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ABSTRACT
The ‘empirical mode decomposition’ (EMD) method has

been recently proposed to deal with nonlinear and non-

stationary data, which decomposes signals into ‘well-behaved’

intrinsic mode functions (IMFs). An assessment on the quali-
tative performance of the EMD method in terms of the degree

of signal nature preservation of individual IMF is provided.

This is archived by means of the recently proposed signal

characterisation method, based upon examining the signal

predicability in phase space. It is shown that the first IMF

always performs best in terms of signal nature preserving.

Simulation results on both linear and nonlinear benchmark

signals support the analysis.

Index Terms— Empirical mode decomposition (EMD),

delay vector variance (DVV), intrinsic mode function (IMF),

nonlinear, non-stationary

1. INTRODUCTION

Traditionally Fourier spectral analysis has been the dominant

method used in the data analysis of the majority of signals;

however it has its limitations and is only valid under very

general conditions requiring a linear system and strictly pe-

riodic or stationary data. In more recent times, the emergence

of wavelet analysis, the Wagner-Ville distribution and other

time frequency methods [1][2] provide an appealing feature

of being able to analyse non-stationary but linear data [3].

Although well accepted and extremely popular, both of

the above a priori basis based data expansion techniques when

applied to real world non-stationary and nonlinear signals re-

sults in data that may be insufficient and meaningless or even

misleading. Furthermore, such methods suffer from difficul-

ties of being non-adaptive in nature. An a posteriori basis

(that is derived from the data and is therefore data-dependent)

facilitates an adaptive data analysis method. The combination

of the Empirical Mode Decomposition and Hilbert spectral

analysis however is able to meet these requirements.

On the other hand, real-world processes comprise both

linear and nonlinear components, together with deterministic

and stochastic ones, yet it is a common practice to model such

processes using suboptimal, but mathematically tractable

models. Indeed, in the absence of nonlinear behaviour, it is

not favourable to use nonlinear models, since these are more

difficult to train than their linear counterparts, due to issues

such as overfitting and computational complexity. Notice also

that e.g. in biomedical applications such as in the analysis

of the electrocardiogram (ECG) and electro-encephalogram

(EEG), the linear/nonlinear nature of the signal conveys in-

formation concerning the health condition of a subject [4].

Although, the recently proposed EMD method is shown

to be able to process data without any assumption on the lin-

earity or stationarity. However, it is largely unknown whether

IMFs after the decomposition preserve the nature1 of the orig-

inal signal. To this end, we set out to investigate how different

the individual IMF behaves in signal nature preserving.

2. THE EMPIRICAL MODE DECOMPOSITION
(EMD) METHOD

EMD [3] is a method of breaking down a signal without leav-

ing the time domain. It can be compared to other analysis

methods like Fourier Transforms and wavelet decomposition.

The process is useful for analysing natural signals, which are

most often non-linear and non-stationary. Table 1 compares

the EMD and Hilbert spectral analysis with the Fourier trans-

form and wavelet method as discussed by Huang et al. [6].

EMD filters out functions which form a complete and

nearly orthogonal basis for the original signal. Completeness

is based on the method of the EMD; the way it is decomposed

implies completeness. The functions, known as ‘intrinsic

mode functions’ (IMFs), are therefore sufficient to describe

the signal, even though they are not necessarily orthogo-

nal. The real meaning here applies only locally. For some

special data, the neighbouring components could certainly

have sections of data carrying the same frequency at different

time durations. But locally, any two components should be

1By the signal ‘nature’, we adhere to a number of signal properties de-

scribed in [5]: linear, nonlinear, deterministic and stochastic signal behaviour.
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Fourier Wavelet Hilbert
Basis A priori A priori A posteriori

(adaptive)

Frequency Convolution Convolution Differentiation

scale Global Regional Local

Uncertainty Uncertainty Certainty

Spectral Energy- Energy-time- Energy-time-

Presentation frequency frequency frequency

Nonlinear No No Yes

model
Nonstationary No Yes Yes

model
Theoretical Complete Complete Empirical

base

Table 1. Comparison of Fourier, Wavelets and the Hilbert

Spectral Analysis for signal analysis [6]

orthogonal for all practical purposes.

The fact that the functions into which a signal is decom-

posed are all in the time-domain and of the same length as

the original signal allows for varying frequency in time to be

preserved. Obtaining IMFs from real world signals is impor-

tant because natural processes often have multiple causes, and

each of these causes may happen at specific time intervals.

This type of data is evident in an EMD analysis, but quite

hidden in the Fourier domain or in wavelet coefficients.

The EMD method will break down a signal into its com-

ponent IMFs. An intrinsic mode function (IMF) is a function

that satisfies two conditions: (1) in the whole data set, the

number of extrema and the number of zero crossings must ei-

ther equal or differ at most by one; and (2) at any point, the

mean value of the envelope defined by the local maxima and

the envelope defined by the local minima is zero.

The sifting process is what EMD uses to decomposes the

signal into IMFs and can be summerised as follows: For a sig-

nal X(t), let m1 be the mean of its upper and lower envelopes

as determined from a cubic-spline interpolation of local max-

ima and minima. The locality is determined by an arbitrary

parameter; the calculation time and the effectiveness of the

EMD depends greatly on such a parameter.

• The first component h1 is computed: h1 = X(t)−m1

• In the second sifting process, h1 is treated as the data,

and m11 is the mean of h1’s upper and lower envelopes:

h11 = h1 − m11

• This sifting procedure is repeated k times, until h1k is

an IMF, that is: h1(k−1) − m1k = h1k

• Then it is designated as c1 = h1k, the first IMF compo-

nent from the data, which contains the shortest period

component of the signal. We separate it from the rest

of the data: X(t) − c1 = r1 The procedure is repeated

on rj : r1 − c2 = r2, . . . , rn−1 − cn = rn

• The result is a set of functions; the number of functions

in the set depends on the original signal.

The sifting process continues until any of the following

predetermined criteria is met: either when the component cn

becomes so small than the predetermined value of substantial

consequence, or when the residue, rn, becomes a monotonic

function from which no more IMF can be extracted. Even

for data with zero mean the final residue can still be different

from zero; for data with a trend, then the final residue should

be that trend.

3. THE “DELAY VECTOR VARIANCE” (DVV)
METHOD

We now describe the signal characterisation tool, ‘delay vec-

tor variance’ (DVV) method [5], based upon examining the

predictability of a signal in the phase space, and examines si-

multaneously the determinism and nonlinearity within a sig-

nal. This method can be summarised as follows: For an opti-

mal2 embedding dimension m:

• The mean, μd, and standard deviation, σd, are com-

puted over all pairwise Euclidean distances between de-

lay vectors (DVs), ‖x(i) − x(j)‖ (i �= j).

• The sets Ωk(rd) are generated such that Ωk(rd) =
{x(i)| ‖x(k) − x(i)‖ ≤ rd}, i.e., sets which consist of

all DVs that lie closer to x(k) than a certain distance

rd, taken from the interval [max{0, μd − ndσd}; μd +
ndσd], e.g., Ntv uniformly spaced distances, where

nd is a parameter controlling the span over which to

perform the DVV analysis.

• For every set Ωk(rd), the variance of the corresponding

targets, σ2
k(rd), is computed. The average over all sets

Ωk(rd), normalised by the variance of the time series,

σ2
x, yields the ‘target variance’, σ∗2(rd):

σ∗2(rd) =
1
N

∑N
k=1 σ2

k(rd)
σ2

x

. (1)

To illustrate the meaning of ‘signal nature’ and the usage

of DVV method, consider a linear benchmark signal (AR(4))

[8], given by

x(k) = 1.79 x(k − 1) − 1.85 x(k − 2) + 1.27 x(k − 3)
− 0.41 x(k − 4) + n(k) (2)

where n(k) ∼ N (0, 1) and a chaotic nonlinear signal, x-

component of Henon map [9], given by

xn = 1 − a x2
n−τ + yn−τ

yn = b xn−τ (3)

where τ is the time lag which was set to unity, and parameters

a and b were set to 1.4 and 0.3, respectively. We will refer to

this signal as the Henon map though only the x-component of

Henon map is used in the remainder of the paper.
2We adopt Cao’s method [7] for choosing the optimal embedding dimen-

sion in all of our simulations, which yields four for the linear benchmark

signal (2) and two for the nonlinear benchmark signal (3).
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Fig. 1. DVV scatter diagrams for AR(4) signal (left diagram)

and the Henon map signal (right diagram).

In the following step, DVV scatter diagram is constructed

in the way where the horizontal axis corresponds to the target

variance (σ∗2(rd)) of the original time series, and the verti-

cal to that of the surrogate time series. A linear signal will

have similar target variance as its surrogate, resulting in the

DVV scatter diagram coinciding with the bisector line as il-

lustrated in Figure 1(a), whereas a nonlinear signal will re-

sult in a deviation of DVV scatter diagram from the bisector

line as illustrated in Figure 1(b). Furthermore, The minimal

target variance is a measure for the amount of noise which

is present in the time series (the prevalence of the stochas-

tic component). Therefore, the distance of the DVV scatter

diagram to the y-axis can be considered as a measure for pre-

dictability of the signal. These features of the DVV method

provide a very convenient tool for the qualitative analysis in

machine learning since the deviation from bisector line in the

DVV scatter diagram can be used to indicate the changes in

the signal nature before and after processing.

4. SIMULATION RESULTS

In this section, we set out to assess the qualitative perfor-

mance, that is, a possible change in the signal nature in in-

dividual IMF after EMD method. For this purpose, we intro-

duce a metric to measure the degree of such similarity, e.g.,

ε =
√〈

(σ∗2
ori(rd) − σ∗2

IMF (rd))2
〉

valid rd

, where σ∗2
ori(rd)

denotes the target variance at span rd for the original sig-

nal whereas σ∗2
IMF (rd) denotes that for individual IMF. The

smaller ε, namely, the better nature preservation that IMF has.

We perform such analysis on both the linear (2) and non-

linear (3) benchmark signals. For robustness, the analysis is

obtained by averaging 100 independent trials.

Figure 2 illustrates the IMFs obtained from the AR(4) sig-

nal (3) after the decomposition. From the Figure, the top

panel denotes the original signal (U) and there are five IMFs

(C1-C5)in all, denoted as the second panel from the top to the

second panel from the bottom. The bottom panel is the final

residue (R) in the sifting process, which can be ignored as it

is a monotonic function or constant and serves no meaning-

ful purpose. It can be observed that only the first IMF (C1)

resembles the original signal (U), while others are not.
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Fig. 2. The IMFs extracted from AR4 signal (2).

It is natural to wonder whether such resemblance only ex-

ists in time domain or not. To this cause, we perform the DVV

analysis on individual IMF and the results are illustrated3 in

Figure 3. It can be qualitatively shown from the Figure, the

DVV scatter diagram for 1st IMF is most similar to that for

the original signal, which is illustrated in Figure 1(a). The

DVV scatter diagrams for the other IMFs showed an increase

in the predictability, illustrated by the fact that the curve in the

diagram were closer to the y-axis. Quantitatively, the degree

of similarity , ε, is also the smallest for 1st IMF among all.

Finally, we perform the similar analysis on the nonlin-

ear benchmark signal. Figure 4 illustrates the IMFs obtained

from a nonlinear signal (3) after EMD method.

From the Figure, similar to the linear case, the first IMF

(C1) has a greatest resemblance to the original signal (U). Fig-

ure 5 illustrates the DVV scatter diagrams for the first four

IMFs. From the Figure, the 1st IMF showed the highest

degree of similarity to the original signal both qualitatively

(curve resemblance) and quantitatively (ε).

5. CONCLUSIONS

We have provided a quality assessment for the individual IMF
of the empirical mode decomposition. By means of the ’delay
vector variance’ method, it has been shown that the first IMF
not only resembles the original signal in the time domain, but
also its DVV scatter diagram has the greatest degree of simi-
larity to that of the original signal in the phase space in terms
of curve resemblance and the quantitative metric, which mea-
sures the Euclidean distance of their phase space features (tar-

3For illustration purpose, we did not plot the DVV scatter diagrams for

the last IMF and the residue.
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Fig. 3. The DVV scatter diagram for (clockwise from top

left): 1st IMF, 2nd IMF, 4th IMF and 3rd IMF, from decom-

position of AR(4) signal (2).
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Fig. 4. The IMFs extracted from the Henon map signal (3).

get variance). The result will caution against the signal pro-
cessing applications, denoising, that might consider remov-
ing or decreasing the importance of the first IMF when using
EMD method.
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Fig. 5. The DVV scatter diagram for (clockwise from top

left): 1st IMF, 2nd IMF, 4th IMF and 3rd IMF, from decom-

position of henon map signal (3).
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