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ABSTRACT 
Design of digital Infinite Impulse Response (IIR) filters is a 
compulsory topic in most signal processing courses. Most 
often, it is taught by using the bilinear transform to map 
an analogue counterpart into the corresponding digital fil- 
ter. The usual approach is to define a mapping between 
the complex variables s and z ,  and hence, by substitution, 
derive a mapping between w ,  analogue frequency, and 8, 
sampled frequency. This is rather elliptical, since the real 
aim is to establish the correspondence between the frequen- 
cy response of a prototype analogue system H ( j w ) ,  and 
H ( e J ' ) ,  the response of the sampled system. Here we pro- 
vide a rigorous analysis for the mutual invertibility between 
the analogue frequency w, and the digital frequency 8 for 
this case. Based upon the definition of the tan and arctan 
functions, conditions of existence, uniqueness and continu- 
ity of such a mutually inverse mapping are derived. Based 
upon these results, simple proofs for the mutually inverse 
mappings w -+ 0 and 0 -+ w are given. This is supported 
by appropriate diagrams. This problem arose as a student 
question while teaching DSP. 

1.  INTRODUCTION 

Infinite Impulse Response (IIR) filter synthesis is an iin- 
portant topic in Digital Signal Processing (DSP) education. 
However, the way of teaching signal processing has always 
been a matter of discussion. even nowadays. Some authors 
propose teaching the analog signal processing first [ I ] ,  while 
the others suggest teaching DSP first [2]. So far. the most 
commonly used procedure for teaching synthesis of IIR dig- 
ita1 filters has been as follows [3,4, 51: 

1 .  Design an analogue filter that matches the specified 
filter requirements. whose transfer function H ( s )  in  
the s-plane is 
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2. Map the transfer function of an analog filter H ( s )  
from the s-plane into the transfer function H ( z )  in 
the z-plane 

using one of the s-z transforms [ 6 , 5 , 7 ] .  

The idea is that in order to preserve stability of the desired 
digital filter, a mapping procedure from the s into the z 
plane should satisfy the following conditions 

i) The imaginary 9(s) axis from the s-plane ( s = jw, 
- 03 < w < +CO) is mapped onto the uni t  circle in  
the z-plane (12: = 1 H 2 = eJ', -T < 8 < T ) ,  

where w is the analog frequency and 8 is the digital 
frequency. 

ii) The left open half-plane from the s-plane (nZ(s) < 0) 
is mapped into the u n i t  circle in  the z-plane (121 < 1). 

These two conditions are necessary to allow a stable ana- 
log filter to be mapped into a stable digital filter. The most 
popular s--z mapping that preserves this requirement is the 
bilinear transform [3,7, 81. which is defined by [6. 51 

1 - z-1 
s = f ( 2 )  = c ___ 

1 + 2 - 1  

where the constant C is mostly taken as C = $, and T is the 
sampling period of the discrete filter. The inverse transform 
is defined as 151 

2 + sT z = -  
2 - ST (4) 

However, s and z are complex variables, and the whole idea 
behind the synthesis of IIR digital filters from its analogue 
counterparts is to match the frequency responses H ( j w )  and 
H ( e j e ) .  In addition, although it  is easy to derive the mutu- 
ally inverse relationships for the complex variables s and z ,  
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it is not trivial to obtain these inverse relationships in the 
frequency domain, and this issue is often neglected when 
teaching the topic. 
Here, for rigor we obtain these w -+ 8 and 8 -+ w relation- 
ships, based upon the existence, uniqueness, and continuity 
of such a mapping, and identify an easy trap when deriving 
these relationships. As visualisation is an important part of 
presenting information to students [9], this is supported by 
appropriate graphical representation of the problem. 

2. FREQUENCY DOMAIN RELATIONSHIPS FOR 
THE BILINEAR TRANSFORM 

Consider first the frequency response of a digital filter in  the 
z plane. With s = j w ,  (4)  becomes [ 5 ]  

2 + j w T  ( 2  + ~ w T ) ~  - 4 - ( w T ) ~  + 4jwT - - z =  - 
2 - j w T  4 + ( w T ) ~  4 + ( w T ) ~  

- J[4 - ( W T ) ~ I ’  + (UT)’ j arctan [ 4 ~ ~ ~ ) 2 ~  
- 

4 + ( w T ) ~  

- - ej a-4 - -4Wu;)Z]  = ,jO(u) (5) 

where 

4wT 
e ( w )  = arctan 

This means that the second condition required for a stable 
s-z mapping is indeed satisfied. 
From (6),  i t  is clear that the relationship between the fre- 
quency mappings w -+ 0 is nonlinear. To shed further light 
onto this relationship, it is necessary to find an inverse func- 
tion to (6). It can be done from (6), but in  the literature, i t  is 
always undertaken by starting from ( 3 )  

2 1 - ,-j@ 2 ejf - e-34 2 j sin 5 -- - - s = j w = - -  - - 
T 1 + e - j s  T ej$ + e-j$ - T cos: 

(7) 

which yields 

2 e  
w = - t a n -  

T 2  

From (6) and (8), it cannot be seen that w = w ( e )  and B = 
8(w)  are indeed inverse functions. 
Let us therefore prove that the frequency domain bilinear 
transforms as given by (6) and (8) are inverse functions. 

2.1. The 8 -+ w Relationship 

There are a number of ways to prove the mutually inverse 
relationship between w and 19 due to the bilinear transfor- 
m. In this section we provide a rather cumbersome one, but 

which serves as an example of an easy trap when deriving 
equivalence of trigonometry-based relationships. Express- 
ing 0 from (8), we have 

(9) 
wT 

8 = 2 arctan - 
2 

which is supposed to be identical to B(w) = arctan 4-4&z 

(6). In order to prove this, recall the trigonometric identity 
[IO1 

(10) 
a + b  

arctan a + arctan b = arctan - 
1 - ab 

Replacing now arctan a by x and arctan b by y, and using 
the identity (IO), we obtain 

arctan a + arctan b = arctan ( tan (x + y)) 

(1 1) 
t a n x  + t a n y  a + b  

= arctan = arctan - 
1 - t a n x t a n y  1 - ab 

Now, letting a = b = yields 

which proves that the analogue frequency w and digital fre- 
quency e given respectively by (8) and (6), are mutually 
inverse functions when using the bilinear transform. 

2.2. Graphical representation 

However, the analysis is not as simple and straightforward 
as it  might seem from above. An insight into function (6) 
shows that this function has critical points at w = f $. This 
implies that the t an  function changes it  sign at these points, 
which in turn affects the existence, uniqueness, and conti- 
nuity of the relationships between the analogue frequency 
w and the digital frequency B. Figure I shows the graphs 
of functions (6) and (9), which are supposed to be identi- 
cal. As seen from the Figure, the curves are identical for 
-2 < wT < 2, whereas for w T  < -2 and wT > 2, the 
difference between the amplitudes of the function shown in 
Figure 1 is f 7 r .  The curve given by (9) represents the shape 
that we actually want to obtain, whereas the curve (6) is 
not continuous, and does not follow the desired shape. As 
the area of interest is the whole analogue frequency axis 
-CO < w < CO, a further light has to be shed on the rela- 
tionships between w and e given by the bilinear transform. 

2.3. Why is it like this? 

We now provide a rigorous analysis of the underlying trigono- 
metric problem. Let is recall a definition of the function t an  
[lo]. 
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Figure 1 : The curves from equations (6) and (8) 

Definition 1 Function arctan : IR -+ (- $, $) is an in- 
verse restriction of the function t an  on the interval (- $, $), 
i.e. an inverse restriction of the function t an  : (- $, $) -+ 
R 

Let us now consider the compositions of functions t an  and 
arctan.  As the composition of two mutually inverse func- 
tion is an identity, we have 

t a n a r c t a n x  = x ,  x E R 
and 

7 r T  
5 ,  z E (-- -) (13) 

2 ’ 2  
a r c t a n t a n x  = 

It is important to notice that 

7 r T  
a r c t a n t a n x  # z, for  x @ (-- -) (14) 

However, since t an  ( x  - k7r) = t an  x ,  IC E Z, we have 
a r c t a n t a n x  = a rc t an tan  (Z - IC7r). If we chose IC such 
that x - ICT E (-5, $), then 

2 ’ 2  

arctantanx=arctari tan(x-k7r) = x - h  (15) 

which is well known from complex analysis. So, we have 

t a n a r c t a n x  = 2 

a r c t a n t a n z  = x - h ,  I C = [ : + ; ]  (16) 

which provides the existence of the desired inverse map- 
ping. 
Next recall that t an  2 a  = for cos a # 0. At this 
point it is important to notice that if we take LY = arctan $, 
then cos a # 0, since a E (- 5, 5). 

Now, from (8), (6), and the aforementioned discussion, we 
have 

w T  
2 

2 tancr  - 2 t an  arctan ’ 

t an  I9 = t an  2 arctan t an  - = t an  2 a  

- - - 
1 - t an2  Q 1 - (tan arctan 4)’ 

4wT - - 2 9  - 
1 - (q)2 - 4 - (wT)’ 

Now, as we have t an  8 = 4wT 2, it follows that 4- (wT)  

4wT 
4 - (wT)’ 

arctan = a r c t a n t a n 8  

= e - ICT = 2arc t an -  w T  - ICr, k = 
2 

Finally 

4wT w T  
= 2arc t an -  

2 
a rc tan  

4 - ( w T ) ~  

or, in  terms of w 

4wT w T  
= 2arc t an -  

2 
arctan 

4 - (wT)’ 
-7r, w >  $ 

0, -+ 5 w 5 + (20) + {  T ,  w < - +  

which provides the uniqueness of the solution. 
This, due to the periodicity of the function tan,  with the 
period 7r proves that 

(21) 
2 e  

w = - t a n -  
T 2  

which provides the continuity of the inverse mapping, as de- 
sired. This analysis is graphically supported in Figure 2, for 
I9 = e ( w ) .  As previously shown, due to the ”bins” of the 
t an  function, function 0 given in (7) ”borrows” the portion 
of the curve from one period (bin) of the t an  function ahead 
for w < -$ and from one period before for w > $. This 
actually makes the whole mapping continuous when pen- 
odically going around the unit circle in the z plane. In other 
words i t  accounts for the periodicity of the 0 function on the 
unit circle in the 2 plane. 

2.4. More Simple Proofs 

Now, when we know the conditions of existence, unique- 
ness and continuity of the underlying problem, let us pro- 
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Figure 2: The exact curves from equations (6) and (8) 

vide sketch of another couple of simple proofs of the mu- 
tually inverse relationship between w and 8 when the map- 
ping from s into the z plane is undertaken using the bilinear 
transform. 

0 We start from the relationship tari 8 = 4wT 2 .  Solv- 4 - ( w T )  
ing this relation for w, we obtain 

( tan 8) ( w ~ ) ~  + 4 ( U T )  - 4 tari 8 = o 

After simple trigonometric manipulation. we obtain 
wT = 2 tari g .  which is the desired result. 

0 Start from t a n 0  = 4wT - wT 1. NOW, recall 

that tan2cr = &, and rearrange the relation 
between 0 and w as 

4 - ( w T ) 2  - I--( 9)  

8 ?+? 
tan2- = (23) 2 l - “ T W T  

2 2  

From (23), we directly obtain the desired relationship 8 = 
2 arctan which is the inverse of w = tan :. 

3. SUMMARY 

Due to the need to match the frequency responses of the 
corresponding analogue and digital filters, we have derived 
these relationships starting from the analogue and digital 
frequencies w<and 8. Although the task initially seems to be 
an easy one, there are traps along the way due to the under- 
lying transcendental functions. Hence, for rigor, the exis- 
tence, uniqueness and continuity conditions of the solution 
are provided, as well as the proofs for the mutually inverse 
mappings between w and 8. This is supported graphical- 
ly. The motivation for this analysis was a student question 
while teaching the topic at our schools. 
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An analysis of the transformation pairs in  the’frequency do- 
main for Infinite Impulse Response (IIR) digital filters re- 
alized via the bilinear mapping is provided. The standard 
approach to this problem establishes the mutually inverse 
mapping in the domain of the complex variables s and z.  
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