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Abstract- We introduce a quadrivariate extension of Empir­
ical Mode Decomposition (EMD) algorithm, termed QEMD, as 
a tool for the time-frequency analysis of nonlinear and non­
stationary signals consisting of up to four channels. The local 
mean estimation of the quadrivariate signal is based on taking 
real-valued projections of the input in different directions in a 

multidimensional space where the signal resides. To this end, 
the set of direction vectors is generated on 3-sphere (residing 
in 4D space) via the low-discrepancy Hammersley sequence. 
It has also been shown that the resulting set of vectors is 

more uniformly distributed on a 3-sphere as compared to that 
generated by a uniform angular coordinate system. The ability 
of QEMD to extract common modes within multichannel data is 
demonstrated by simulations on both synthetic and real-world 
signals. 

Index Terms- Quadrivariate signal analysis, Empirical mode 
decomposition (EMD), Intrinsic mode functions (IMFs), multi­
scale analysis, EEG artifact separation, RGB image decompo­
sition. 

I. INT RODUCT ION 

The empirical mode decomposition (EMD) algorithm 
has become an established tool for the decomposition and 
time-frequency analysis of nonlinear and non-stationary sig­
nals [1]. Using EMD, the original signal is decomposed as a 
linear combination of intrinsic oscillatory modes, called In­
trinsic Mode Functions (IMF)s. The IMFs are defined in such 
a away that the subsequent application of Hilbert transform 
provides meaningful instantaneous frequency estimates [2]. 
Due to the fully data driven nature of EMD, it has found 
numerous applications in the analysis of real world nonlinear 
and non-stationary signals [3] [4]. 

The recent advances in engineering and biomedicine have 
given rise to new issues related to complexity, nonlinearity 
and multichannel dynamics in real world systems. These 
problems can be tackled more effectively if the resulting 
multichannel dataset is processed directly in the domain 
where it resides, that is, via algorithms designed specifically 
for multivariate signals. 

The need to develop EMD extensions is further accentu­
ated by the fact that recent multivariate extensions of EMD, 
including those for the processing of bivariate [5] [6] [7] 
and trivariate [8] signals, have shown considerable potential 
in information extraction, owing to their ability to extract 
common modes within the multivariate IMFs representing 
multichannel data [9]. This cannot be achieved by applying 
the standard univariate EMD algorithm to each channel 
separately. The bivariate and trivariate extensions of EMD 
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have, therefore, found applications in e.g. synchrony analysis 
of multichannel EEG signals and image fusion [9]. An 
extension of EMD capable of simultaneously processing any 
number of channels has also been recently proposed [10]. In 
this work, we aim to shed more light on the methodology 
suitable for the quadrivariate (quaternion) signals, and espe­
cially on the synchronization of information spread across 
multiple channels, which in turn paves the way for its use in 
data synchronization and fusion applications. 

An important step in multivariate extensions of EMD is 
the computation of the local mean of the signal. All existing 
methods employ multiple real-valued projections of the input 
signal in several directions, in their respective multidimen­
sional spaces, to calculate the local mean [6] [8]. To generate 
the direction vector in multidimensional spaces, the bivariate 
and trivariate EMD use uniform angular sampling; while 
the same idea can be used for a general class of n-variate 
signals using the uniform angular (hyperspherical coordinate) 
system, the multivariate EMD [10] employs a much improved 
low-discrepancy Hammersley based sampling to generate the 
direction vectors. In this paper, we consider the specific 
case of quadrivariate signals to show the superiority of 
the Hammersley based sampling method over the uniform 
angular sampling techniques. 

The paper is organized as follows: bivariate and trivariate 
extensions of EMD are discussed in Section 2. Section 3 
introduces the proposed quadrivariate EMD method, Section 
4 illustrates the mode alignment property of the proposed 
method on a synthetic quaternion signal. The potential of 
the proposed method (QEMD) in information extraction from 
noisy EEG signals and image decomposition has also been 
illustrated. 

II. EX I S T ING MULT IVA R IATE EXTEN S ION S OF 

EMP I R ICAL MODE DECOMPOSIT ION 

The standard Empirical Mode Decomposition (EMD) 
method decomposes the original signal into a finite set of 
oscillatory components, termed Intrinsic Mode Functions 
(IMFs). More specifically, for a real valued signal x( k), the 
standard EMD finds a set of N IMFs {ci(k)}�l' and a 
monotonic residue signal r(k), so that 

N 
x(k) = :�::>i(k) + r(k) (1) 

i=l 
To ensure well behaved time frequency spectra, IMFs ci(k) 
are defined so as to have symmetric upper and lower en­
velopes, with the number of zero crossings and the number 
of extrema differing at most by one. An iterative process 
called the sifting algorithm is employed to extract IMFs; for 



illustration, a sifting procedure for obtaining the first IMF 
from the signal x' (k) is outlined in in Algorithm 1. 

Algorithm 1 The standard EMD algorithm 

1: Find the locations of all the extrema of x'(k); 
2: Interpolate (using cubic spline interpolation) between all 

the minima (resp. maxima) to obtain the lower signal 
envelope, emin(k) (resp. emax(k)); 

3: Compute the local mean m(k) = [emin(k)+emax(k)J/2; 
4: Subtract the mean from the signal to obtain the "oscil­

latory mode" s(k) = x'(k) - m(k); 
5: If s(k) obeys the stopping criteria, d(k) = s(k) becomes 

an IMF, otherwise set x' ( k ) = s ( k) and repeat the 
process from Step 1. 

Once the first IMF is obtained, the same procedure is applied 
iteratively to the residual r(k) = x(k) - d(k) to extract the 
remaining IMFs. The standard stopping criterion terminates 
the sifting process only after the above condition for an IMF 
is met for S consecutive times [11]. 

A. Bivariate/Complex extensions of EMD 

The first complex extension of EMD [5] employed the 
concept of analytical signal and subsequently applied stan­
dard EMD to analyse complexlbivariate data; however, this 
method cannot guarantee equal number of real and imagi­
nary IMFs, thus limiting its applications. An extension of 
EMD which operates fully in the complex domain was first 
proposed in [7], termed rotation-invariant EMD (RI-EMD). 
The extrema of a complexl bivariate signal are chosen to be 
the points where the angle of the derivative of the complex 
signal becomes zero, that is, based on the change in the phase 
of the signal. The signal envelopes are produced by using 
component-wise spline interpolation, and the local maxima 
and minima are then averaged to obtain the local mean of 
the bivariate signal. 

The RI-EMD algorithm uses effectively only the extrema 
of the imaginary part of the complex signal, which results 
in envelopes based on only two projected directions. An 
algorithm which gives more accurate values of the local 
mean is the Bivariate EMD (BEMD) [6], where the envelopes 
corresponding to multiple directions in the complex plane 
are generated, and then averaged to obtain the local mean. 
The set of direction vectors for projections are chosen as 
equidistant points along the unit circle. The zero mean 
rotating components, embedded in the input bivariate signal 
then become bivariate/complex-valued IMFs. The RI-EMD 
and BEMD algorithms are equivalent for K = 4 direction 
vectors. 

B. Trivariate EMD 

An extension of EMD to trivariate signals has been re­
cently proposed in which the estimation of the local mean 
and envelopes of a trivariate signal is performed by taking 
projections along multiple directions in three dimensional 
(3D) spaces [8]. To generate a set of multiple direction vec­
tors in a 3D space, a lattice is created by taking equidistant 

points on multiple longitudinal lines on the sphere (obtaining 
so called "equi-Iongitudinal lines"). The 3D rotating com­
ponents are thus embedded within the input signal as pure 
quaternion IMFs. 

III. THE P ROPO SED QUA D R IVA R IATE EMD ALGOR ITHM 

In real-valued EMD, the local mean is computed by taking 
an average of upper and lower envelopes, which in turn, 
are obtained by interpolating between the local maxima and 
minima. However, in general, for multivariate signals the 
concept of local maxima and minima is difficult to interpret. 
Moreover, the notion of 'oscillatory modes' defining an IMF 
is rather confusing for multivariate signals. This has led to an 
idea of estimating the local mean of bivariate and trivariate 
signals by taking an average of their multiple real-valued 
projections along different directions [6] [8]. 

Similarly for quadrivariate signals, the local mean can be 
estimated by taking projections along different directions in 
4D spaces. The maxima of the projected signals are inter­
polated to yield multiple signal envelopes, which are then 
averaged to obtain the local mean of the quadrivariate signal. 
The idea of mapping an input quadrivariate signal onto mul­
tiple real valued 'projected' signals, to generate multidimen­
sional envelopes, can therefore be seen as a generalisation 
of the concept employed in the existing bivariate [6] and 
trivariate [8] extensions of EMD. The resulting quaternion 
valued IMFs represent rotational modes embedded within 
quadrivariate data. 

An important issue in this regard is the selection of 
direction vectors in 4D spaces, a necessary step for taking 
signal projections. These vectors must be chosen so as to be 
uniformly distributed in order to reduce the computational 
time and increase the accuracy of the algorithm. Since the 
direction vectors in 4D spaces can be equivalently repre­
sented as points on a 3-sphere (which resides in a 4D space), 
therefore, the problem of finding a suitable set of direction 
vectors can be treated as that of choosing a suitable sampling 
method on a 3-sphere. 

A. Uniform angular sampling 

As an extension of sampling in bivariate and trivariate 
EMD, a simple choice for finding the direction vectors in 
4D space would be to perform uniform angular sampling 
of a 3-sphere, using the so called hyperspherical coordinate 
system. To generate a pointset for a general case of an (n-l)­
sphere, consider the n-sphere with centre point C and radius 
R, given by 

n+l 
R= L (Xj-Cj)2. 

j=l 
(2) 

A coordinate system in an n-dimensional Euclidean space 
can then be defined to serve as a pointset (and the corre­
sponding set of direction vectors) on an (n-l)-sphere. Let 
{el, e2, . . .  , e(n-l)} be the (n-l) angular coordinates, then 
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Fig. I. Direction vectors for taking projections of trivariate signals on a 2-sphere generated by using (a) spherical coordinate system; (b) a low-discrepancy 
Hammersley sequence. 

an n-dimensional coordinate system having {xi}f=l as the 
n coordinates on a unit (n-1)-sphere is given by: 

X2 sin (h x cos e2 
sin el x sin e2 x cos e3 

Xn-l sinel x ... x sinen_2 x cosen_l 
sinel x ... x sinen-2 x sinen-l. (3) 

For a special case of n = 4, (3) can be used to generate a 
set of direction vectors on a 3-sphere for taking projections 
of a quadrivariate signal. Note that for n = 2 and n = 3, 
(3) corresponds, respectively, to the samples generated from 
polar and spherical coordinate systems. 

B. Sampling based on Hammersley sequence 

While the uniform angular sampling method provides 
satisfactory solution in the case of bivariate and trivariate 
signals, it produces largely non-uniformly distributed sample 
sets for higher dimensional signals. Even for trivariate sig­
nals, it generates the point set having greater concentration 
at poles of the sphere as compared to the equator (see Fig­
ure lea)). This effect is expected to be even more pronounced 
in the case of quadrivariate signals. To tackle this problem, 
we propose the sampling scheme to generate the point set 
(direction vectors) in 4D spaces via the low-discrepancy 
Hammersley sequence. This yields improved generalized dis­
crepancy estimates as compared to other sampling methods 
(including uniform angular sampling), and hence, provides 
more uniformly distributed sampling on a sphere [12]. This, 
in turn, gives a suitable set of direction vectors for generating 
signal projections and the corresponding signal envelopes, 
ensuring enhanced local mean estimates. 

To generate the Hammersley sequence, let Xl, X2, . . .  , Xn 
be the first n prime numbers; then the ith sample of a one 

dimensional Halton sequence, denoted by rf, is given by 

rX 
= 

ao + al + a2 + ... + � 
(4) , X x2 x3 xs+l 

where the base-x representation of i is given by 

i = ao + al x x + a2 x x2 + ... + as x XS (5) 

Starting from i = 0, the ith sample of the Halton sequence 
then becomes 

(6) 

The Hammersley sequence is used when the total number 
of samples N is known apriori; in this case, the ith sample 
within the Hammersley sequence is calculated as 

('jN Xl X2 Xn-l ) Z , ri , ri , . . .  , ri (7) 

For quadrivariate signals, n = 4 is used, and for trivariate 
signals, n = 3. For illustration, Figure l(b) and Figure 2 
show, respectively, the pointsets on the surface of the sphere 
(2-sphere) and hypersphere (3-sphere), generated by the 
low discrepancy Hammersley sequence. Observe that, as 
desired, the points generated in this way are more uniformly 
distributed. In Figure 2, ideally, the pointset should be plotted 
on a 3-sphere, however, for visualisation purposes, we can 
only use three 2-spheres. 

Consider an input quaternion signal q, and let xfh = 

{ x� , x� , x�, x�} denote a set of direction vectors along 
the directions given by angles ek = {e�, e�, en on a 
hypersphere (3-sphere). Then the proposed quaternion ex­
tension of EMD suitable for operating on general nonlinear 
and nonstationary quaternion time series is summarised in 
Algorithm 2. 

C. The Stopping Criteria for quadrivariate EMD 

The standard stopping criteria in EMD requires IMFs to 
be designed in such a way that the number of extrema and 
the zero crossings differ at most by one for S consecutive 
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Fig. 2. Direction vectors for taking projections of a quatemion signal (with N=4 components) on a unit 3-sphere generated by using a low discrepancy 
Hammersley sequence. For visualisation purposes, the pointset is plotted on three unit 2-spheres, defined respectively by the W XY, XY Z, and WY Z 
axes. 

iterations of the sifting algorithm. The optimal empirical 
value of S has been observed to be in the range of 2-3 [11]. 

Similarly, in [13], an improved stopping criterion is pre­
sented, which introduces an evaluation function based on the 
envelope amplitude, defined as a(t) = emax (t ) - emin (t) , 
so that the sifting process is continued till the value of the 
evaluation function, which is defined as f (t) = I r;:gj I, where 
met) is the local mean signal, is greater or equal to some 
predefined thresholds. In the multivariate EMD algorithm, 
we can apply both the above criteria to all projections of the 
input signal and stop the sifting process once the stopping 
condition is met for all projections. Another possible method 
may be to stop the sifting process once the stopping criteria 
is met for any one of the projected signals. However, it has 
been observed that it may not yield physically meaningful 
IMFs, especially in cases where large number of projections 
are considered to compute the local mean. 

IV. S IMULAT ION S 

We shall now illustrate the ability of QEMD to extract 
common modes present in multichannel data. For this pur-

Algorithm 2 Multivariate extension of EMD 

1: Calculate a projection, denoted by pfh (t), of the input 
signal q(t) along the direction vector xOk, for all k (the 
whole set of direction vectors), giving {pOk (tnf=l as 
the set of projections; 

2: Find the time instants {tfk } corresponding to the maxima 
of the set of projected signals pOk (t); 

3: Interpolate [tfk, q( tfk) 1 to obtain multivariate envelope 
curves {eOk(tnf=l; 

4: For a set of K direction vectors, the mean m(t) of the 
envelope curves is calculated as: 

1 K m(t) = 
K 

L eOk (t) 
k=l 

(8) 

5: Extract the "detail" d(t) using d(t) = x(t) - m(t). 
If the "detail" d(t) fulfills the stopping criterion for a 
quaternion IMF, apply the above procedure to x(t)-d(t), 
otherwise apply it to d(t). 



Original Signal 
10� 2� : 5� 10�. �'i 

SO · · . • . . XOlJllJIWJ :>-0mn!!] NO • : -.10 -2 . -5 -10 ' j -;';50 250 500 50 25
.
0 5001-:50 250 500 -:50�5 .

• 
0 5 ,I � 8 1>- � N 

:� 0 
. 

X 0 • i,!.O . ,!. 0 1 -5 . -5 . 1 >:5 . �5 
i 50�250 500 508250 500: 508250 500 508250 500 
I � O . . . . NO . . . .  100 . �11 I> . X • 1>- • I'l" 

IMFsi -5 . -5 . 1 -5 . -5 . l e'/a250 500
", 5

08250 50\/�250 500
(
/8250 500 

is 0 . . . . . • . . . X 0 • i >-0 . • . . Nl . • 
· -5 -5 1 -5 -5 : -: 50�250 500-: 5eO: I'-5t--:I:-1° 1'-5

08250 500 
:SO . . . . . . .

.

. . . . . . . . X0L::l::J i>-0CO NO 
• 

· -5 -5 1 -5 -5 : 10 5
08250 500

10 5
08250 500

:0
/8250 500 

(
/�250 500 

� SO . X 0 • . >-0 • i\P . . . . . . . .. . .. . .. . . I . • 1 • · ".� -5 1 -5 -5 '-"0 250 500 0 250 500 i 0 250 500 0 250 500 
Time Index Time Index i Time Index Time Index 

Fig. 3. Decomposition of two synthetic complex signals with components 
(W, X) and (Y, Z) obtained by two separate applications of the bivariate 
EMD algorithm. In general, the synchronization (mode alignment) among 
the four channels cannot be achieved as the input channels have been 
processed separately. 

pose, we have conducted simulations on both synthetic data 
and on real world EEG signals. For both data sets, a set 
of K = 512 direction vectors was used for taking signal 
projections. 

A. Mode alignment using multivariate IMFs 

The ability of the quadrivariate EMD algorithm to generate 
common scales embedded within the input quaternion signal 
is first demonstrated via simulations on a suitably designed 
synthetic signal; its four components (represented by W, X, 
Y and Z) are shown in the top row of Figure 3. The data 
set was designed from four sinusoids such that one tone was 
present in all the components of the quadrivariate signal, 
whereas the remaining three tones were made common in 
W Z, WY and W X Z components; two different realisations 
of white Gaussian noise were then added to the Y and Z 
channels. The resulting signal was then first processed by 
two separate applications of bivariate EMD algorithm [6], 
with W X and Y Z acting as two separate complex inputs. 
In Figure 3, decompositions obtained from applying the 
bivariate EMD to the two input signals (W, X) and (Y, Z) 
are respectively shown in the left and right hand columns. It 
can be observed that different number of IMFs were obtained 
from the (W, X) and (Y, Z) components, making it difficult 
to synchronize the common oscillatory modes. 

In the next step, all four channels were directly de­
composed using the QEMD as shown in Figure 4. It can 
be seen in this case that the common modes (tones) are 
accurately aligned within the same quaternion IMFs; the 
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Fig. 4. Decomposition of a synthetic quaternion signal (W, X, Y, Z), 
having multiple tones, obtained by the proposed QEMD algorithm, The syn­
chronization among multiple channels of the input data has been achieved, 
as illustrated by the alignment of similar frequency tones within the same 
IMFs. 

sinusoid common to all the components of the input was 
extracted in the IMFs W5, X5, Y5, and Z5; whereas 
the remaining three tones were also accurately extracted 
in the respective IMFs. It is also worth noticing that, as 
designed, the high frequency Gaussian noise added originally 
in the Y and Z components was extracted in the respective 
channels of first three IMFs, while the W and X channels 
of the same IMFs carried practically no information. The 
synchronization, among mUltiple channels of the input signal, 
achieved in this manner makes QEMD a natural candidate 
for data fusion applications. 

B. Denoising of real world EEG signals 

We next applied the proposed method to the real world 
electroencephalography (EEG) signals with the aim to sepa­
rate the brain electrical activity from unwanted artefacts such 
as the electrooculogram (EOG) and electromyogram (EMG). 
Solution to these problems is an important step for the 
accurate analysis of the information processing mechanism 
of the brain and is an active area of research [14]. Data used 
in these simulations were collected from 4 EEG channels 
(Fp1, Fp2, C3, C4), and subjects moved their eyes during 
the data collection resulting in ocular interference in recorded 
EEG signal. 

The four channels (Fp1,  Fp2, C3, C4) were then pro­
cessed via QEMD. Owing to the mode alignment property 
of the proposed algorithm, the decomposed EEG data was 
synchronized in multiple quaternion IMFs in such a way 
that the high frequency neurophysiological signals were 
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Fig. 5. Illustration of artefact removal from four EEG channels (Fpl, 
Fp2, 03 and 04) using quadrivariate EMD algorithm. The estimated 
muscle activity (artefact) has been shown in the middle column, whereas 
the denoised EEG signal is presented in the right column. 

contained in the lower index IMFs, while low frequency 
electrophysiological signals (EMG and EOG) were present 
in the high index IMFs. Due to the mode alignment property 
of the proposed method, a simple threshold on the IMF index 
was used to separate non-EEG related interference from the 
underlying brain activity. The EOG and clean EEG signal 
estimated in this way are shown in the middle and right 
hand column of Figure 5, with the original contaminated 
EEG signals shown in the left hand column. It is impor­
tant to note that such separation is difficult to achieve by 
applying univariate EMD on all the channels separately as 
this may result in spectrally uncorrelated components. For 
instance, in [14], a complex clustering technique is used 
in the frequency domain (Hilbert transform space) in order 
to identify spatially correlated modes from univariate EMD 
decompositions, however, to a certain extent, high frequency 
components were still present in the estimated EOG signal. 
There were no such problems noticed with QEMD as it 
effectively aligns the common modes present across multiple 
channels. 

C. Decomposition of RGB colored image 

The ability of EMD to separate the natural frequency 
modes in a signal can also be used to decompose an image 
into its constituent 'subimages' , where each 'subimage' cor­
responds to a separate frequency scale present in the original 
image [15] [16] [9]. We now illustrate the ability of our 
proposed QEMD method to decompose RGB based colored 
images into their constituent elements. This is possible due 
to the alignment of common frequency scales in Red, Green 

and Blue decompositions obtained via QEMD. 
To decompose the popular Lena image using QEMD, it 

was first represented in the RGB space. The three color 
channels (R, G and B) were then converted to vectors and 
combined to form a quadrivariate signal (the 4th component 
of the quadrivariate signal was made a zero vector) [17]. The 
resulting signal was then processed using the quadrivariate 
EMD. The IMFs obtained from this process were converted 
back to images and are shown in Figure 6, along with the 
original RGB image on the top left hand. It can be seen 
that the first few IMFs corresponding to the high frequency 
components carry the edge information within the signal; the 
low frequency components, such as the background colour, 
are extracted in the higher index IMFs. 
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VI. CONCLUS ION S 

An extension of Empirical Mode Decomposition (EMD), 
termed the quadrivariate EMD (QEMD), has been proposed 
for the processing of quadrivariate signals. This is achieved 
by taking multiple real-valued projections of the input signal 
along multiple directions on a 3-sphere obtained by using 
the low discrepancy Hammersley sequence. The ability of the 
proposed method to extract common rotational modes across 
the signal components has been demonstrated via simulations 
on carefully designed synthetic data sets. The potential of 
the algorithm in the denoising of a real world nonlinear non­
stationary EEG signal and in color image decomposition has 
also been demonstrated. 
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