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ABSTRACT 

Modern neural and adaptive systems often have complicated 
error performance surfaces with many local extrema. Vi- 
sualising and understanding these surfaces is critical to ef- 
fective tuning of these systems but almost all visualisation 
methods are confined to two dimensions. Here we show 
how to use a morphological scale-space transform to con- 
vert these multi-dimensional complex error surfaces into 
two-dimensional trees where the leaf nodes are local min- 
ima and other nodes represent decision points such as saddle 
points and points of inflection. 

1. INTRODUCTION 

Visualisation is the process of converting numbers into pic- 
tures [ I]. The aim is to help understand the underlying phy- 
isical phenomenon. Visualising error surfaces [2] is vital 
for an effective understanding of many modern signal pro- 
cessing algorithms but is difficult because the error surfaces 
are often complicated, complex, and defined in more than 
two dimensions. Attempts to display these surfaces [ I ]  have 
included plotting two-dimensional functions [ 3 ] ;  contour 
plots [4. 51; or density plots, volume rendering, hedgehog 
plots and tracking critical points [ I ] .  Proposals for reduc- 
ing the dimensionality of the surface usually amount to pro- 
jecting the surface into two dimensions - popular strategies 
are to fix all but two weights or to project into a subspace 
containing the global optimum of the error performance sur- 
face. Unfortunately. as the dimensionality of the underlying 
adaptive system increases, the number of potential projec- 
tion planes (defined by a pair of orthogonal axes) increases 
exponentially. In short, none of these techniques is very ef- 
fective for education or algorithm design: the plots are hard 
to reproduce effectively and they represent projections that 
may not preserve the topology of the surface. 

Since the primary interest is the location and character- 
isation of maxima or minima (extrema) of an error perfor- 
mance surface we propose to adapt an extrema processing 
technique from scale-space mathematical morphology. The 
algorithm used here is one from a class known as sieves [6, 
71 which is related to, but not the same as, alternating se- 
quential filters [8,9, IO] and greyscale watersheds [ 1 I]. The 
output of a sieve is a tree with leaves that represent local ex- 
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trema and a structure that depends on the topology of the 
error surface. 

2. BACKGROUND 

For convenience assume that the error surface J ( x l  ,x2,. . .) 
is sampled onto some possibly infinite rectangular grid'. If 
each grid co-ordinate is indexed with a unique integer v E V 
where V is a subset of the integers Z ,  then the cost func- 
tion may be written as J(v),v E V.  Grid co-ordinates that 
are neighbours may be denoted such by a pair of integers 
{m, i i }  = e E E. Thus the error surface samples may be de- 
fined on a graph G = (V, E )  consisting of a set of vertices, V,  
which are the sample indices and a set of edges E. which are 
the adjacencies. This notation [8] allows the representation 
of an N-dimensional image with any specified connectivity. 
Figure 1 shows an example: a three-dimensional set of 12 
samples. If a neighbour is defined as sharing a common side 
(samples are six-connected) then V = { I , .  . . , 12) 

.. 
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Figure 1 : Illustrating a three-dimensional matrix of error 
samples in which V = { I , .. . , 12}, and E ={ { 1,7}, { 1,2}, 
{ 1 ,4}> {2,8}> . . .>I 

For scales, s 2 I ,  let C;(G) denote the set of connected 
subsets of C with s elements. Then with x E V 

Cs(G,x) = (5 E C,(G) I x E 5). ( 1 )  

denotes the set of connected sets of s pixels that contain 
pixelx. In Figure 1 for example, C2(c,5) = { {4,5}, {2,5}, 
{ 5 , 6 } ,  {5,1 I }  }. Equation (1)  means that for a point of 
interest x E V (usually a maximum or minimum), C,(G,x) 
lists all possible r-pixel neighbourhoods of x. 

'Spatial sampling is not an essential assumption since the technique can 
be generalised to continuous functions hut. in practice. most error surfaces 
end up sampled. 
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Equation ( 1 )  allows a compact definition of an opening, 
vs, and closing, ys, of size s, consistent with the proposed 
notation for graphs and connected sets [8, 6, 71. The mor- 
phological operators, yis,ys, Ms, !A& : Zv -+ Z", may be de- 
fined for each s 2 l ,  as 

vsJ(x) = max minJ(u), (2) 

ysJ(x)' = min maxJ(u), (3 ) 
t~Cs(G.x) u € t  

5ECs(G&) U G  

and 

Ms = %Ys, % = W S Y S .  (4) 

Thus Ms is an opening followed by a closing, both of size 
s and in any finite dimensional space. The sieves of a func- 
tion, J E Zv are defined in [6] as sequences (Js)T==l with: 

J1 = TlJ = J, and Js+l = Ts+lJs ( 5 )  

for integers, s 2 1, where T is one of 'y, v, 94 or N .  Note 
that, unlike many morphological systems, sieves do not use 
structuring elements but merge connected sets instead. The 
algorithm has the effect of locating local extrema in the error 
surface and "slicing-off' these local peaks and local troughs 
to produce $at Zones [IO] of s or more samples. Since all 
the error samples within each extrema1 connected set have 
the same value, a simple graph reduction at each stage can 
lead to a fast algorithm [9]. At subsequent scales, larger 
extrema are removed, so the processor formally satisfies the 
scale-space causality requirements [ 12, 131. The differences 
between successive outputs 

( 6 )  

are called granule functions and non-zero regions within d" 
are called granules denoted by ds where j = I , .  . . , N ( s )  in- 
dexes the number of granules, N ( s ) ,  at scale s. As scale s 
increases, N(s) decreases, since the granules are larger. At 
the final scale a tree, T = (N,A) may be built using the out- 
put of a sieve (ds)f=l which is also a graph with vertices, or 
nodes N ,  and edgesA. The tree has the following properties: 

1 .  If the sampled error surface has S samples then the 
root of the tree, x ( T )  maps to df which is the whole 
surface. 

dS = Js - Js-l 

2.  If a E A with a = (np ,nc)  then n, is a child of n,, and 
dz c dc. 

In other words, because the sieve is removing local extrema, 
granules at some scale s, are always contained within gran- 
ules at some greater scale, si,, unless s, = S in which case 
it is the root. The tree encodes the containment of gran- 
ules, equipotential zones, within the error surface. M- and 
N-sieves encode the positions of maxima and minima si- 
multaneously which for image processing is useful since it 

is often postulated that local maxima and minima are ob- 
jects [12], but for error surface visualisation one tends to 
be interested in either the minima or maxima in which case 
either the opening or closing sieve is appropriate. 

3. TREE-BASED VISUALISATION ' 

Although the mathematics of these sieves is intricate [6],  it 
is not complicated to explain these processors through an 
example. Figure 2 (top) shows an example of a well known 
benchmarkerror surface (the Himmelblau function [ 14, 151) 

2 
E(x1 ,x2) = (xi +x2 - 1 I )  + (XI +x; - 7)2 (7) 

that has four minima. Such surfaces are not uncommon in 
signal processing (see [ 161 for an example of a neural net- 
work with four maxima) but as in Figure 2 they may not 
be easy to visualise. Here, for example, one of the minima 
has disappeared behind another. The lower part of Figure 2 
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Figure 2: The Himmelblau function visualised (top) as a 
conventional surface plotted against XI and x2 and (bottom) 
as a closing scale tree with the image plotted at z = 0 

shows the same function visualised as a closing tree with a 
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greyscale representation of the function on the z = 0 axis. 
The tree is shown as dots representing the granules con- 
nected with lines showing containment. Each dot is plotted 
with x,y co-ordinates equal to the centroid of its correspond- 
ing granule. The z-axis has been used to plot scale. 

The root of the tree contains all samples of the error sur- 
face since it represents the interior of a contour J ( v )  < 00. 
Successive operations of the sieve give granules that are 
connected regions corresponding to the interiors of equipo- 
tential contours drawn around local minima. In an analogy 
with watersheds one can imagine the tree being built root- 
first by the error surface filled with water draining through 
the local minima. The tree bifurcates where the single sheet 
of water becomes two separate pools with a watershed be- 
tween them. The process terminates when all the water has 
drained through the local minima. We emphasize that the 
technique described here is more general than watersheds 
because it can be defined in any finite dimensional space 
and can process maxima, minima or extrema. 

Figure 2 shows that the tree captures many aspects of 
the surface. There are four local minima which is not clear 
from the top of Figure 2 and that the left-hand minima has a 
larger domain of attraction than the other three. Comparing 
this to Figure 3 which shows a complex benchmark function 

that has symmetric minima shows that if the three basins of 
attraction have identical geometry the tree will split three 
ways. 

Furthermore the tree is a data structure, so it  is simple to 
store information about an optimiser at the nodes and vice 
versa - the optimiser's trajectory can be described as a tra- 
jectory through V .  

1 

- .  
-1 -1 

Figure 3: F ( z )  = I $  - 1) '  visualised (top) as a conventional 
surface and (bottom) as an closing scale tree. 

move child nodes that are not significantly different from 
their parents are removed. 

4. DISCUSSION 
5. SUMMARY 

The scale trees described here are a useful tool for visualis- 
ing error performance surfaces. Their leaves represent local 
minima and their branch structure indicates the topology of 
the surface. 

A slight complication arises if the error surface is noisy, 
as in Figure 4 (centre). Such surfaces are commonplace in 
real signal processing evaluations and the overall effect is 
to introduce small-scale perturbations in the surface. The 
underlying structure of the resulting tree is still visible but 
a pragmatic approach is suggested by a series of experi- 
ments [I71 that show that the sieve is almost as effective 
at noise removal as a matched filter. Here an M-sieve to 
scale 10 has been applied to remove noise. The result is 
shown on the right of Figure 4. Much of the complicated 
detail has been removed, leaving the important structure. A 
more subtle approach, similar to wavelet denoising, is to re- 

A novel method for visualising error performance surfaces 
of adaptive algorithms has been provided. It uses a tree 
structure that comes from the sieve representation of images 
of error performance surfaces. Each node represents a lo- 
cal equipotential contour and hence many configurations of 
the underlying system, but the output of the sieve is unique 
given a particular image and this output and the image form 
an invertible transform. 

This approach therefore gives the character, position, 
and basin of attraction of minima in the error performance 
surface via an algorithm that has low order complexity. Al- 
though, for simplicity we study here only the 2D benchmark 
problems studied the by authors, the technique is defined for 
any finite-dimensional surface so this study paves the way 
for analysis of multidimensional and complex error perfor- 
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Figure 4: A quadratic error surface and its tree (left); a noisy quadratic error surface (centre) and the tree after removing all 
local extrema of area 10 or less (right) 

mance surfaces which at present have to be analysed by pro- 
jections onto supporting planes. 
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