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ABSTRACT

The Electrocardiogram (ECG) collected in real-life scenarios
is often noisy and contaminated with motion artefacts. This
study proposes a new framework to analyse the heart rate
variability (HRV) in mobile scenarios by introducing novel
R-peak detection and HRV detrending algorithms. The
R-peak detection combines matched filtering and Hilbert
transform, while detrending the HRV is performed using
empirical mode decomposition with novel physically mean-
ingful stopping criteria. Next, four quantitative metrics –
sample entropy, LFHRV, HFHRV and LF/HF ratio – are used
to estimate stress levels in two public speaking events: (i)
a presentation in front of an audience and (ii) an interactive
poster presentation, both at ICASSP 2015. We show that the
proposed framework makes it possible to detect distinctive
‘stress-patterns’ in the structural complexity of the HRV, thus
verifying the complexity-loss hypothesis in physiological
research.

Index Terms— R-peak detection, detrending, empirical
mode decomposition, sample entropy, complexity science,
LF/HF, heart rate variability, stress

1. INTRODUCTION

The analysis of the electrocardiogram (ECG) is a de-facto
standard for providing insight into the state of the cardio-
vascular system. For example, it captures the atrial depo-
larization (P wave), the depolarization of the right and left
ventricles (QRS complex) and the recovery of the ventricles
(T wave). While the clinical use of ECG is well under-
stood, much less is know about how to utilise ECG for the
analysis of the balance between the sympathetic (SNS) and
parasympathetic (PNS) nervous system, and hence mental
and physical stress levels in real-life scenarios. The aim of
this study is therefore two-fold: (i) to deal with the multiple
artefacts in wearable scenarios, and (ii) to illuminate the
usefulness of the proposed signal processing techniques
through the study of the evolution of stress levels of two
students presenting their work in an academic conference.
For rigour, the analysis is cast into a framework of complexity
science, whereby the complexity-loss hypothesis establishes

that an organism under constraints (illness, ageing) exhibits
lower structural complexity of physiological responses than a
healthy organism [1]. Our hypothesis is that stress, being
an psychophysiological impediment, modulates physio-
logical responses so that they lose degrees of freedom,
thereby reducing structural complexity. To this end, the
analysis of HRV is performed by sample entropy (SampEn),
as it is designed to operate on real-world nonlinear and
non-stationary data [2], low frequency (LFHRV) and high
frequency (HFHRV) power of the HRV frequency spectrum
and their ratio (LF/HF). While a low SampEn designates a
high regularity and may be linked to high levels of stress
[3], an increased SampEn corresponds to an increase in
randomness in the data, suggesting a physically relaxed state
(baseline) [4]. Although not without controversy, the LFHRV

band in HRV, 0.04-0.15 Hz, is thought to reflect the activity
of the sympathetic nervous system (SNS; high stress) and the
baroreflex (blood pressure), while the HFHRV band, 0.15-0.4
Hz, is believed to correspond to the activity of the parasym-
pathetic nervous system (PNS; relaxed state) and respiratory
sinus arrhythmia (RSA), naturally occurring heart rate modu-
lations due to breathing [5, 6]. The ratio of the power in the
LFHRV and HFHRV frequency bands reflects the degree of
sympathovagal balance [7], with a higher ratio representing
dominant sympathetic activity and a lower ratio indicating an
increased vagal modulation [8].

In a previous study, we introduced a new algorithm to
extract R-peaks from ECG using a combination of matched
filtering and Hilbert transform (MF-HT) [9]. The approach
is semi-automatic with the user required to select a QRS
waveform mother pattern from the recorded ECG. To locate
R-peaks in noisy ECG, the user is provided with several
R-peak estimates when an abnormal QRS waveform or
heart rate is detected. This is achieved through a user-
friendly graphical interface facilitating straightforward data
processing.

After detecting the R-peaks, the HRV is constructed from
the R-R intervals, the temporal difference between two subse-
quent R-peaks, yielding an unevenly sampled time series. In
order to perform spectral estimation, the HRV is resampled
to create a regularly spaced time series using a linear or
cubic spline interpolation with a sampling frequency in the

814978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016



 

R-peak 

detection 
HRV 

detrending 
LF/HF 

ratio 

Sample entropy 

Raw ECG HRV 

extraction 

+ + + 

PSD of LF and HF 

Stress 

level 

Fig. 1. Stress level estimation: Conceptual block diagram

range 2Hz to 10Hz [10]. However, oversampling typically
leads to an oversampled LF/HF ratio when Fourier transform
(FT) is applied [11], and consequently a wrong interpre-
tation. To this end, the Lomb-Scargle periodogram (LSP)
[12, 13], a spectral estimation technique for unevenly spaced
data, has been applied to the original HRV yielding more
reliable results compared to the classical FT [14, 15]. In
order to apply the stress-related metrics including the LF/HF
ratio and SampEn, it is assumed that the extracted HRV is
weakly stationary, in other words, there is no change in the
variance and mean in sliding data windows. However, real
HRV is typically non-stationary, a signature of changes in
psychological and physiological mechanisms [16], and the
original HRV is therefore detrended in a pre-processing step.
This is achieved based on the empirical mode decomposition
(EMD) algorithm [17], whereby the analysis is made physi-
cally meaningful by the power spectrum density (PSD) of the
HFHRV as the stopping criterion.

This work aims to extract maximum information from
HRV related to stress biomarkers by introducing a new signal
processing framework (see Fig. 1) for mobile cardiovascular
scenarios. This has made it possible to: i) detect correct R-
peaks in noisy ECG, ii) robustly obtain accurate biomarkers
of stress from HRV, and (iii) illuminate the utility of the
proposed framework in identifying changes in physiological
responses due to psychological stress in real-life scenarios.
The concept is validated by analysing the stress levels of two
presenters during their oral and poster presentations.

2. PROPOSED SIGNAL PROCESSING
FRAMEWORK

2.1. R-peak detection
text

Our MF-HT algorithm for R-peak detection operates as
summarised in Algorithm 1. It combines pattern matching
with the Hilbert transform and first identifies possible QRS
complexes from noisy mobile ECG, followed by the appli-
cation of the Hilbert transform to identify the R-peak.

2.2. HRV detrending

The IMFs resulting from EMD have properties similar to filter
banks and are arranged according to their average instanta-

Algorithm 1. R-peak detection using MF-HT

- Select a mother QRS waveform from the raw ECG.
- Locate the first R-peak.

For each Wi:
1. Create a window Wi beginning at the previous R-peak

and ending at the longest realistic heart beat interval.
2. Remove local trend by taking the difference between

consecutive sample points.
3. Apply a matched filter between the mother QRS and

the Wi, resulting in a degree of correlation Kmf .
4. Apply the Hilbert transform to Kmf to identify

candidate R-peaks Cj .
5. Locate the correct R-peak by selecting the peakCj with

the highest cross-correlation with the mother QRS.

- Construct HRV from the time difference between subse-
quent R-peaks.

neous frequency, where IMFs with the highest instantaneous
frequencies have the lowest indices. The HFHRV band is
thus contained in the IMF indices ranging from the first to
the highest one in which the PSD of HFHRV band is still
contained. It is therefore possible to use the ratio between
the HFHRV PSD of the current IMF and the HFHRV PSD of
the previous IMF as a threshold parameter to stop the sifting
process of the EMD algorithm. In this work, the threshold of
the ratio was set to 0.2 (the HFHRV PSD of the current IMF
is 5 times less than the HFHRV PSD of the previous IMF)
to ensure that the resulting IMF spectrum retains as much
as possible of the original HRV spectrum. This is combined
with the original stopping condition of the EMD algorithm,
the standard deviation sd of which is 0.2 - 0.3 [17].

Since the original HRV is irregularly sampled, the LSP
is well suited to estimate the PSD. The detrending algorithm
is described in Algorithm 2. Interpolation after detrending
is still required because a low number of sample points is
prohibitive for computing SampEn and may lead to unreliable
results. A shape-preserving piecewise cubic interpolation was
therefore applied to the detrended data. The 4 Hz sampling
frequency is selected for interpolation based on the reasons

815



Algorithm 2. Detrending the HRV signal
Denote by x′(t) be the input of each iteration.
For each iteration:

1. Locate lower and upper maxima, emin and emax of
x′(t).

2. Apply cubic spline interpolation to emin and emax.
3. Compute the local mean m(t) = (emax + emin)/2.
4. Obtain the local oscillation d(t) = x′(t)−m(t).
5. Examine whether sd fulfils the stopping condition,

compute PSDm of d(t) using LSP and go to step 6,
else set x′(t) = d(t) and go to step 1.

6. Examine the ratio of PSDm/PSDm−1. If the ratio is
less than 0.2, stop the sifting process and go to step 7 –
otherwise extract the IMF , IMFm = d(t), where m

is the IMF number, and set x′(t) := x′(t)−
m∑
i=1

IMFi.

7. Compute the detrended HRV by summing all released

IMFs, dt(t) =
m−1∑
i=1

IMFi.

outlined in [10, 11].

2.3. Sample entropy and LF/HF ratio

The parameters required for computing SampEn are the
embedding dimension m, time lag τ and tolerance r. The
appropriate selection of m and τ relies on the underlying
dynamics of time series. Pincus in [18] suggested that using
m = 2 or m = 3 is sufficient for a low-dimensional system
such as the human cardiovascular system. Kaffashi et al. [19]
recommended that using τ = 1 is sufficient to estimate the
complexity of a system, while Pincus [20] recommended that
r can be taken as 0.1 – 0.2 times the standard deviation, in
order to avoid small unpredictable changes in time series.
Therefore, in this study, m = 2, τ = 1 and r = 0.15 were
chosen as parameters for computing SampEn, given by:

SampEn = −ln Pm(r)

Pm + 1(r)
(1)

where Pm(r) is the probability of similar patterns found in
each pairwise delay vector of length m, and Pm+1(r) is the
probability of similar patterns found in each pairwise of the
length (m+1). Periodogram based spectral estimation is then
applied to the detrended HRV followed by a calculation of the
PSD in the LFHRV and HFHRV bands and the computation of
the LF/HF ratio.

3. EXPERIMENTAL SETUP

A wearable biosignal acquisition device was used which has a
24-bit analog to digital converter (ADC), ADS 1298, with an

integrated built-in instrumentation amplifier as a front-end of
the circuit. The Teensy-based microcontroller v. 3.1 was used
as a central processor to manage and to store the acquired
data obtained from the ADC to an SD-card. The sampling
frequency of the device was set to 1000Hz.

The device was used to measure the ECG of two partici-
pants who presented their work at the International Conference
on Acoustics, Speech and Signal Processing (ICASSP)
2015. The HRV was evaluated in terms of ’reactivity’
and ’recovery’. Both are indicators of psychosocial stress
states, with a greater degree of reactivity and longer recovery
period reflecting a weaker ability to physically adapt towards
the stressor. The presenters were graduate students from
Imperial College London, whereby the first presenter gave a
poster presentation, for which the pre- and post-performance
baseline was set to 25min. The second presenter gave an
oral presentation for which the pre- and post-performance
period of 20min was chosen. The poster presentation lasted
for 120min and the oral presentation for 20min.

4. ANALYSIS RESULTS

A sliding window based approach was used for computing
the SampEn, PSD of LFHRV and HFHRV, and the LF/HF
ratio, the metrics chosen to quantify the evolution of stress
levels. Different window lengths of 9min and 3min were set
respectively for the poster and oral presentation, based on the
duration of the recordings. A 15-second sliding time segment
was chosen to maintain approximately constant statistical
variations over time.
In Fig. 2 and Fig. 3, the graphs from the top to the bottom
show the raw and the detrended HRV, SampEn values, LF/HF
ratio and the PSD of LFHRV and HFHRV. The whole
recording was divided into three sections: Section (a) corre-
sponds to the pre-presentation period; Section (b) to the
presentation interval; and Section (c) to the post-presentation.

In the interactive poster presentation, the SampEn and
the LFHRV first exhibited a steady increase (Section (a-
c)), followed by a slow decline after the performance, indi-
cating the ‘recovery’ in the HRV. The presenter of the poster
confirmed an increased level of stress and psychosocial
engagement towards the end of the presentation due to the
audience interacting well beyond the presentation end. In
contrast, the HFHRV remained similarly low throughout the
scheduled performance, indicating a strong PNS withdrawal
and thus a less relaxed state. The LF/HF ratio exhibited
distinctive fluctuations, which were found neither in the
SampEn nor HFHRV power. In the oral presentation, the
SampEn revealed a sharp increase (signature of high stress)
at the end of Section (a) and a decline at the beginning of
Section (b); this was followed by minor fluctuations during
the presentation and a peak in Section (c) before returning to
a resting state after approximately 45 min. The LF/HF ratio
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Fig. 2. Poster presentation – from top to bottom: HRV,
detrended HRV, SampEn values (vertical axis reversed),
LF/HF ratio and the PSD of LFHRV and HFHRV. The
segments a, b and c represent the pre-performance (25min),
performance (120min) and post-performance (25min).

underwent variations during the presentation (Section (a-c)),
with peaks (i.e. high stress) occurring approximately 10min
before the presentation, in the middle, and right before the end
of the presentation (Section (c)). The simultaneous investi-
gation of the LFHRV and HFHRV demonstrated a pronounced
LFHRV and thus, as indicated in Section (a), a more alert state
of body and mind during the pre-presentation.

5. CONCLUSION

Public presentations target to inform listeners in a struc-
tured, deliberate, and entertaining manner. They can take
place in controlled environments – on stage – where the
presenter regulates the process, or in settings which are
highly interactive and require an increased engagement with
the audience. Each event involves a great deal of stress, yet
close quantitative examinations of distinctive physiological
responses in those situations are few and far between. To

Fig. 3. Oral presentation – from top to bottom: HRV,
detrended HRV, SampEn values (vertical axis reversed),
LF/HF ratio and the PSD of LFHRV and HFHRV. The
segments a, b and c represent the pre-performance (20min),
performance (20min) and post-performance (20min).

this end, our study has proposed a new framework for the
analysis of HRV in real-life public performances, in order
to provide robust and accurate biomarkers of the evolution
of stress. Novel R-peak and HRV analyses of mobile ECG
in real-life scenarios have been established based on four
quantitative metrics: Sample entropy, LFHRV , HFHRV and
LF/HF ratio. The analysis has shown that: (i) LF/HF ratio is
rather sensitive compared to the SampEn and PSD of LFHRV

and HFHRV; (ii) small differences in the LFHRV and HFHRV

power may produce an unstable LF/HF ratio and this metric
should be interpreted with caution (as seen in Fig 3., Section
(c)); (iii) the SampEn has provided a meaningful approach
for understanding the complex dynamics of HRV over time.
Future studies will investigate more closely the three aspects
of public performance on a larger sample size, both using
the proposed method and standard protocols for systematic
psychological and physiological stress assessment.
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