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a b s t r a c t 

Radiofrequency catheter ablation is one of the commonly available therapeutic methods for patients suf- 

fering from cardiac arrhythmias. The prerequisite of successful ablation is sufficient energy delivery at the 

target site. However, cardiac and respiratory motion, coupled with endocardial irregularities, can cause 

catheter drift and dispersion of the radiofrequency energy, thus prolonging procedure time, damaging ad- 

jacent tissue, and leading to electrical reconnection of temporarily ablated regions. Therefore, positional 

accuracy and stability of the catheter tip during energy delivery is of great importance for the outcome of 

the procedure. This paper presents an analytical scheme for assessing catheter tip stability, whereby a se- 

quence of catheter tip motion recorded at sparse locations on the endocardium is decomposed. The spa- 

tial sliding component along the endocardial wall is extracted from the recording and maximal slippage 

and its associated probability are computed at each mapping point. Finally, a global map is generated, 

allowing the assessment of potential areas that are compromised by tip slippage. The proposed frame- 

work was applied to 40 retrospective studies of congenital heart disease patients and further validated 

on phantom data and simulations. The results show a good correlation with other intraoperative factors, 

such as catheter tip contact force amplitude and orientation, and with clinically documented anatomical 

areas of high catheter tip instability. 

Crown Copyright © 2018 Published by Elsevier B.V. All rights reserved. 
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. Introduction 

Heart rhythm disorders are serious conditions affecting the car-

iac contraction and output, which can lead to stroke and sudden

eath. Worldwide, 33.5 million people suffer from atrial fibrilla-

ion, with additional patients presenting with atrial and ventricu-

ar tachycardias, atrial flutter and other arrhythmias ( Chugh et al.,

014 ). Rhythm disorders are poorly tolerated in particular by pa-

ients with congenital heart disease (CHD), such as Tetralogy of Fal-

ot or univentricular hearts treated by Fontan procedure. In these

atients, the right ventricle has numerous scars after surgery and

he right atrium haemodynamics are often distorted by a baffle (to-

al cavopulmonary connection). Therefore, such patients are more
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rone to life-threatening arrhythmias ( Ernst et al., 2012 ). Because

f their pre-existing cardiac structural abnormality, scarred my-

cardial incisions, and abnormal blood flow patterns, the CHD co-

ort is deemed one of the most challenging patient groups when

t comes to the management of heart rhythm disorders ( Roy et al.,

016 ). 

Radiofrequency catheter ablation is one of the established cu-

ative methods for cardiac arrhythmias. It consists of focal deliv-

ry of radiofrequency energy from the tip of a catheter introduced

ndovascularly and placed in contact with the endocardium. Most

ommonly, the ablation is performed during the arrhythmia in or-

er to target the correct site. However, for CHD patients who can-

ot sustain stable haemodynamics, many procedures have to be

erformed under sinus rhythm ( Roy et al., 2016 ), i.e., cardiac cy-

le length between 600 and 1000 ms. 

Despite its recognised merits, radiofrequency ablation still has

 relatively low success rate, with 80% suggested for atrial fibrilla-

ion after an average of 1.3 procedures per patient ( Cappato et al.,

010 ). The main causes of failure and need for repeat ablation are
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insufficient energy delivery to targeted tissue and incorrect local-

isation, both of which can be traced back to the instability of the

catheter tip positioning on the endocardium. 

While CHD patients are indeed a very challenging cohort for

arrhythmia treatment, the concerns related to catheter tip stabil-

ity are of primary importance in all radiofrequency ablation pro-

cedures, irrespective of the patient group. For procedures such as

focal ablation of single arrhythmia sources, the need for catheter

tip position accuracy is paramount, but it is also an important fac-

tor in circular isolation of pulmonary veins for treatment of atrial

fibrillation and in linear transection of macro-reentrant tachycardia

circuits. This is because both procedures are performed as a series

of closely positioned point-wise ablations. Several clinical studies

analysed the continuity of ablations produced by different opera-

tors during pulmonary vein isolation in left atria and it was con-

cluded that the pulmonary vein ostiae were among the most chal-

lenging anatomical locations to ablate ( Neuzil et al., 2013; Maki-

moto et al., 2014 ). 

Two notable developments are currently employed by the inter-

ventionist in order to improve guidance at the ablation site: elec-

troanatomical mapping and contact force sensors. Electroanatomi-

cal mapping systems such as CARTO (Biosense Webster, Diamond

Bar, CA, USA) or EnSite (St Jude Medical, St Paul, MN, USA) en-

able real-time tracking of the catheter tip in an electromagnetic

field and subsequent building of the anatomy by spatially inter-

polating the positions at which the catheter touches the endo-

cardium. Simultaneous electrical data, such as electrogram volt-

ages, local time activation, and impedance, are overlaid on the re-

constructed anatomy as colour maps. At the advent of cardiac abla-

tion, clinicians guided their catheter positioning by the consistency

of electrogram amplitudes at sites of good contact ( Squara et al.,

2014 ). However, electrical values change after ablation, rendering

the method unreliable during the energy delivery itself. 

Recent-generation catheters such as the THERMOCOOL

(Biosense Webster, Diamond Bar, CA, USA) or the TactiCath

(St Jude Medical, St Paul, MN, USA) incorporate contact force

sensors at the tip. Contact force has become a measure of catheter

stability and the force-time integral an estimation of the lesion

quality. However, Shah and Namdar (2015) were among the

first to acknowledge the possibility of catheter tip sliding under

consistent amplitude of the contact force, which they defined

as spatial instability. The authors distinguished between spatial

stability, quantified by the sliding distance, and temporal stability,

measured by contact force amplitude and force-time integral,

concluding that force amplitude information alone was not a

measure of good contact. 

The catheter tip trajectory is a summation of the respiratory

and cardiac motions of the chamber wall at the catheter con-

tact point and of a third component of tip slippage along the

endocardium. This third component has been neglected in stabil-

ity studies so far, with most of the analysis driven by compen-

sating respiration in intraoperative data. For example, the oscil-

latory motion of the catheter was gated in order to improve the

electroanatomical mapping, assuming that the largest component

influencing the map accuracy was the respiration ( Klemm et al.,

2007 ). Ignoring the other signal components caused an error com-

parable to the amplitude of the respiratory motion itself, thus lim-

iting the applicability of the method. 

While respiratory gating has become an available option in

electroanatomical mapping systems, efforts have been made to cor-

rect fluoroscopy images used as alternative guidance for the same

type of cardiac procedures. This was achieved by tracking either

the diaphragm or the reference catheters, such as the one in the

coronary sinus, in a series of fluoroscopic images ( King et al., 2009;

Sundar et al., 2009; Ma et al., 2010; Panayiotou et al., 2012 ). The

motion was decomposed either using bandpass filters or Principal
omponent Analysis (PCA), whereby it was assumed that the signal

ontained only oscillatory components of cardiac and respiratory

otion, thus ignoring any spatial drift which none of the methods

ould be able to capture. 

As an increasing number of procedures involve the use of elec-

roanatomical maps and electromagnetically tracked catheters, the

ip position recordings have also been analysed. Electroanatomi-

al mapping systems enable the tracking and the export of the

atheter tip position at each sparse mapping point for 2.5 s. This

cquisition window length is a setting of the electroanatomical

apping system and allows for endocardial position synchronisa-

ion fo all mapping points to the same cardiac phase. Bandpass

ltering was applied to these positional signals in order to re-

over cardiac and/or respiratory motion ( Porras et al., 2013; Rou-

ol et al., 2013 ). The frequency of the cardiac passband was com-

uted from the electrocardiogram (ECG), while the unknown res-

iratory rate was approximated to the average healthy subject rate

f 18 breaths/min ( Roujol et al., 2013 ). However, the 2.5 s-long sig-

al contained only a small number of oscillations, which affected

he bandpass filter robustness in accurately recovering the compo-

ents. 

Independent Component Analysis (ICA) ( Hyvaerinen and

ja, 20 0 0 ) is a source separation method commonly applied to

uperimposed signals. With bandpass filtering requiring a high

scillatory content in the analysed signal, PCA only being able

o decompose oscillatory components similar in all directions,

nd ICA assuming statistically independent components, there

s a need for an adaptive, data-driven decomposition method.

ultivariate Empirical Mode Decomposition (MEMD) ( Rehman and

andic, 2010; Mandic et al., 2013 ) was applied with better results

han the other methods ( Constantinescu et al., 2015 ). The method

s an iterative process through which an intrinsic mode function

IMF) is extracted at each step using the so-called sifting process.

he sifting process repeatedly removes a local mean from each

ifting input of a given multivariate signal, which results in a set

f IMFs in descending order of their frequency. 

In this paper, a catheter ablation guidance framework is pre-

ented based on the extraction of the motion components in

he electromagnetically tracked catheter tip position signal using

EMD. Aside from the cardiac and respiratory components well

ocumented in previous work, the focus of the decomposition re-

ults is a third previously unaccounted for component, the slid-

ng motion along the endocardium. The drift during a fixed frame

f 2.5 s is quantified and the maximal slippage for each mapping

oint is computed. Simultaneously, the IMFs are fed into a Dy-

amic Bayesian Network (DBN) parameterised for each mapping

oint, modelling the dependencies of cardiac, respiratory and drift

otion from one time point to the next. Finally, the conditional

robability of the maximal slippage is computed from a multivari-

te normal regression model and overlaid on the electroanatomical

ap. A complete anatomy-specific probabilistic map of slippage is

enerated from all available mapping points. The key steps of the

nalysis flow are illustrated in Fig. 1 . In order to assess the efficacy

f the method, the proposed framework was tested on 40 elec-

rophysiology studies of CHD patients and additional prospective

alidation was performed on phantom and simulated data. 

The present work is an extension of ( Constantinescu et al.,

015 ), with significant changes and adaptations in the decompo-

ition algorithm. It also eliminates the use of a Gaussian mixture

odel fit in the computation of slippage probabilities, thus deem-

ng the probabilistic method more generalisable to non-Gaussian

lippage components. Furthermore, the new method was validated

n 40 patients, supported by detailed simulation and phantom ex-

eriments. 
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Fig. 1. Catheter tip stability is a major concern in radiofrequency ablation of cardiac arrhythmias. Both cardiac and respiratory motion can cause catheter tip movement. In 

this paper, we account for an additional motion component, i.e., catheter tip slippage along the endocardium. A novel multivariate approach to EMD is used to extract the 

three components and the slippage is modelled in a DBN to compute the probability of the maximal slippage value at each sparsely sampled mapping point. 
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Algorithm 1: Pseudo-code of the MEMD algorithm ( Rehman 

and Mandic, 2010; Mandic et al., 2013 ). 

Data : x ( t) = [ x 1 (t) x 2 (t) … x P (t) ] multivariate signal of P 

channels. 

Result : IMFs 

while x (t) is not a monotonic function (residual) do 

while no valid IMF do 

1. Generate Q uniformly sampled points on a (P- 
1)-dimensional sphere using the Hammersley 
sequence. 

2. Establish Q direction vectors v q , q = 1 , Q . 

3. Compute the projections w q (t) . 

4. Find the time stamps t e in w q (t) which repre- 
sent extrema locations in all of its components. 

5. Compute the correspondent extrema in the 
original multivariate signal x ( t e ). 

6. Interpolate the multivariate extrema to con- 
struct the multivariate minima and maxima en- 
velope curves x min (t) and x max (t) . 

7. Calculate the local mean x avg (t) = 

x min (t)+ x max (t) 
2 . 

8. Subtract x avg (t) for the potential IMF at this it- 
eration d ( t) = x ( t) - x avg (t) . 

if 

if d (t) has a mean close to zero and the number of zero 

crossings and extrema differ by at most one then 

d ( t) is an IMF. 

x ( t) = x ( t) - d ( t). 

else 
x ( t) = d ( t). 
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. Materials and methods 

.1. Catheter tip motion decomposition 

The catheter tip motion is a superimposition of three types of

otion: two oscillatory components of cardiac contraction and res-

iration and a monotonic endocardial slippage component. More-

ver, each constitutive signal is represented by its 3D components.

he extraction of the three physiological signals in each direction

oses a challenge often encountered in biomedical signal process-

ng and solved commonly through spectral windowing or Blind

ignal Separation. Spectral windowing is based on frequency do-

ain analysis, whose accuracy depends on the oscillatory content

f the mixed signal. In turn, Blind Signal Separation techniques,

uch as ICA or PCA, rely on statistical independence properties of

he signal components. The performance of these methods is lim-

ted if the assumptions are not met, as is the case of the short

atheter tip motion recordings and the highly dependent respira-

ory and cardiac signals. An alternative approach is (Multivariate)

mpirical Mode Decomposition ((M)EMD), which uses the local in-

tantaneous frequency and amplitude of the signal at each time

tamp, thus better accommodating the physiological signal than

pectral filtering, while also not forcing statistically independent

omponents. 

.1.1. Multivariate empirical mode decomposition (MEMD) 

MEMD can be used to extract the cardiac motion, respiration,

nd slippage from the superimposed Cartesian position signal x of

he catheter tip as in Eq. (1) , where M is the number of oscilla-

ory components (IMFs), N the number of samples, P the number

f channels in the multivariate signal, i.e., 3 for the Cartesian posi-

ion; a m, k is the amplitude value which modulates the underlying

scillation �m 

of the m -th IMF at time stamp k , and r is the resid-

al trend vector for each channel. The multivariate channels were

rojected along specified directions in order to ensure the same

umber of IMFs in all channels and the same frequency and am-

litude range for the IMFs of the same order. The extrema at each

teration were computed in the projection space and then interpo-

ated in order to obtain meaningful envelopes in the original space

 Algorithm 1 ). 

 i,k = 

M ∑ 

m =1 

a m,k �m,k + r k , i = 1 , P ; k = 1 , N (1)

.1.2. Noise-Assisted (NA)-MEMD 

Despite the capability of MEMD in extracting physically mean-

ngful components, mode-splitting, i.e., one of the physiologi-

al signals being divided among more than one IMF of the

ame frequency, can occur. This is caused by the sub-Nyquist
ampling of local extrema and thus the aliasing IMF spectra.

r Rehman et al. (2013) suggested the addition of noise channels

n as high a number as possible, in order to cancel out the effect

f the artificial input. A high enough number of noise channels

ot only ensures a uniform population in the frequency spectrum,

ut also little dependency among the input channels, resulting in

etter decomposition ( Looney et al., 2015 ). The subsequent Noise-

ssisted (NA)-MEMD method decomposed a m + n WGN 

multivari-

te signal and retained only the first m IMFs, where m is the order

f the original multivariate signal and n WGN is the number of white

aussian noise channels. However, the computational costs of NA-

EMD increase with the number of noise channels and an analysis

n the optimal number should be performed. 

.1.3. Adaptive-projection intrinsically transformed (APIT)-MEMD 

The multivariate input is a superposition of signals of different

ower. Moreover, with the addition of a limited and not infinite
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number of noise signals, the inter-channel correlation increases.

Both of these aspects may adversely influence the decomposition.

Theoretically, this problem can be alleviated with a high number of

uniformly sampled projection vectors, but the computational costs

do not justify the solution. Instead, the computation of adaptive

projection directions at each iteration in the MEMD sifting was

proposed, leading to Adaptive-Projection Intrinsically Transformed

(APIT)-MEMD ( Hemakom et al., 2016 ). 

The Hammersley uniform sampling is preceded by a stage of

PCA which computes the first eigenvector as the direction of the

power imbalance among potential signal components, e.g. respira-

tory vs . cardiac motion. The direction vectors generated using the

Hammersley sequence are then redirected towards the first prin-

cipal component eigenvector by a factor α. The direction vectors

become ˆ v q = 

v q + ασ
| v q + ασ| , where σ is the eigenvector of the first prin-

cipal component ( Algorithm 2 ). 

Algorithm 2: Pseudo-code of the APIT-MEMD algorithm 

( Hemakom et al., 2016 ). 

Data : x ( t) = [ x 1 (t) x 2 (t) … x P (t) ] multivariate signal of P 

channels. 

Result : IMFs 

while x ( t) is not a monotonic function (residual) do 

while no valid IMF do 

1. Apply PCA on the multivariate signal x ( t) and 

retain the first eigenvector σ as the principal 
direction of power imbalance among the chan- 
nels. 

2. Perform steps 1 and 2 of MEMD in Alg. 1. 

3. Relocate the direction vectors using ˆ v q = 

v q + ασ
| v q + ασ| , with α∈ (0,1). 

4. Perform steps 3–7 of MEMD in Alg. 1. 

if 

if d (t) has a mean close to zero and the number of zero 

crossings and extrema differ by at most one then 

d ( t) is an IMF. 

x ( t) = x ( t) - d ( t). 

else 
x ( t) = d ( t). 

2.1.4. Extraction of cardiac, respiratory and slippage components 

For each sequence of tip position recordings, noise-assisted

APIT-MEMD was applied. Due to the computation of the IMFs as

average of the envelope signals, the MEMD algorithms provided an

intrinsic sorting of the IMFs by their instantaneous frequency, e.g.

from the highest frequency of noise to the lowest frequency, e.g.

the trend. This feature was used in the identification of the car-

diac, respiratory and slippage components in each set of decom-

posed IMFs. 

Firstly, the selection of the cardiac component was performed.

The use of the noise-assisted method ensured that no mode-

splitting occurs. Therefore, given the exact heart rate from the ECG,

a single component was sought, i.e., the one with the periodicity

closest to the ECG. The periodicity was quantified by the average

of all N instantaneous frequencies, whereby N is the length of the

position recording. 

Secondly, the respiratory and slippage components were es-

timated. Unlike the cardiac motion, there was no ground truth

for the respiratory rate and also the CARTO signal is too short

for a precise estimate. Therefore, a window of 12–40 strokes/min,

the common physiological range of respiratory frequency varia-

tion, was defined; all IMFs of frequency within the defined range

were summed into one respiratory component. The same proce-
ure was performed for all remaining IMFs of frequency lower

han 12 min 

−1 , which were summed into the slippage. 

.2. Probabilistic slippage prediction 

The time series of the recorded catheter tip signal and of the

xtracted components were modelled in a DBN ( Fig. 2 ), where each

ime stamp had corresponding values of instantaneous cardiac C k ,

espiratory R k and slippage S k motion amplitudes, as well as the

easured value of the cumulated motion T k . The conditional prob-

bility of slippage P(S k |C k ... 1 , R k ... 1 , T k ... 1 ) describing the occurrence

f a drift value S k at time stamp k was computed from a multi-

ariate normal regression model parameterised with the predictors

 k ... 1 , R k ... 1 , T k ... 1 , which are the extracted location-specific com-

onents. The regression model can be described by Eq. (2) , with

s the matrix of regression coefficients. The response vector S is

he amplitude of slippage at each time point, computed from its

artesian components. The tip position T is included in the predic-

or matrix as its 3D components T x , T y , and T z , while C x , C y , C z

nd R x , R y , R z are the Cartesian components of the APIT-MEMD

ecomposed cardiac and respiratory motion, respectively. 

 = [ C x C y C z R x R y R z T x T y T z ] βS + e S (2)

he multivariate normal regression model imposed the regression

rror e S to be normally distributed with mean 0, allowing for the

robabilities of each error e S, k , k = 1 , N , N being number of sam-

les in the signal, to be computed from the normal distribution

tself. Furthermore, it was assumed that if a slippage value fitted

he regression model accurately, i.e., it could be predicted, its error

ould be small and the probability would be high. Thus, one-to-

ne mapping of the error probability on the slippage probability

ould be performed. Finally, the maximal slippage in the time se-

ies and its corresponding probability could be extracted for each

apping point. 

.3. Catheter tip motion estimation 

Based on the maximal slippage probability at each sampled

oint on the endocardium, a global stability map was gener-

ted. The slippage information was overlayed on the existing elec-

roanatomical map. For each mapping point, an ellipsoid with the

xial length equal to the slippage in that direction was created. The

llipsoids were colour-coded according to the slippage probability

t a given mapping point. 

.4. Simulation data 

Datasets of catheter tip movement were generated by superim-

osing periodic cardiac and respiratory motion and linear mono-

onic slippage of 2 mm/s. The heart rate, amplitude and phase of

he cardiac motion were set as the median measured in the pa-

ient data, i.e., 64.62 beats/min, 1.09 mm, 0.54 mm, and 1.7 mm of

otion amplitude, and −2.88 rad, 3.01 rad, and −0.03 rad of phase

ifference in each Cartesian direction, respectively). 

The respiratory signal followed the mathematical expression

n Eq. (3) , adapted from ( Lujan et al., 1999 ), with fixed amplitude

 r (4.3 mm, 3.5 mm, and 0.21 mm in each direction, medians

f patient data) and fixed phase difference between channels φ
1.79 rad, 1.8 rad, and −3.87 rad as computed from the patient

ata). 

 (t) = A r (1 − 2 · sin 

2 n (2 π f r t + φ)) , n = 3 (3)

he respiratory rate f r varied between 12 breaths/min and

0 breaths/min, the range of healthy human breathing, yielding in

otal 29 values. The phase difference between the respiratory wave

nd the cardiac wave, i.e., the time difference from the beginning
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Fig. 2. DBN describing the transitions between consecutive states and the inter- and intra-state conditional dependencies. The cardiac (C k ) and respiratory (R k ) motion 

and the relative slippage (S k ) encode the values decomposed by the APIT-MEMD algorithm, while T k is their summation at time stamp k . The values are also followed in 

subsequent time stamps as C k +1 , R k +1 , S k +1 and T k +1 . 
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f the simulation, was also varied between 0 and 99% of the

espiratory period, generating in total 100 values. Thus, a grid of

ombinations of respiratory rates and phase differences was cre-

ted for the cumulated signal. In total, 29 × 100 3D signals were

ecomposed. The added signal had the length of a regular CARTO

apping point recording of 2.5 s and was sampled at 1 kHz. 

The choice of varying only the respiratory rate and the phase

ifference was motivated by their importance when decomposing

 short signal. Firstly, it was hypothesised that a high respiratory

ate interfered with the extraction of the cardiac signal. Secondly, a

.5 s window of recording only allowed for an incomplete capture

f the respiratory wave. Depending on the start of the window, i.e.,

hase difference, the captured sequence included the wave peak,

n which case it was assumed that the signal decomposition will

e more accurate, or only a linear section, which might cause the

espiratory wave to be indistinguishable from the slippage. 

.5. Phantom data 

A four-chamber cardiac phantom was 3D-printed in a PolyJet

igital material mix of TangoPlus and VeroClear (shore durome-

er A50) on a Stratasys Objet500 Connex3 printer (Stratasys, Eden

rairie, MN, USA) from MRI images of a normal subject. The images

ere segmented by a clinician in the CARTO Segmentation Mod-

le (Biosense Webster, Diamond Bar, CA, USA) and then processed

ith MeshLab ( Cignoni et al., 0 0 0 0 ) and Meshmixer ( Schmidt and

ingh, 2010 ) to create the final STL file. 

The two halves of the heart are completely separated, with the

tria and the ventricles directly linked, without valves. The phan-

om’s vascular connections were the superior and inferior venae

avae and the pulmonary artery on the right side and the left and

ight pulmonary veins and the aorta on the left side ( Fig. 3 (a)). For

ach of the right heart chambers, a soft balloon was molded to fit

nside the RA and RV, respectively ( Fig. 3 (b)). The balloons were

nserted into the phantom one at a time and inflated and deflated

sing a pump at a fixed rate of 60 beats/min, to mimic the con-

ractile motion of the heart. The entire phantom was then placed

n a translational motion rig powered by a linear motor (Faulhaber,

choenaich, Germany). The rig ( Fig. 3 (c)) was designed to generate

he diaphragmatic motion in Eq. (3) , with maximal respiratory dis-

lacement of 20 mm ( A r = 10 mm) and fixed respiratory rate of

5 breaths/min ( f r = 0.4 Hz). 

For the RA, the superior vena cava and the pulmonary artery

ere connected to the inlet and the outlet of the pump, respec-

ively, whereas the inferior vena cava, with the balloon at atmo-

pheric pressure, was used to insert the catheter ( Fig. 3 (d)). For

he RV, the pump connections were the two venae cavae, while

he pulmonary artery was used to access the chamber ( Fig. 3 (e)). 

The superimposed signal was captured with an Aurora electro-

agnetic tracking device (NDI, Waterloo, Ontario, Canada) which

ecorded data from a 5-DOF catheter sensor at 40 Hz. The catheter

as affixed to a single point on the balloon, simulating the map-

ing at one endocardial position, and then reattached at the next
osition. The signal length for each point was 140 s: for the first

0 s, the catheter tip moved only under cardiac and respiratory

nfluence, and the next 70 s, the catheter was additionally moved

rbitrarily, in order to simulate the slippage ( Fig. 4 ). In total, 15

oints were recorded in the RA and 19 points in the RV. 

.6. Patient data 

Forty retrospective electrophysiology studies of CHD patients

ere used to assess the proposed methods on real clinical data.

he datasets were collected using a force-sensing NAVISTAR map-

ing and ablation catheter (Biosense Webster, Diamond Bar, CA,

SA). The positions of the electromagnetic sensor, as well as those

f four additional electrodes within 1.5 cm from the tip had been

ecorded in CARTO 3 at 60 Hz over 2.5 s for each 3D mapping

oint. The reference system was built by a second electromagnet-

cally tracked catheter inserted into the coronary sinus, whose tip

osition was recorded simultaneously to the mapping catheter po-

ition. In addition to the sparse position recordings and their corre-

ponding ECG, the bipolar voltages at each mapping point were ex-

orted for further correlation and validation of the cardiac motion.

oreover, the fast anatomical map of each study was exported in

rder to build the global probabilistic map in the last stage. 

For each mapping point, the cardiac period was computed as

he RR interval on the ECG. Any mapping points outside sinus

hythm were excluded from the dataset. According to the clini-

al literature, sustained arrhythmia is avoided in CHD patients and

as deemed irrelevant for this application ( Ernst et al., 2012 ). 

The sinus rhythm filtering resulted in 723 mapping points from

0 electrophysiology studies, out of which 555 also had reference

atheter recordings. The points had been collected in 19 right ven-

ricles (RV), 11 right atria (RA), 5 left atria (LA), 4 total cavo-

ulmonary connection (TCPC), 1 left superior pulmonary vein. 

Additional contact force amplitude and orientation relative

o the catheter shaft had been recorded simultaneously to the

atheter position for 110 of the 555 mapping points. The 3D con-

act force was decomposed along the Cartesian directions accord-

ng to Eq. (4 ), 

 global = 

O · F local 

| O | , (4) 

here O = [ E x − T x , E y − T y , E z − T z ] 
T is the orientation of the

atheter tip given by the tip coordinates [ T x T y T z ] 
T and the coor-

inates of the next electrode on the catheter shaft [ E x E y E z ] 
T . 

Moreover, F local = | F | · [ sin (α) cos (β) , sin (α) sin (β) , cos (α)] T is

he cylindrical coordinate representation of the force with respect

o the catheter tip. The force amplitude | F |, as well as its axial and

ateral angles compared to the catheter shaft, α and β , respec-

ively, were exported from CARTO. Eq. (4 ) transformed the force

alues from the local to the global reference frame, in which the

atheter tip slippage was computed. The product in this equation

s the dot product which transforms the local axes into the global

artesian axes. An example of catheter tip trajectory and a snap-

hot of the corresponding force orientation is shown in Fig. 5 . The
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Fig. 3. (a) Surface model of the 3D-printed heart phantom. The blue in-/outlets belong to the right chambers and the red ones to the left. 1 – Aorta, 2 – Pulmonary artery, 

3 – Superior vena cava, 4 – Inferior vena cava, 5 – Right pulmonary veins, 6 – Left pulmonary veins. (b) Inflatable balloons for the RA and the RV into which the catheter 

was inserted. The blue dots mark the targeted points. (c) Phantom experiment setup, with the respiratory motion rig simulating the diaphragm. (d) Pump connections and 

catheter insertion for RA experiments. (e) Pump connections and catheter insertion for RV experiments. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 4. Example of the 3D catheter tip motion for one point on the heart phantom. The first 70 s are taken under cardiac and respiratory motion only. The red dotted line 

shows the beginning of the slippage sequence. The first row shows the recorded sensor position and the second row shows the signal trend by which the onset of slippage 

was detected. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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catheter force information was used to correlate and thus vali-

date the slippage components in each Cartesian axis. A correla-

tion coefficient between slippage and force amplitude was com-

puted for each Cartesian direction. Finally, in order to correct for

any bulk motion of the patient or for a potential drift of the refer-

ence catheter, which might have introduced an offset in the data,

the reference catheter signal was subtracted from the mapping

catheter recording. 

3. Results 

3.1. Catheter tip motion decomposition 

3.1.1. Simulation results 

Fig. 6 shows the decomposition results for a combination of 29

respiratory rates and 100 phase shifts of the respiratory wave. The

cardiac signal recovery error increased three-fold between the res-

piratory rates of 35 breaths/min and 40 breaths/min ( Fig. 6 (a) and
b)). On the other hand, the respiratory component was best recov-

red for 20 breaths/min to 35 breaths/min ( Fig. 6 (c)) due to a high

umber of oscillations in the recording window, but the extracted

mplitude lacked in robustness, varying with the phase difference

 Fig. 6 (d)). 

The median performance of APIT-MEMD was also compared

ith PCA and ICA applied on the 2.5 s-long simulated data.

ourier analysis on the short data was unable to recover the

requency spectrum required for bandpass filtering. The results

or APIT-MEMD, PCA, and ICA are listed in Table 1 . While the

erformance of all three methods on the respiratory wave was

ather poor, the cardiac wave extraction results showed robustness

f APIT-MEMD compared to PCA and ICA, which yielded very

ood results in frequency estimation, but failed in amplitude

omputation due to mode-mixing and the cardiac signal being

plit over all components. 

Finally, the component of most interest was the slippage. The

erformance of the algorithms was quantified here by the correla-
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Fig. 5. (a) Example of force orientation (green), catheter tip (blue), tangential tip motion vector (red), and the catheter tip trajectory over an entire 2.5 s sequence (black). 

The five time points selected are also displayed as plots in (b). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 

of this article.) 

Fig. 6. Artificial signal decomposition results: (a,c) – cardiac motion; (b,d) – respiration. The decomposition accuracy worsened with increasing respiratory rate, due to 

overlaps with the cardiac spectrum. For respiratory rates under 20 breaths/min, the respiratory component was mistaken for the linear slippage due to insufficient oscillations 

in the 2.5 s simulation window. 

Table 1 

Comparison of cardiac and respiratory motion recovery errors as well as correlation coefficients be- 

tween recovered and ground-truth slippage for APIT-MEMD, bandpass filtering, PCA, and ICA applied 

on the phantom and simulated data. N/A – not available. 

Cardiac motion [%] Respiratory motion [%] Slippage 

Frequency Amplitude Frequency Amplitude Corr. coeff. 

simulations APIT-MEMD 4.77 5.45 22.11 17.65 0.95 

bandpass N/A N/A N/A N/A N/A 

PCA 0.74 86.61 19.39 20.41 0.02 

ICA 0.70 57.99 27.88 24.53 0.12 

phantom APIT-MEMD 8.57 30.28 36.73 48.91 0.68 

bandpass 1.33 570.13 6.97 77.02 0.51 

PCA 16.40 35.84 44.35 21.09 0.44 

ICA 16.02 37.34 37.34 24.16 0.44 
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Fig. 7. X-ray images of the phantom experimental setup for point acquisitions in RA (left) and RV (right) with 5 recorded points in the RA and 7 in the RV. CT markers 

were placed at each point. The markers’ movement is colour-coded and points of the same colour belong to the same marker, at different positions in time. The locations 

were segmented from 233 frames in the RA and 261 frames in the RV. The respiratory motion was unidimensional, following an oscillatory wave with amplitude 10 mm 

and frequency 15 breaths/min. 
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tion coefficient between the extracted signal and the ground truth.

APIT-MEMD yielded the highest correlation coefficient among all

algorithms, thus demonstrating its practical value for in vivo appli-

cations. 

3.1.2. Phantom experiments 

The moving heart phantom was scanned using cone-beam CT in

an Innova 4100 (GE Healthcare, Chicago, IL, USA). Fig. 7 shows X-

ray images in left-anterior-oblique view at 60 ° tilting of the C-arm.

The left figure shows the range of motion of 5 CT markers in the

RA, while the right figure shows 7 points in the RV. The position

of the CT markers was segmented in 233 RA images and 261 RV

images. 

The controlled translational rig motion offered ground truth for

the respiratory motion. Moreover, the phantom data of consider-

ably longer recording time allowed for further validation of the

proposed decomposition method. The additional validation data

was extracted in the form of local cardiac and respiratory motion

pattern by using a second-order bandpass filter calibrated at the

known motion frequencies mimicking heart and diaphragm oscil-

lations, i.e., 60 beat/min and 15 breaths/min. The application of

frequency-based methods was possible due to the high oscillatory

content in the 140 s recordings. Finally, the slippage component

was the residual after subtraction of the previous two oscillations,

calculated from the onset of the catheter manipulation as in Fig. 4 .

This process was performed for each of the 34 points individually. 

Table 1 shows the comparative results of applying the pro-

posed APIT-MEMD, bandpass filtering, PCA and ICA to the collected

phantom data. The results are average values over the 34 datasets,

whereby one dataset comprised of the first 2.5 s of catheter ma-

nipulation, in order to preserve the short-recording settings avail-

able in the CARTO system. Bandpass filtering generated the high-

est errors in motion amplitude recovery despite yielding the best

frequency estimations. PCA and ICA performed similarly with ade-

quate estimates of motion amplitude. Finally, APIT-MEMD yielded

a good estimate of heart rate; however, it did encounter difficulties

in estimating the parameters of respiratory motion because of the

short signal. 

The performance of slippage extraction was also quantified. The

residual trend in Fig. 4 served as ground truth. APIT-MEMD again

yielded the highest correlation coefficient between computed and

ground truth slippage. Fig. 8 (a) shows the slippage correlation val-

ues in each motion axis and Fig. 8 (b) shows the mean slippage

per second and the corresponding maximum slippage reached in

each study. Moreover, an analysis over the ability of APIT-MEMD to
ecompose the three different motion patterns was performed for

arying signal acquisition lengths ( Fig. 8 (c) and (d)). While the car-

iac motion does not benefit from the increasing window length

red curve – heart rate, green curve – amplitude), the respiratory

otion estimation improves significantly with the window length,

hus showing that the 2.5 s of signal acquisition are not optimal

nd should increase to at least 4 s, i.e., the period of respiratory

otion chosen in these experiments. Additionally, the slippage cor-

elation coefficient also increases with the length of the acquisition

indow, despite an outlier at 3 s. This increase is due to the better

stimate of respiratory motion, which prevents its mixing with the

lippage. 

.1.3. Patient data 

Fig. 9 shows five 3D sequences of catheter tip position record-

ngs in the RV and LA. The decomposition results are plotted un-

erneath for comparison. It can be seen that the resulting compo-

ents appear to be physiologically plausible. The cardiac signal has

he periodicity of the ECG, with the respiratory wave and the slip-

age in decreasing order of frequency, the latter being close to a

inear function. 

The decomposition method was firstly quantified by the median

rror of heart rate recovery. The ground truth heart rate was ex-

racted from the ECG at each mapping point. Fig. 10 (a) shows the

rror histogram over all sampled points, with an emphasis on the

0% error threshold, below which APIT-MEMD performed in 59.09%

f the cases, the 20% and 25%, around which three quarters of

he points could be found, and the 33% threshold, which covered

2.25% of the cases. Moreover, Fig. 10 (b) shows the quantile results

nd the computation time for a number of channels varying from

 to 10. All algorithms were written in unoptimised Matlab R2016b

nd ran on an Intel i7 CPU at 3.4 GHz. 

Secondly, the cardiac motion amplitude recovery was assessed.

ue to the lack of ground truth, only a quantitative validation was

erformed. According to previously validated work ( Roujol et al.,

013; Porras et al., 2013 ), contact points acquired in myocardial

car zones have a significantly lower cardiac motion amplitude

han points in healthy tissue. This is due to the reduced contractil-

ty in pathological tissue. The cardiac motion amplitude extracted

ith the proposed method was grouped according to the bipolar

oltage of the corresponding point. Scar points were defined as lo-

ations with bipolar voltage value lower than 0.5 mV, while the

est of the points were grouped into heterogeneous and healthy

issue, according to the standard for the right ventricle in clinical

iterature ( Roujol et al., 2013 ). The two groups verified the previous
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Fig. 8. Phantom experiments: (a) Slippage extraction performance in each direction by quantification of the correlation coefficient between ground truth slippage and 

extracted slippage. (b) Maximum and mean slippage in each phantom study. (c) Improvement in the correlation between computed slippage and ground truth slippage for 

increasing signal acquisition window. (d) Error reduction in the cardiac and respiratory motion with the increase of the signal acquisition window. Red – heart rate, green 

– heart motion amplitude, blue – respiratory rate, black – respiratory motion amplitude. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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ndings in ( Roujol et al., 2013; Porras et al., 2013 ) with a statisti-

ally significant difference between them (Wilcoxon rank sum test,

% significance level). There are no consistent guidelines for scar

elineation in atria. Therefore, the cardiac motion amplitude anal-

sis was performed on the RV data only. 

For the validation of the slippage component, the 3D contact

orce was decomposed along the directions of slippage according

o Eq. (4) . There was a high correlation between the contact force

nd the slippage in each direction as can be seen in Fig. 11 (a).

ccording to ( Shah and Namdar, 2015 ), force amplitude of under

96.13 mN (20 g) are indicative of instable contact. Moreover, the

urves in Fig. 11 (c) show the catheter slippage increasing with the

orce amplitude, proving the existence of catheter tip drift. 

The maximal slippage was also assessed qualitatively. Accord-

ng to ( Shah and Namdar, 2015 ), it is more difficult to keep a good

ontact with the more motion-prone ventricular wall than with the

trial wall. This results in more endocardial slippage in the ven-

ricle than in the atrium. Along these lines, the maximal value of

lippage over the entire signal length was compared for atrial and

entricular electrophysiology studies. The values decomposed with

he proposed APIT-MEMD were in accordance with the clinical lit-

rature, independently of the chosen numbers of noise channels.

ig. 12 shows the average maximal slippage over all ventricular

nd atrial mapping points for a variable number of noise channels

n APIT-MEMD. 

.2. Probabilistic slippage prediction and catheter tip motion 

stimation 

The multivariate normal regression model in Eq. (2) was applied

o the retrospective patient data in order to compute the proba-

ility of maximal slippage at each mapping point. The model was
ross-validated in a 90%–10% configuration, whereby 90% of the

ata was assigned to the training set and 10% was defined as the

est set. This validation was performed for each of the 555 points

0 times, with the 10% test set as a sliding window through the

ntire dataset of the signal time series. The mean average for all

55 points are plotted in the histogram of Fig. 13 , showing a nar-

ow histogram of mode errors of the proposed regression model. 

Following the validation of the underlying regression model

hich computes the local slippage probabilities, the global slip-

age maps were generated. Table 2 shows four probabilistic maps

f slippage for RV, RA, LA, and TCPC, respectively, each with the

edian and maximal slippage values and their probabilities. It was

oticed that the area around the tricuspid valve directing the flow

rom the RA to the RV, as well as the RV apex, were regions of high

lippage probability. In the LA, unstable areas were the pulmonary

eins ostiae, in accordance with the clinical literature ( Neuzil et al.,

013; Makimoto et al., 2014 ). 

. Discussion 

Catheter tip contact with endocardial tissue during cardiac ab-

ation has been a major clinical concern. Existing literature recom-

ends an empirical value of 196.12 mN (20 g) of contact force in

rder to ensure catheter tip stability ( Shah and Namdar, 2015 ). This

alue is believed to show sufficient embedding of the catheter tip

nto the tissue so that sliding along the endocardium is minimised.

owever, it is also acknowledged that these guidance values can-

ot be met in all cases due to high perforation risk in thinner

all areas, such as the right side of the heart ( Shah and Nam-

ar, 2015 ) or in enlarged atria such as in CHD patients. In the

atasets used in the present paper, the contact force amplitude

as 164.75 ± 203.38 mN, which emphasised the need for an ad-
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Fig. 9. APIT-MEMD decomposition results for five points in an RV and an LA. The orientation of the mesh is defined by the left-right axis (LR), superior-inferior axis 

(SI), anterior-posterior axis (AP). The upper row time series are the cumulated 3D signals shifted at a mutual origin of the five points. The remaining rows describe the 

components of interest in decreasing order of frequency: cardiac and respiratory motion and monotonic drift. 

Fig. 10. (a) Histogram of heart rate errors over all 555 mapping points. For 59.09% of all points, the error was under 10%, for 80.54% of the points it was under 20%, for 

86.84% it was 25%, and for 92.25% it was 33%. (b) APIT-MEMD computation time (top) and heart rate recovery error (bottom) dependency on the number of noise channels. 

The top of the bars represent the number of points within a certain threshold of error: black – 10% threshold, blue – 20%, green – 25%, red – 33%. The histogram in (a) is 

the detailed visualisation for 5 noise channels. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ditional analysis of the slippage itself, since the contact force am-

plitude was below the recommended threshold. 

In this paper, a novel intraoperative guidance framework based

on ablation catheter motion was proposed. Firstly, the 3D catheter

tip position signal was decomposed into cardiac and respiratory

oscillations and an additional unquantified sliding over the endo-
ardium which has been previously mentioned in the literature.

econdly, the maximal value of the sliding signal over time was

omputed for each point sampled on the anatomy. Finally, the

robability of this maximal drift was estimated and displayed as

 location-specific measure on the endocardial surface. 
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Fig. 11. Catheter tip slippage validation: (a) Histogram of coefficient values for the correlation of the decomposed 3D slippage with the 3D force values along the direction 

of the slippage. The 0.9 threshold showed a strong correlation for more than half of the points, while the 0.8 and 0.75 correlation coefficient values covered 66.30% and 

70.74% of the points, respectively. (b) Correlation of slippage with contact force for different number of noise channels. The top of the bars represent the number of points 

within a certain interval of the correlation coefficient (black: 0.9–1, blue: 0.8–0.9, green: 0.75–0.8). The histogram in (a) is the detailed visualisation for 5 noise channels. (c) 

Example of 3D slippage curves (blue) and corresponding force components along the slippage direction (red). The correlation coefficients are -0.85 for the x-axis and 0.99 

for the y and z-axes. The negative correlation shows opposite directions of the slippage and the force. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

Table 2 

Colour-coded probability maps of local slippage for CHD cases: RV, RA, LA, and TCPC. The maximal slip- 

page at each mapping point is depicted as an ellipsoid with axis lengths corresponding to the Cartesian 

slippage components. The orientation of the surfaces is given by the left-right axis (black), superior- 

inferior axis (red), anterior-posterior axis (green). 

10.23 1.93 median slip [mm] 

2.67 17.47 P(med. slip) [%] 

31.02 6.09 max. slip [mm] 

0.89 13.72 P(max. slip) [%] 

5.03 2.18 median slip [mm] 

0.00 0.00 P(med. slip) [%] 

12.57 4.04 max. slip [mm] 

1.09 8.87 P(max. slip) [%] 

RV LA RA 

1. Tricuspid valve 4. Left pulmonary veins 6. Superior vena cava 

2. Outflow tract (pulmonary artery) 5. Right pulmonary veins 7. Inferior vena cava 

3. Apex 
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Fig. 12. Maximal slippage amplitudes in 2.5 s-long signals in ventricular (red) vs . 

atrial (blue) studies. According to clinical literature ( Shah and Namdar, 2015 ), there 

tends to be worse contact and therefore more slippage in the ventricle compared 

to the atrium. There is no significant dependency on the number of noise channels, 

but there is a significant difference between atrial and ventricular studies (Wilcoxon 

rank sum test, 5% significance level). (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 

Fig. 13. Validation of the multivariate normal regression model used for generating 

the local probabilities in the DBN of each mapping point. The model was cross- 

validated 10 times for each point, with the test set comprising of a sliding window 

of 10% of the samples in the sequence and the training set covering the rest. The 

histogram shows the mean regression error over all validation tests at each map- 

ping point. 
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While many multi-source signals are decomposed using band-

pass filtering, PCA or ICA, it was shown that the short-length

catheter signals can be better analysed using the data-driven

MEMD. However, the convergence and stability of empirical meth-

ods cannot be studied in a conventional manner ( Ahrabian and

Mandic, 2015 ). Moreover, since there was no ground truth for ei-

ther of the extracted signals other than the ECG, a series of quan-

titative and qualitative validation tests based on 3D contact force

amplitude and orientation correlation and on qualitative analysis

between anatomical groups were performed to demonstrate the

results. Furthermore, tests on phantom and artificial data allowed

for comparison with the other state-of-the-art decomposition algo-

rithms. 

The parameter of the proposed APIT-MEMD algorithm is the

number of noise channels. An analysis on the influence of the

number of noise channels was performed on several occasions

( Figs. 10 (b), 11 (b) and 12 ). Apart from an outlier in the computa-

tion time of the method applied without any noise channels, it can

be concluded that the computation time increases with the num-

ber of channels. In terms of performance, the differences are small.

However, from a qualitative point of view, a number between 4

and 7 noise channels yielded good performance in both heart rate

recovery ( Fig. 10 (b)) and in slippage correlation to the contact force

amplitude and orientation ( Fig. 11 (b)). 

The major challenge in the decomposition was the short data

recording window of 2.5 ms for each mapping point. While the

results of the empirical method were promising, it was difficult

to extract the low-frequency respiratory wave from the short se-

quence. However, the phantom data experiments showed good ac-
uracy for longer sequences. Regarding the cardiac motion ampli-

ude, the design of experiments currently assumed that the car-

iac motion wave had the same frequency and amplitude in the

re-slippage and slippage time series. However, the catheter ma-

ipulation that simulated slippage was performed blindly under

o control of the applied force and no visualisation of the result-

ng time series. Therefore, in several recordings, the effect of the

atheter manipulation undermined the amplitudes of cardiac and

espiratory motion and this caused a higher error in the amplitude

ecovery. With a force-sensing catheter and real-time visualisation

f the position recording, the catheter manipulation can be per-

ormed more smoothly and the recovered amplitudes closer to the

re-manipulation values. 

In accordance with ( Shah and Namdar, 2015 ), the large ampli-

ude of slippage compared to the other components proved that

his effect should receive higher attention in catheter ablation pro-

edures. In addition to its maximal value at each mapping point,

he probability of this maximal drift was also assessed. Despite the

ubmillimeter range of slippage in Figs. 11 (c) and 12 , the catheter

rift becomes significant over prolonged periods of ablation. While

he plotted values were extracted from 2.5 s-long sequences, the

blation of a single target normally takes 60 s, during which time

he catheter tip slippage is incremental. 

Multivariate normal regression was used to fit the slippage val-

es at each time stamp to a mapping point-specific model with

atheter tip positions and decomposed cardiac and respiratory mo-

ion as predictors. The regression errors were constrained to be

ormally distributed and thus assigned probabilities from a normal

robability distribution function. The values were then mapped

nto the corresponding slippage. Qualitative ground-truth of the

lippage probability was inferred from clinical literature. One of the

ost unstable regions was confirmed by the proposed method as

he pulmonary veins ostiae in the left atrium, as previously indi-

ated in the clinical literature ( Neuzil et al., 2013; Makimoto et al.,

014 ). 

The contact force amplitude in the atrium was

87.99 ± 203.38 mN compared to 134.25 ± 176.02 mN in the

entricle, showing that it is more difficult to keep good contact in

he ventricle. This is in accordance with the clinical observation

f the larger motion range in the ventricle and the frequent

oss of contact especially at diastole ( Shah and Namdar, 2015 ).

rolonged loss of contact is more likely to cause sliding. We used

his comparison between the atrium and ventricle to validate the

mount of slippage in the two groups. 

As demonstrated in the Results section, the shape of the slip-

age is significantly different than that of the cardiac or even the

espiratory components. This is due to the assumption in the signal

xtraction, i.e., that slippage has a lower frequency than the other

wo components, and also due to the MEMD algorithm, which in-

egrates potentially different components of the same frequency

nto a single IMF. Therefore, MEMD is unable to discriminate be-

ween cardiac motion and slippage or respiratory motion and slip-

age, if slippage has the same frequency as any of these two phys-

ological motions. However, these cases would not be regarded as

lippage, as this was defined in the Introduction as the relative

rift to the cardiac wall. Since the cardiac wall is moving, only ad-

itional components build up the relative drift, i.e., slippage. The

otential workflow integrating the proposed methods is depicted

n Fig. 14 . The catheter stability analysis is intended as a step of

he electroanatomical mapping and can be performed simultane-

usly with the generation of the endocardial surface and of the

lectrical activation pattern. These two types of data are already

ncorporated in electroanatomical mapping systems and are based

n sparse data acquisition at the mapping points locations. The

atheter tip motion is readily acquired and can be used for online

tability analysis. The resulting probability map can be used as an
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Fig. 14. Integration of the proposed methods into the clinical workflow of cardiac catheter ablation. Electrical activation and anatomy reconstruction are already performed 

simultaneously in all clinically used electroanatomical mapping systems. The information is gathered from sparse mapping points, for which the catheter tip position is also 

available. In this paper, the electroanatomical map is enhanced with this third step of catheter stability analysis from the tip motion data. The result is a slippage probability 

map, which adds to the anatomical and electrical activation data to aid the clinician in deciding the most stable ablation locations. 
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dditional source of information for the decision on the optimal

blation locations. 

. Conclusion 

Catheter tip stability is a prerequisite of successful cardiac abla-

ion. Current electroanatomical mapping systems aid the clinician

n visualising the complete cardiac activation, but there is no as-

essment of motion patterns at the targeted site. A new framework

or intraoperative computer guidance based on catheter tip slip-

age measures and motion signal decomposition was proposed in

his paper. With a combined information of the maximal 3D slip-

age and its probability, the clinician can decide on the ablation

argets in order to find the stable positions to deliver RF energy

r build a case for robotic navigation and stabilisation at difficult

natomical targets. 

Finally, this work extends the results in ( Constantinescu et al.,

015 ) and the presented analytical framework can be used for pro-

edural planning in patients who require ablation in extremely un-

table positions, but for whom alternative more stable neighbour-

ng sites can be found. 
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