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ABSTRACT 

We attempt to explain in more detail the performance of 
sevelal novel algorithms for nonlinear neural adaptive fil- 
tering. Weight trajectories together with the error surface 
give a clear understandable representation of thc family of 
lcasc mean square (LMS) based, nonlinear gradient descent 
(NGD), search-then-converge (STC) learning algorithms and 
the real-time recurrent learning (RTRL) algorithm. Perfor- 
mance is measured on prediction of coloured and nonlinear 
input. The results are an alternative qualitative respresen- 
tation of different qualitative performance measures for the 
analysed algorithms. Error surfaces and the adjacent instan- 
taneous prediction errors support the analysis. 

1. TNTRODUCTTON 

Stochastic gradient descent is a very well understood al- 
gorithm in linear and nonlinear adaptivc signal processing, 
whose variants include least mean square (LMS), nonlinear 
gradient descent (NGD), backpropagation and many simu- 
lated annealing algorithms. Various techniques have been 
cmploycd in ordcr to spced up convcrgencc of thcse algo- 
rithms, such as momentum terms [IO][4], adaptive slopes, 
[j, in the activation function [8], and adaptive leariiig rates, 
rl, in the weight update algorithm [71[3][9]. Pcrformancc of 
these algorithms can be examined many ways, i.e. predic- 
tion gain, convergence curves and Monte Carlo analysis. A 
straightfoward yet effective and insightfbl method of visu- 
ally nieasnring perforinance of an algorithm is by dcscrib- 
ing the learning procedure by the trajectory along the error 
surface. As the prediction gain and Monte Carlo analysis 
are based upon the instantaneous output error, either loga- 
rithmic or averaged, the error performance surface is math- 
ematically equivalent and offers a convienient visualisation 
of learning. However, due to the requirement ofa quadratic 
error surface we can oidy visualise filters with two weights, 
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hence the filter niay not be of optimal order'. An attempt 
to visualisc multidimensional surfaces was presented in [2]. 
However, that method only performed well in the absence 
of noise, and will not be used here. Error surfaces are con- 
structed based upon the characteristics of the input data. A 
classical approach is Wiener filter theory [ 131, where the 
correlation matrix of the input signal, R = E[x(k)x'(k)] ,  
and the cross-correlation vector of the desired response and 
the input signal, p = E[x(k )d (k ) ]  give a quadratic equation 
to the error performance surface of 

J(w) = E[& (k)] - 2p'"w + ~' 'Rw.  (1) 

where x = [q , 5 2 ,  . . . , Z N ] ~  denotes the tap input vector, 
w = [WI , 102 , .  . . , WN]' the weight vector, d ( k )  the desired 
response at time instant k and J(w) the objective function, 
and E[.] is the statistical expectation operator. 
The purpose of all the optimisation techniques discussed in 
this paper aim to find 

P ,  

J(w*) 5 J(w(k)), 

where J(w(k)) = $ C e 2 ( k )  denotes the objective func- 
tion, w* the set of optimal weights, w(k) the set ofweights 
at time instant k and e ( k )  the output error of the filter at 
time instant k using weights w(k). The algorithms exam- 
ined in this paper adapt the weights of the filter according 
to the gradient descent based method of steepest descent. 
Since the error surface can be viewed as a paraboloid for 
two weights, the condition of optimality is 

B,J(w*) = 0 (3) 

where V denotes the gradient operator. Ideally, the method 
of steepest descent adapts the weights according to 

'For instance, if wc want to rccover B strange attractor, then due to 
Tiikns' theorem, the filter order would be twice the order of the attractor. 
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However, in the real world we want to see the effects an er- 
ror surface has on the performance of a particular algorithm. 
Firstly, we construct the error performance surface matrix 
according to the specified filter with no weight adaptation 
for a set of predefined weights. This is achieved by passing 
the complete set of input data through each pair of weights 

and are closely derived from the standard LMS algorithm. 
In all the NGD filters considered, the nonlinearity in the 
output neuron was the hyperbolic tangent function. This 
model can easily be extended to the recurrent case defined 
by the equations 

and computing the average error. To plot the weight trajec- y(k + 1) = @(UT(k)W(k)) (9) 
tory onto the error surface, we take some starting weight and 
pass the data through the filter using a sliding window as in 
traditional adaptive filtering. After each weight update the 
complete set of input data is then passed through the filter 
with static weights. The average error is then calculated as 
in the construction of the error surface. For clarity, in all the 

whereu(k) = [y(k-1), . . . ,y(k-N),<,s(k-l), . . . ,z(k- 
M)IT denotes the external and feedback inputs to the filter, 
@(.) the nonlinear activation function, denotes the con- 
stant valued bias input and, the weight vector is denoted by 
w(k) = [wl(k),wz(k), . . . , w N + ~ + l ( k ) ] ~ .  A recurrent 

experiments in this paper every lo th  contour in-the weight 
trajectory is plotted. In all the experiments, two typical in- 
put signals were considered, a linear stochastic AR [7] and 
nonlinear signal. The coloured input is given by the stable 
filter [3] Fig. 2. An adaptive IIR filter 

perceptron employed as an adaptive IIR filter is shown in 
Figure (2). 

y(k) = 1.79y(k - 1) - 1.85y(k - 2) 
+1.27y(k - 3) - o.41y(k - 4) + 

whereas the nonlinear input is given by the benchmark input 
[111 2.1. Algorithms 

(6) 

where is normally distributed N(o, 1) white noise, In 
this paper the performance of novel algorithms for nonlin- 
ear neural adaptive filtering are demonstrated on error per- 
formance surfaces. 

For the NGD algorithm the learning rate is chosen to be 
some constant. For the normalised NGD algorithm the learn- 
ing rate is adapted according to a Taylor series expansion of 
the instantaneous Output error to give 

. e ( k  + 1) = e ( k )  + - Awi ( k )  

y(k) = 1 + yy"(k 
y(k - + u3(k ) ,  - 1) 

N 

awi ( k )  i=l 
2. NONLINEAR GRADIENT DESCENT 

ALGORITHMS 

The family of nonlinear gradient descent (NGD) algorithms 
is based upon the LMS algorithm, with the addition of a 
nonlinearity (neuron) denoted by @( .). A nonlinear adaptive 
FIR filte? is shown in ~i~~~~ 1. The equations that define 

(10) 

For simplicity Wet~-~ncate the second and higher order terns 
of (1 0). We want the output error at the next time instant to 
be zero, therefore the term on the right hand side must be 
zero allowing us to solve for ~ ( k )  [7]. 

e(k  + 1) = e@) + 
N 

Aw, ( k )  
i=l 

Fig. 1. A nonlinear adaptive FIR filter = [I - s ( ~ ) [ @ ~ ( x T ( ~ ) w ( ~ ) ) 1 2 1 1 ~ ~ ~ ~ l l ~ ]  (1 1) 

the weight update in the NGD algorithms are given by therefore the term in the square brackets must equal zero, 
giving 

e ( k )  = d(k) - @(xT(k)w(k)), (7) 

= w(k) Ve(k)@'(xT(k)w(k))x(k) (*) 
21n fact this is a dynamical perceptron; in neural network terminology.. 

as the adaptive learning rate for the NNGD algorithm. No- 
tice the inclusion of the constant C,  added to balance the 
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exclusion of the second and higher order terms from (IO). 
Included in the family of NGD algorithms are the fully adap- 
tive normalised nonlinear gradient descent algorithms. In 
these algorithms, the added constant C in (12) is made adap- 
tive to compenstate for the truncation of the higher order 
terms in the Taylor series expansion (10). The error adap- 
tive NNGD (EANNGD) algorithm adjusts C ( k )  according 
to the variance in the instantaneous output error [5]  

~ ( k )  = C(k - I) + pe'(k),  (13) 

where p is chosen to be some small positive constant. The 
fully adaptive normalised nonlinear gradient descent (FAN- 
NGD) algorithm adjusts the parameter C ( k )  according to a 
gradicnt dcsccnt bascd approach [7 ] .  

1 
C ( k )  = C(k  - 1) - PVC(k-I,[5e2(k)l (14) 

where Vc(k-l) [&e'(k)] is the gradient of the cost function, 
J ( k ) ,  with respect to C(k  - 1) and p denotes the step size 
of the algorithm. For simplicity, we let @(xT(k)w(k)) = 
@(k), giving [7] 

C ( k )  = C ( k -  1) 
@ ' ( k ) W ( k  - l ) x T ( k ) x ( k  - l)e(k)e(k - 1) 

-P 2 
( [@' (k  - l)]' 11 x(k - 1) 11; +C(k - 1)) 

The learning rate for the set of fully adaptive normalised 
nodinear gradient descent algorithms can then be stated as 

2.2. Simulations on Coloured Input 

The correlated weight contours and trajectories were plot- 
ted for the NGD, normalised NGD (NNGD), STC, and DM 
algorithms on coloured input, (5) .  Traditional STC algo- 
rithms adjust the learning rate according to [4], 

770 
(17) v(k) = 1 + ( k / T ) '  

and the Darken and Moody STC (DM) algorithm [l], ad- 
justs the learning rate according to 

1 L C k  

where c and 7- are some chosen constants. Figures 3 and 
4 show that the STC algorithm marginally outperfornied 
the NGD algorithm, but the best performance was by the 
NNGD algorithm. The output error for the traditional STC 
and NNGD algorithms converge after approximately 50 it- 
erations. The output error in both the NGD and DM algo- 
rithms did not converge to zero. 
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Fig. 3. Error surfxe of NGD and NNGD algorithms on 
coloured input 

STC on Coloured lnout 
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Fig. 4. Error surface of search-then-converge algorithms on 
colourcd input 

2.3. Simulations on Nonlinear Input 

Due to the nonlinearity in the class of NGD filters, we test 
the two representative filters (NGD and NNGD) from the 
experiments on coloured input and test them on nonlinear 
input, together with the error adaptive NNGD and the fully 
adaptive NNGD. Both the EANNGD and the FANNGD em- 
ploy an adaptive C term as given in (12). Figures 5 and 
6 show the fully adaptive "GI) algorithms outperforming 
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3 ................ ~ ............................. ~ ................................................ FANNGD and EANNGD have very similar performance er- NGD m Nmlhear hpll 

ros, however the FANNGD output error converged to zero 
in a very short time. The best performance was by the FAN- 
NGD algorithm, which converges to the optimal state in 
minimal time compared to the other algorithms in this class. 

. .  
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0 ‘ 3  

w1 

2.4. Simulations on Chaotic Input 

To further test the ability of the NGD and normalised NGD 
algorithms to deal with complex nonlinear signals, simula- 
tions on chaotic input were carrie’d out next. The chaotic 
signal chosen was then Henon Map. 

Pmdhlon Ena 

&(IC + 1) = 1 - as2(k) + b z ( k  - 1) (19) 

Figures 8 and 9 show the fully adaptive NNGD algorithms 

n- Map 

Fig. 5. Error surface of standard and normalised nonlinear 
gradient descent algorithms on nonlinear input 
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Fig. 6. Error surface of fully adaptive nonlinear gradient 
descent algorithms on .nonlinear input 

the standard NGD and NNGD algorithms. The output errors 
of NGD did not converge to zero, and the weight trajectories 
show the NGD moving slowly down the error surface. The 

outperforming the standard NGD and NNGD algorithms. 
The output errors of the NNGD algorithm converged to zero 
near the end of training. However, the choice of C in the 
NNGD algorithm was near the optimal value giving near 
optimal performance. In the fully adaptive normalised NGD 
algorithms, the output error converge around zero during 
training. This is visually prounounced by the weight trajec- 
tories convering to the optimal value on the error surface. 

2.5. Simulations Using Recurrent Perceptrons 

Due to an increasing interest into the use of recurrent per- 
ceptrons employed infinite impulse response (IIR) adap- 
tive filters [6] we now look at the error surfaces produced 
by such filters and how the weight trajectories traverse the 
surface [12]. In our experiment, a(.) was chosen to be the 
hyperbolic tangent function and the external inputs were 
coloured noise produced by the AR filter described in (5). 
Figure 2 shows a block diagram structure of a recurrent per- 
ceptron with a single input and a single feedback and a bias 
input ( = 0 in order to preserve the updating of two weights 
in the algorithm. Figure 10 shows the error surfaces for the 
recurrent perceptron and the cot;responding weight trajec- 
tories -on coloured and nonlinear inputs. It can be clearly 
seen that two valleys appear in the surface which were not 
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Fig. 8. Error surface of fully adaptive nonlinear gradient 
descent algorithms on Henon map 

Fig. 10; Recurrent perceptron and the error surface on 
coloured input 
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Fig. 9. Error surface of fully adaptive nonlinear gradient 
descent algorithms on Henon map 

apparant in the feedforward perceptrons. This is due to the 
feedback component distorting the surface and making the 
search for a single global minimum increasing difficult. 

3. CONCLUSIONS 

Performance analysis via contour plots of error surfaces for 
the nonlinear descent (NGD), normalised NGD (NNGD), 
error adaptive NNGD (EANNGD), fully adaptive NNGD 
(FANNGD) algorithms and the. real time recurrent learning 
(RTRL) algorithm have been undertaken for feedforward 
and recurrent neural adaptive filters. This has been achieved 
on coloured and nonlinear input. A qualitative insight into 
performance of novel nonlinear gradient algorithms for neu- 
ral adaptive filtering has been provided using error perfor- 
mance surfaces, which is supported by the quantitative mea- 
sure via the instantaneous output error of the filters. 
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