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Abstract—Precise detection of R-peaks is a prerequisite in
real-world ECG applications – this is particularly critical for
wearable ECG where sensors are typically low resolution and
embedded. Such recorded ECG data are typically contaminated
by noise, motion artefacts, unbalanced skin-electrode impedance
and other physiological signals. These affect the quality of R-peak
detection and can consequently lead to failure in the evaluation of
physiological functions or a misinterpretation of the state of the
body, such as in monitoring stress. While numerous methods for
R-peak detection are available for stationary and comparably
noise-free ECG, robust DSP software for wearable devices is
still emerging. To this end, a new approach which combines
matched filtering and Hilbert transform is proposed. The RR-
intervals and cross-correlation are used in conjunction to not only
automatically locate the R-peaks but also to display the candidate
ambiguous peaks via an interactive graphical user interface. The
performance of the proposed approach is compared to the well-
known Pan-Tompkins algorithm and is evaluated for two types
of ECG databases: standard stationary data and low-SNR ECG
data obtained from wearable ECG. The proposed method results
in a distinctly higher positive predictivity and leads to more
satisfying overall outcomes, especially for the critical call of low-
SNR data.

Index Terms—R-peak detection; RR-interval; ECG; QRS detection;
matched filtering; Hilbert transform; wearable devices

I. INTRODUCTION

Heart rate variability (HRV) is an important parameter for eval-

uating physiological mechanisms. An example of using the HRV is

to measure the balance between sympathetic and parasympathetic

nervous systems, where the power ratio of low and high frequencies

in the HRV frequency spectrum and the sample entropy of the HRV

can indicate the level of stress [1]. The electrical currents flowing

through the heart muscle while triggering its contractions can be

measured on the body surface. In the obtained electrocardiogram

(ECG), the most prominent segment in every ECG cycle is the QRS-

interval which is characterised by a sharp waveform with a high

amplitude. The R-peak is the point with the maximum amplitude

in this interval. The time period between two consecutive R-peaks,

the RR-interval, is commonly used to calculate the heart rate and

its variability over time. However, artefacts in the signal produce a

number of ambiguous peaks that can potentially be the R-peak in the

ECG-cycle. In stationary and wearable ECG, the causes of artefacts

are mostly moving and inadequately attached electrodes [2]. Other

sources of physiological signals, such as muscle contractions, also

induce interfering signals. Especially when examining the HRV, the

localisation of R-peaks in the ECG needs to be precise, and in case

of uncertainties, they need to be examined visually by the user [2].

The extraction of R-peaks using matched filtering has been studied

for many years. One approach uses the QRS complex as a pattern and

searches for similarities in the ECG which [3]. To remove nonlinear

and nonstationary components in noisy ECG, matched filtering was

combined with an artificial neural network [4] and yielded a high

accuracy when applied to the MIT/BIT arrhythmia database. In [5],

[6] matched filtering is used in real-time R-peak detection while

sending ECG data over a communication port. Another approach

applies the Hilbert (HT) transform to find R-peaks by extracting

the envelope of the ECG data [7], [8]. A narrow bandpass filter (8-

20Hz) is applied to eliminate motion artefacts and muscle activity

and the derivative is utilised to remove the baseline drift [9], [10]. The

approach by Pan and Tompkins (PT) [11] exhibits a high sensitivity

for the R-peak detection – approximately the same as the five

other algorithms compared in [12] – and its source code is publicly

available. It will be used to evaluate the performance of the approach

presented in this study.

Further QRS detection approaches include wavelet-based QRS

detection, neural network approaches and QRS detection based on

maximum a posteriori (MAP) estimation reported in [13]. However,

these approaches are usually performed on ECG data acquired from

stationary devices in hospitals. This study proposes a new method

which combines the matched filtering and Hilbert transform (MF-HT)

approaches. The former is used to find a number of potential

QRS which are similar to a template QRS pattern and the exact

R-peaks are located by the latter. The approach utilises a single QRS

pattern manually selected once to avoid artefacts when estimating

the QRS computationally. In case of multiple ambiguous R-peaks, the

possible occurrences in time are limited by a dynamical time window

which depends on the standard deviation of previously detected

RR-intervals. Subsequently, the selection of the R-peaks is computed

using the cross correlation between potential QRS and the template.

Another aspect of this work is to offer the R-peak detection

software to users and researchers in medicine or psychology. The

extraction and editing of the HRV from ECG data is facilitated

by an interactive graphic user interface (GUI). The design of the

software allows users to configure three important parameters: (i) the

range of the ECG data of interest; (ii) a template QRS pattern; and

(iii) the percentage error of the RR-intervals. The main feature is

the automated R-peak search using the MF-HT algorithm and the

simultaneous computation of the RR-intervals. The R-peak detection

runs automatically until an uncertain peak is found. The program

pauses and the user can select the R-peak from various choices: (i)

one of the suggested peaks as identified by MF-HT; (ii) manually

selecting a peak; or (iii) ignoring the detected peak. The ECG,

detected R-peaks, and the calculated RR-intervals are continuously

displayed graphically. Furthermore, a window in the software allows

the user to enlarge an area to observe potential R-peaks in detail.

The software can import .mat, .csv and .txt file formats and saves the

results and configuration settings in .mat and .txt files.
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Fig. 2. The MF-HT algorithm consists of three parts: Preprocessing, R-peak detection and peak examination
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Fig. 1. The two ECG databases used to compare the algorithms. Above:
QTDB with a high SNR, below: face-lead ECG with a low SNR. (The
amplitudes are not to scale and the sets were recorded independently.)

II. THEORY

A. Matched filtering

The idea of matched filtering is to start from a defined waveform

or function and to search for a similar pattern in a time series. This

is performed by taking the convolution between the conjugate of the

defined mother pattern h(k) and the original signal x(n) with length

N as shown in Eq. (1).

y(k) = ΣN−k
k=0 h(k)x(n− k) (1)

The result of the convolution results in a high amplitude at times when

the time series resembles the mother pattern and a low amplitude

elsewhere. This technique is useful for locating the QRS complex in

the ECG because the R-peak usually exhibits a high amplitude and

the shape of QRS is unique even in noisy intervals.

B. Hilbert transform

The Hilbert transform is a tool used to extend a real function

into the complex domain. The transform is shown in Eq. (2) (and

in a convolution form in Eq. (3)) where x(t) is a real function

and the complex output of the transform is xh(t). By taking the

Fourier transform shown in Eq.(4), it results in a π/2 phase-lead for

a negative frequency and a π/2 phase-lag for a positive frequency as

presented in Eq. (5).

xh(t) = H[x(t)] =
1

π

∫ ∞

−∞
x(τ)

1

t− τ
dτ (2)

xh(t) =
1

π
x(t) ∗ 1

t
(3)

Xh(jω) = X(jω) ·K(jω) (4)

K(jω) =

{
+ j, 0 < ω < π

− j, − π < ω < 0
(5)

In an analytic form it can be written as Eq. (6) in which the

Euclidean norm of the complex form is calculated from Eq.(7). The

amplitude of the norm represents the local maxima or the envelope

of the signal x(t).
Applying the HT to x(t) and computing its magitude |s(t)| result

in a positive envelope of the ECG data which is convenient to locate

the R-peak within a specific time window.

s(t) = x(t) + jxh(t) (6)

|s(t)| =
√

x2(t) + x(h)2(t) (7)

III. METHOD

The MF-HT algorithm is performed on shifting time windows for

the length of the ECG time series. The approach can be divided

into three main steps: preprocessing, R-peak detection, and peak

examination as shown in Fig. 2. During the preprocessing, a notch

filter at the power line frequency and a filter with a passband of 8-

30Hz, the frequency range composing the QRS [9], [10], are applied

to the original ECG data. Both filters are 6th order IIR Butterworth

filters. The QRS pattern QRSpt is manually selected by the user

within the GUI. For the R-peak detection, two time windows are

created. The trend is removed in the first with its range set to

2.5 seconds which spans over more than one ECG cycle and is large
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enough to estimate the local trend. A differential of consecutive

samples and a median subtraction are applied to the data in the

window and to QRSpt. The second time window is created inside

the first with a smaller duration to limit the minimum and maximum

heart rate. It starts at 20% of and ends at 150% of the mean of the

cumulative RR-intervals, RRmean, after the last identified R-peak.

The first RR-interval is set to 1 second. Therefore, the constraint

for the R-peaks covers a heart rate ranging from 67% to 500% of

the mean heart rate and this range is dynamically updated depending

on the variation of the underlying RR-intervals. Matched filtering

and Hilbert transform are applied to QRSpt and the ECG data in

the first window. The result from MF-HT is used to locate potential

R-peaks within the second window using a minimum time threshold

of 0.2×RRmean to avoid physically impossible R-peaks. The length

L of QRSpt (in sampling points) is used to define new intervals

spanning from the centre of the potential R-peaks, QRSpp(j), by

±L/2 to both sides where j is the index of potential peaks. The

root mean squares of the cross correlation between the QRSpt and

each QRSpp(j) are computed. This results in the degree of similarity

Crms(j) for each j. The highest value of Crms(j), Crms(jmax), is

automatically chosen and selected as first R-peak, R-peakA. The RR-

interval is calculated as the temporal distance between the current and

the previous R-peak. The second examination becomes effective when

the recently computed RR-interval differs from the defined error. This

error is calculated from the standard deviation of the cumulative RR-

intervals multiplied with the user-defined weight value. In the second

examination, if a peak j in QRSpp(j) – where R-peakA is excluded

– leads to the closest RR-interval compared to the previous one and

also exhibits a high Crms(j) among the remaining possible peaks,

the peak j, R-peakB, is selected instead of the previous one.

For the length N of the ECG data x(k) the MF-HT algorithm can

be summarised in the following iteration steps:

While k ≤ N

1) Create the first time window of filtered ECG data with a length

of 2.5 seconds, beginning at the current R-peak.

2) Remove the local trend of the first window by taking the

differential and subtracting its median from the data.

3) Define the second window ranging from 0.2 × RRmean to

1.5×RRmean after the previous R-peak.

4) Apply matched filtering to the QRSpt and the data in the first

window.

5) Apply the Hilbert transform to the result from 4).

6) Find potential peaks using a minimum time threshold of

0.2×RRmean.

7) Create QRSpp(j) by expanding by ±L/2 from the centre of

each potential QRS to both sides.

8) Calculate cross correlation between QRSpt and QRSpp(j)
and take their root mean square resulting in Crms(j).
max[Crms(j)] at jmax is selected to be the R-peakA at

QRSpp(jmax).
9) Calculate the current RR-interval.

10) If the RR-interval is outside of the predefined error, compute

RR-intervals of all j of QRSpp(j), where R-peakA from 8) is

excluded.

11) If the potential peak j results in the closest RR-interval value

compared to the previous RR-interval and has max[Crms(j)]
among the rest, it is selected as R-peakB replacing R-peakA.

The GUI of the software is shown in Fig. 3.

IV. RESULTS

The algorithm was tested on two different databases: (i) a standard

database from PhysioNet [14], the QT database (QTDB) [15]; and

(ii) a set of recordings partially used in [16]. The latter were recorded

with a wearable device, a motorbike helmet and show a lower signal-

to-noise ratio (SNR) (Fig. 1). In the first case, only the first channel

was used and in the second case, one exemplary channel, a bipolar

measurement between the two sides of the jaw, was selected. Out

of the first 34 datasets in the QTDB, four were excluded for the

following reasons: the annotations were missing for large parts of

the file, the annotations were incorrect, or the annotations were

inconsistent, i.e. they alternated between different parts of the QRS-

intervals – in some instances the markers were closer to the Q-peaks,

in other closer to the S-peaks).

After scanning the two databases for R-peaks, the detected po-

sitions in time were classified using a reference. For the QTDB,

the supplied annotations were used and for the second database, a

simultaneous recording of ECG obtained from the arms was utilised.

Its peaks were well defined and its occurrences in time were verified

visually. An R-peak was classified as correctly identified if the time

difference between the R-peak in the reference and the R-peak as

identified by the algorithms is smaller or equal to 20ms which

corresponds to approximately 2% of the duration of an average ECG

cycle. Afterwards, the results were quantified using the parameters

Sensitivity (Se) and positive predictivity (+P ) [13]:

Se =
TP

TP + FN
+ P =

TP

TP + FP

where TP represents the number of correctly identified R-peaks, FN
the number of missed R-peaks and FP the number of points falsely

labelled as R-peaks.

However, in the case where an algorithm consistently identifies

R-peaks with an offset, it can still be considered to work well

as long as the offset is constant. Therefore, further parameters

were considered: (i) the deviation of the RR-intervals (RRID) as

obtained from the R-peak detection algorithms from the RR-intervals

of the reference signal; and (ii) the analogue value for the heart

rate deviation (HRD). This is quantified via the root-mean-square

error of the difference between the two values at every second. The

smaller the value, the more accurate was the detection of R-peaks.

An example where the second method excels is the case sel808 in

the QTDB. The markers for all R-peaks are positioned too early

in the signal (closer to the Q-peaks). Therefore, Se and +P were

less than 8% for MF-HT. However, the RRID and the HRD are

comparatively low – 47ms and 2.0 bpm. While results for the HRD

are more intuitive, since it is common to state the pace of the heart in

beats per minute and not the average time interval between two heart

beats, it is more prone to misleading results. For example, when a

false R-peak was identified close to a real R-peak, the resulting heart

rate will be mistakenly very high due to taking the inverse of a short

time period. This explains why the values RRID and HRD in TABLE

I, row MF-HT, do not show corresponding results.

TABLE I
PERFORMANCE ON 30 DATASETS FROM THE QTDB; PT: USING [11]

Algorithm Se +P
RRID HRD Comp. Time
(ms) (bpm) (ms)

PT 91.2% 91.2% 1779.8 7.6 652
MF-HT 95.3% 93.5% 235.8 9.6 5347
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Fig. 3. Software for R-peak extraction using the MF-HT algorithm. Four windows are designed to visualise: ECG and identified R-peaks, the RR-intervals,
a close-up R-peak examination with suggested choices, and the QRS pattern selection and settings.

TABLE II
PERFORMANCE ON 6 DATASETS WITH LOWER SNR; PT: USING [11]

Algorithm Se +P
RRID HRD Comp. Time
(ms) (bpm) (ms)

PT 86.6% 49.6% 408.4 105.9 111
MF-HT 83.1% 86.8% 140.8 11.5 1817

The algorithm presented here was compared to a well established

method by Pan and Tompkins [11]. The results for the two databases

are displayed in TABLE I and TABLE II. For the QTDB, MF-HT

achieved higher values for Se and +P and furthermore resulted in a

smaller value for RRID. Since MF-HT performed better according to

the three mentioned parameters, it can be concluded that the higher

value for HRD was due to an effect caused by inverting the RR-

intervals to obtain the heart rate (as explained above). Examining the

results for single datasets, it becomes explicit that the high values for

RRID were due to a few files that are difficult to handle for the two

algorithms. This is displayed in detail in Fig. 4.

The second set of ECG recordings measured with a mobile device,

features a lower SNR due to electrodes placed on the head instead of

the chest or the limbs. Therefore the performance of both methods

was reduced. The Se of PT was a few percentage points higher than

the Se of MF-HT. However, overall PT listed significantly more R-

peaks that do not exist which lead to a low value for +P . The same

behaviour is perceptible in the columns RRID and HRD: the deviation

of the estimated RR-intervals and the heart rate from the real values

was substantially lower for MF-HT compared to PT.

The observation that the Se and +P are in general lower than

in other publications (e.g. in [13]), can probably be explained by

assuming that this study is more strict towards the time difference

between the actual and the estimated R-peak to classify the detection
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0 40 80 120 160

N
o
. 
o
f 

d
at

as
et

s 
(a

cc
u
m

u
la

te
d
)

0

5

10

15

20

25

30

PT

MF-HT

Fig. 4. QTDB: Number of datasets (out of 30) with an RRID within
a specified limit. Not displayed are larger values: PT and MF-HT around
440ms, MF-HT at 1172ms, and PT at 9733ms.

as correct.

V. CONCLUSION

On the two examined databases, especially the one with a lower

SNR, the proposed algorithm performs better than the comparative

method at the expense of computation time, but is still suitable for

real-time analysis. This has been achieved by combining matched

filtering and Hilbert transform approaches. The cross-correlation

between potential QRS and a pattern QRS and the duration of RR-

intervals were utilised as criteria to select R-peaks. Furthermore, an

alternative parameter to evaluate the reliability of ECG-analysing

methods has been introduced.

Future work will include the verification of this result on additional

standard databases and ECG data obtained from a variety of wearable

devices. Moreover, the performance of MF-HT will be even higher

when the GUI is used for the selection of R-peaks in critical parts

of an ECG recording.
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