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Abstract. A flexible and efficient method for finding the envelope
within the empirical mode decomposition (EMD) is introduced. Unlike
the existing (deterministic) spline based strategy, the proposed enve-
lope is a result of an optimisation precess and sought as a minimum of a
quadratic cost function. A closed form solution of this optimisation prob-
lem is obtained and it is shown that by choosing free parameters, we can
fine-tune the frequency resolution or the number of intrinsic mode func-
tions (IMFs) as well as the shape of the envelopes. Computer simulations
on both the synthetic and real-world electro-encephalogram (EEG) data
support the analysis.

1 Introduction

The empirical mode decomposition (EMD) proposed by Huang et. al. in 1998
[1] is a technique for the analysis of non-linear and non-stationary signals in
the time-frequency domain and its applications are manifold. EMD decomposes
a signal x(t) into its components called intrinsic mode functions (IMFs) ci(t),
i = 1, 2, . . . n, and the residual r(t), in the following way:

x(t) =
n∑

i=1

ci(t) + r(t), (1)

The idea behind this approach is that every IMF has a very narrow frequency
band all time, which allows us to produce a time-frequency spectrum called
Hilbert-Huang (HH) spectrum by using the Hilbert transform (for more details,
see [2]). The spectrum is sharp and clear curves unlike the Wavelet or short
time Fourier spectrum. As a result, to so defined spectrum exhibits well defined
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spectral components. EMD needs no a priori knowledge on the signal and as
such belongs to the class of Exploratory Data Analysis techniques [3].

EMD is totally characterized by so called “upper” and “lower” envelopes of an
input signal. Despite the enormous interest in this technique by the ocean mod-
eling and each sciences research communities, and its huge potential in signal
processing, little attention has been paid to and “optimal” choice of these en-
velopes, and instead the originally proposed spline based techniques have been
employed [1]. Well-known interpolations of maxima or minima such as cubic
spline are often used [1]. The so-generated EMD with conventional interpolations
automatically determine the number of IMFs, or “the resolution of frequency.”
Therefore a practical problem is how to control this “frequency resolution.”

To solve this problem, we propose a class of envelopes for EMD which mini-
mizes a quadratic penalty cost function involving cost parameters, which allows
us to control the bandwidth of IMFs. Since these parameters are weight coeffi-
cients in the frequency-domain. This enables a very convenient adjustment of the
frequency resolution. In practical terms, if we assume wider bandwidth, fewer
IMFs are needed, whereas for narrower bandwidths, we obtain more IMFs, this
way can control the number of IMFs and more suitable time-frequency spectrum
depending on an application.

2 Empirical Mode Decomposition

EMD decomposes a given signal x into a number of IMFs, which have the fol-
lowing properties:

1. Along the signal, the number of extrema and the number of zero crossings
must either be equal or differ at most by one;

2. At any point, the mean value of the envelope defined by the local maxima
and the envelope defined by the local minima is zero.

Huang et. al. showed [1] that such an IMF has a very narrow frequency band.
Signals such as AM, FM, AM-FM are a natural candidate for an IMF.

For given signal x, EMD decomposes it as in eq. (1) by the so called sifting
process given by:

1. Let I be a index set of IMFs. Initialize I = φ (empty set).

2. While (x −
∑

i∈I ci) has extremum,

(a) Set h = x −
∑

i∈I ci

(b) While h is not IMF.
– Detect local maxima and minima. Interpolate them by cubic splines.

Let u and l be respectively the upper and the lower envelope.
– Set h ← h − 1

2 (u + l)
(c) Add h to the set of IMF.
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The stopping criterion of IMF in 2.(b) is a crucial problem which in [1] was
solved by using the standard deviation (SD):

SD =
∑

t

|hold(t) − hnew(t)|2
h2

old(t)
. (2)

In [1] a typical heuristic value for this stopping criterion was set to a value
between 0.2 and 0.3.

3 Definition of Envelopes by Quadratic Penalty Function

Let f be a signal to be decomposed, {tui } and {tlj} (i = 1, . . . , Nu, j = 1, . . . , Nl)
be sets of time instances of maxima and minima, respectively.

Without loss in generality, we shall consider the upper envelope (the lower
envelope can be analyzed the same way). The problem to find u can be for-
mulated as a classical linear estimation problem from a set of samples {f(tui )}.
Specifically, we assume that the sampling of u was performed as,

Nu∑

i=1

(ei ⊗ k(·, tui ))u =

⎡

⎢⎣
f(tu1 )

...
f(tuNu

)

⎤

⎥⎦ , (3)

where k(·, ·) is the reproducing kernel of the signal space, (·⊗ ·) is the Neumann-
Shatten product defined by (a ⊗ b)c = 〈c, b〉a, and ei is the i-th natural basis in

R
Nu . Let A =

∑Nu

i=1(ei⊗k(·, tui )) = A and fv =

⎡

⎢⎣
f(tu1 )

...
f(tuNu

)

⎤

⎥⎦. Then (3) is reduced to

Au = fv. If u is a discrete consisting of N sample, then A ∈ R
Nu×N is explicitly

expressed as

A =
Nu∑

i=1

(eiê
�
tu
i
), (4)

where êi is an i-th natural basis in R
N .

The upper envelope is given by a solution of the above linear formula to yield

u = A†fv + w, w ∈ N (A), (5)

where A† is the Moore-Penrose generalized inverse of A and N (A) is the null
space of A. If AA∗ = I, A is a partial isometry matrix i.e., A† = A�. We still
have an ambiguity on u, that is w an arbitrary vector. The following discussion
is devoted to determine the unique w.

Let F be a Fourier transform operator and U be a Fourier transform of u,
that is

U = Fu =
Nu−1∑

t=0

u(t)exp(iξt). (6)
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We can now introduce the following cost function,

J =
N∑

i=1

U(ξi)LU(ξi) = 〈U, LU〉, (7)

where L is a self adjoint cost operator defined as,

L = diag(ρ) =

⎡

⎢⎣
ρ1 0

. . .
0 ρN

⎤

⎥⎦ . (8)

and {ξi}N
i=1 is a set of discretized frequencies such that ξi < ξj if i < j.

The underlying idea behind this cost function is that an envelope should be
smooth, i.e., its frequency spectrum should be biased to its lower part. Different
definitions of ρi result in different envelopes. For example, ρ can be given as
follows:

1. ρ = (0 . . . 0︸ ︷︷ ︸
n

1 . . . 1︸ ︷︷ ︸
N−2n

0 . . . 0︸ ︷︷ ︸
n

)

2. ρ = (1α 2α . . . (N/2)α(N/2)α . . . 1α)

3. ρ = (eαe2α . . . eNα/2eNα/2 . . . eα)

Intuitively, the case 1 suggests that high frequency components of an envelope are
mostly suppressed. The second and third cases imply that a higher components
of an envelope cost the higher because the shape of frequency spectrum tends
to decays polynomially or exponentially. Various ρ can be alternated during a
sifting process.

In summery, the optimization problem to be solved here is:

min
u

J = 〈Fu, LFu〉, (9)

subject to u = A†fv + w, w ∈ N (A).

Theorem 1. Optimization problem (9) is minimized when

u = A†fv

−(I − A†A)((I − A†A)∗F∗LF(I − A†A))†(I − A†A)∗F∗LFA†fv. (10)

(Proof). We can change the constraint to

u = A†fv + (I − A†A)w, (11)

without loss of generality since (I − A†A) is the projection operator onto N (A)
i.e, N (A) = R(I − A†A).

By subsisting u as in (11) to (9), we have

J = 〈F(A†fv + (I − A†A)w), LF(A†fv + (I − A†A)w)〉
= 〈FA†fv, LFA†fv〉 + 〈w, (I − A†A)∗F∗LFA†fv〉

+〈(I − A†A)∗F∗LFA†fv, w〉 + 〈w, (I − A†A)∗F∗LF(I − A†A)w〉.
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Then the vector which has to be optimized is changed to w.
Since (I − A†A)∗F∗LF(I − A†A) is non-negative definite, w is given as

w = −(I − A†A)((I − A†A)∗F∗LF(I − A†A))†(I − A†A)∗F∗LFA†fv. (12)

�
4 Experiments

Two experimental results illustrate the effectiveness and flexibility of the pro-
posed method. We used the publicly available MATLAB codes [4]-[6] to compare
our proposed EMD with the conventional one.

First, to illustrate the behavior of the envelopes given in (10), we generated
a synthetic signal,

x(t) = sin
( 2

40
πt

)
sin

( 2
400

πt
)
, (13)

where x(t) is discrete signal with t = 1, . . . , 800. We set
ρ = (1α 2α . . . 400α 400α . . . 1α). The envelops obtained from the proposed
method with variable α are shown in Figure 1. It can be observed that a larger
α yields a smoother envelope. We can also observe from Figure 1 the various
shapes of the mean of upper and lower envelopes. When α = 1, variation in the
mean signal is considerable, which implies that the sifting process removes high
frequency components. In that case, the bandwidth of IMF is narrow, and the
number of IMFs is large.

Next, we applied the proposed method to a real biomedical signal. We used a
single channel of electroencephalogram (EEG). The experiments was conducted
by Rutkowski et. al. within the so-called Steady State Visual Evoked Potential
(SSVEP) mode [7]. Within this framework, the subjects are asked to focus their
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Fig. 1. Original signals, envelopes and means of envelopes
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Fig. 3. IMFs of the EEG signal (Proposed method α = 3)
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1254 Y. Washizawa et al.

0 100 200 300 400 500 600 700 800 900 1000
−20

0
20

0 100 200 300 400 500 600 700 800 900 1000
−20

0
20

0 100 200 300 400 500 600 700 800 900 1000
−20

0
20

0 100 200 300 400 500 600 700 800 900 1000
−10

0
10

0 100 200 300 400 500 600 700 800 900 1000
−10

0
10

0 100 200 300 400 500 600 700 800 900 1000
−10

0
10

0 100 200 300 400 500 600 700 800 900 1000
−20

0
20

0 100 200 300 400 500 600 700 800 900 1000
−5

0
5

0 100 200 300 400 500 600 700 800 900 1000
0
2
4

Fig. 5. IMFs of the EEG signal (Conventional method)

Fig. 6. Comparison of Hilbert-Huang spectra (Vertical axis: normalized frequency, hor-
izontal axis: sample)
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attention on simple flashing stimuli, whose frequency is 1/26Hz. The stimuli is
given from one second after (205 sample). The EEG signal under this subject was
recorded by an A/D converter with a sampling rate of 2048Hz and a bit depth
of 24bits, followed by a down-sampler to 204.8Hz. Figure 2 shows this signal.

We tested three values of α, α=3, 5, 7, with ρ=(1α 2α . . . 500α 500α . . . 1α).
Figures 3, 4 and 5 compare the IMFs obtained by the proposed method with
those from the conventional EMD with cubic spline. When α = 3, the number
of IMFs was 14, while when α = 5, the number of IMFs was 9. The number of
IMFs of conventional EMD was 8. These results imply that to tune parameter
ρ, we can control the number of IMFs and the bandwidth of IMF.

Figure 6 shows the Hilbert-Huang spectrum of the EEG signal. For α = 3
observe a dense and higher resolution spectrum, while for α = 5, the spectrum
is rough and with lower resolution.

5 Discussion and Conclusions

A new approach for the derivation of the envelopes within the empirical mode
decomposition (EMD) method has been proposed. It allows us to control the
frequency bandwidth of IMFs, their number, and the resolution of the Hilbert-
Huang spectrum.

In the proposed method, to obtain the solution, we have to compute a gen-
eralized inverse to R

N of which dimension equals to the number of samples. It
requires heavy computation for the inverse, which is a subject of our follow-up
work. In our experiments, we used fixed cost parameter ρ. Indeed, it can be
changed during sifting process. Various ρ will also give different and interesting
results. For example, by changing ρ, higher resolution in low frequency parts
in Hilbert-Huang spectrum could be obtained. Efficient and useful methods to
alter ρ would be addressed in the near future.
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