxima);

4. Extract the “detail,” d(k) = x(k) − (1/2)(emin(k) +
emax(k));

5. Let x̃(k) = d(k) and go to step 2); repeat until d(k)
becomes an IMF.

Once the first IMF is obtained, the procedure is applied to
the residual r(k) = x(k) − d(k) to obtain the second IMF.
In this way, the procedure is applied recursively to obtain all
the IMFs. An example of EMD is shown in Fig. 1 which
illustrates a segment of speech (denoted by U at the top of the
figure) and its subsequent IMFs.

3. PROPOSED ALGORITHM

The architecture of the proposed machine learning enhanced
EMD is shown in Fig. 2. Consider a 1D signal, x(k), which
by EMD is decomposed intoM IMF components ci(k). For
each time instant k, we construct a set of vectors, c(k) =
[c1(k), . . . , cM (k)]T where (·)T denotes the matrix transpose
operator. For convenience, the residue is included as cM (k).
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Fig. 1. Signal decomposition via EMD

The output, y(k), of the proposedmachine learning and EMD
at time instant k is given by

y(k) = trace[C(k)WT (k)] (2)

whereC(k) = [c(k), . . . , c(k−N+1)] is the “fission” matrix
comprised of a spatio-temporal window over the IMFs,W(k)
is aM×N weight matrix,N is the filter length of the adaptive
filter and the trace of a matrix is the sum of all the elements
on the main diagonal. We propose to updateW(k) as

e(k) = d̂(k)− y(k)

W(k + 1) = W(k) + η(k)e(k)C(k)

η(k) =
μ

trace[C(k)CT (k)] + ε
(3)

where e(k) is the instantaneous error at the output of the fil-
ter, d̂(k) is the desired or training signal, and μ is the learning
rate, 0 < μ < 2. The regularisation parameter ε is included
so as to prevent the algorithm from becoming unstable when
trace[C(k)CT (k)] is close to zero. Note our proposed al-
gorithm uses a normalised least mean square (NLMS) like
algorithm to update the weight matrix, W, but it can easily
be extended to incorporate any adaptive filtering algorithm.
We shall hereby refer to the proposed algorithm as NLMS-
EMD. From eqn. (3), NLMS-EMD takes values from every

Machine Learning

1
c (k)

M
c (k)

x(k) y(k)

W(k)

EMD

Fig. 2. Machine learning enhanced EMD

IMF within a given spatial dimension defined by parameter
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N . If N = 1, the algorithm is equivalent to the static case of
OEMD except that our algorithm is adaptive and hence much
more flexible. Depending on the dynamics and correlation
structure of the input,N may be increased to capture its tem-
poral nature. Similarly if the input satisfies the criteria of an
IMF, the number of IMFs would be equal to unity (M = 1),
and the algorithm would be equivalent to the NLMS with a
filter length of N .
The proposed extension of EMD is fully adaptive to fa-

cilitate local feature relevance and automatic fusion, which is
of particular importance for nonlinear and nonstationary data.
The robust nature of the algorithm means it is less sensitive
to changes in EMD parameters and, in addition, it is fast and
has low computational complexity.

4. SIMULATIONS

We illustrate the potential of the proposed NLMS-EMD al-
gorithm on case studies of signal denoising and prediction.
To provide insight into the performance of NLMS-EMD, we
performed simulations using a selection of real world signals
such as speech and biomedical data, as well as benchmark
nonlinear and linear signals. Performance comparisons were
made with standard NLMS filtering, PREMD and OEMD.

4.1. Denoising

In the first experiment the original signal was a segment of
electroencephalogram (EEG) data. White Gaussian noise was
added so that the signal to noise ratio (SNR) was 13.4 dB,
where SNR is defined by

SNR = 10 log
10

∑

k

d̂2(k)

(d̂(k)− y(k))2
dB (4)

Table 1 illustrates the quantative performance of the algo-
rithms and segments of the reconstructed signals are shown
in Fig. 3 [(a),(b),(c) and (d)]. The filter length of NLMS-
EMD was chosen as M × 1 so as to make a fair compari-
son with OEMD. Additionally, only an optimal filter length
within the range 1 − 200 was considered for NLMS, since
typically M << 200. The number of IMFs obtained from
the decomposition of the EEG signal was 13 and accordingly
the filter length of NLMS-EMD was 13 × 1. The best learn-
ing rate for the proposed algorithm was found to be μ = 1.33.
The best learning for NLMS was determined to be μ = 1.52
with N = 180. From Table 1, the quantative performance
of NLMS-EMD exceeds OEMD and NLMS by at least 4 dB,
which is visualised in Fig. 3(a) - Fig. 3(d). It is clear that
its adaptive and robust nature allow it to track fast changes
in signal dynamics to a high degree of accuracy. Fig. 3(e)
and Fig. 3(f) show respectively the trajectory of some of the
weight coefficients for OEMD and NLMS-EMD, observe the
static “optimal” weights for OEMD, and the dynamic weight
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Fig. 3. Denoising results. (a) PREMD, (b) NLMS, (c)
OEMD, (d) NLMS-EMD. The weight coefficients for the first
four IMF components of OEMD and NLMS-EMD are shown
in (e) and (f) respectively, note the dynamic nature of NLMS-
EMD compared to the static OEMD.

Table 1. SNR denoising performances of the PREMD,
OEMD, NLMS and EMD-NLMS algorithms for Fig. 3.

PREMD OEMD NLMS NLMS-EMD
17.8dB 19.2dB 19dB 24dB

behaviour within NLMS-EMD, which emphasizes the adap-
tive nature of the proposed algorithm over OEMD. Due to
its block based nature, OEMD cannot track changing sig-
nal dynamics, which makes it suboptimal for nonlinear and
nonstationary inputs. In the second experiment, the denois-
ing capabilities of NLMS-EMD were further demonstrated
for image restoration. The original image was subjected to
additive white Gaussian noise so as to introduce an SNR of
18.5 dB. The resulting SNR of the restored image was 24 dB
compared to 22.3 dB for the OEMD algorithm. In addition
to an improvement in quantative performance, there was an
improvement in the perceptual quality of the restored image
using NLMS-EMD.
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Table 2. Prediction performances (in SNR) of the NLMS and
EMD-NLMS algorithms.

Signal NLMS NLMS-EMD
AR(4) 8dB 11.5dB

Mackey Glass 18.4dB 20.7dB
Speech 19.2dB 19.3dB

4.2. Prediction

We next demonstrate the application of EMD combined with
machine learning to signal prediction, particularly in process-
ing nonlinear signals or signals with large dynamics. We per-
formed prediction on several signals: a coloured noise series
generated from a stable AR(4)-model (used as our benchmark
linear signal) denoted by xAR where v(k) is a white noise
source with standard normal distribution;

xAR(k) = 1.79xAR(k − 1)− 1.85xAR(k − 2)

+1.27xAR(k − 3)− 0.41xAR(k − 4) + v(k)

a realization of the Mackey Glass equation given by (5) (used
as our benchmark non-linear signal);

dx

dk
=

0.2x(k − τ)

1 + x10(k − τ)
− 0.1x(k) (5)

and a real world signal, a segment of speech sampled at 48000
Hz. The quantative prediction performance is shown in Ta-
ble 2. The results indicate that for both the benchmark (lin-
ear and nonlinear) signals and speech, the NLMS-EMD al-
gorithm outperformed standard NLMS. This is further illus-
trated by Fig. 4 which shows a segment of the prediction re-
sults for the Mackey Glass series. Note that the NLMS-EMD
based prediction produced results that are better aligned with
the original signal than the NLMS.

5. CONCLUSIONS

We have introduced an extension of the EMD algorithm that
uses machine learning techniques to enhance its performance.
Unlike previous extensions, the approach is fully adaptive to
cater for the nonstationary and nonlinear nature of real world
data. Based on the “data fusion via fission” property of EMD,
the machine learning facilitates a real-time assessment of the
component (IMF) relevance. The proposed extension makes
the EMD robust to changes in stopping criteria as well as er-
rors in the envelope estimation process, making it suitable for
data fusion. The simulation results demonstrate the robust
and adaptive nature of the algorithm.
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