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ABSTRACT A challenge in quantifying synchrony among choir mem-
bers is that, depending on the score and tempo, breathing

Cooperative tasks require coordinated joint actions amioeg  rhythms of singers can be either: (i) voluntarily contrdltey
participants, to the extent that a failure in an individs@e-  themselves, in order to perform long or short inhalation or
tion may have catastrophic consequences on the task of te&nalation, or (ji) involuntarily controlled by the autamic
group as a whole. One such activity is choir singing, wherg,eryous system (ANS). The ANS comprises the sympa-
highly synchronised performance of the individual sindees  thetic (SNS) and parasympathetic nervous (PNS) subsystems
prerequisite to successful performance. The aim of thi«woryhereby the SNS, in addition to controlling the respiration
is to provide a quantitative measure of the level of cooperan stressful situations, also accelerates other functisash
tion, established through the degrees of synchronisa#en b s the arterial blood pressure and heart rate [2, 3, 4]. This
tween singers’ physiological responses. To this end, we eMMs achieved by dilating bronchioles in the lungs, and by reg-
ploy two new measures, the intrinsic phase synchrony angjating neuronal and hormonal responses to stimulate the
intrinsic coherence, which quantify synchronisation ispie  pody. The PNS, on the other hand, slows down physiological
ration and heart rate variability (HRV) of: (i) five membeffs 0 fynctions when the body is at rest.
a choir and the conductor during a rehearsal and a real per- The interplay between the SNS and PNS, among other
formance, and (ii) five members of the audience attending thgctors, manifests itself in variations of the timing of ta-
performance. Both the proposed techniques successfully rgjac cycle — heart rate variability (HRV) — in response torbot
veal degrees of synchronisation of singers’ physiolo®@  external and internal factors. Changes in HRV are commonly
nals which can be used as physically meaningful measures g{ja|uated in two frequency bands: (i) the low frequency (LF)
the level of cooperation. band, 0.04-0.15 Hz, which is linked to the interaction of the

Index Terms— NA-MEMD, intrinsic multiscale analy- SNS and PNS, and (ii) the high frequency (HF) band, 0.15-

sis, intrinsic phase synchrony, coherence, choir singing ~ 0-4 Hz, which primarily reflects the activity of the PNS [Sih |
addition, it is well understood that breathing modulate$/HR

via a phenomenon referred to as the respiratory sinus arhyt
1. INTRODUCTION mia (RSA), whereby the heart rate accelerates during inspi-

ration and decelerates during expiration. The RSA is uguall
Cooperative human activities require high degree of mentaittributed to the activity of the PNS, so that the HF compénen
and physical synchronisation among multiple participaiots of HRV is dominated by the changes in heart rate induced by
the extent that synchrony underpins performance level4in adreathing.
tivities such as rowing, marching and choir singing. Choir  Both the respiration and the electrical activity of the hear
singing is particularly interesting as participants do ns¢  measured via the electrocardiogram (ECG), typically exhib
any tools; it can be performed with or without musical in- nonlinear and nonstationary characteristics, and recpiee
struments, whereby the conductor, essentially, plays drum cialised signal processing techniques which offer phylsica
instruments’—the soprano, alto, tenor and bass. The normaieaningful signal representation; one such techniqueeis th
respiratory rate in adults varies between 12 and 18 breatlsmpirical mode decomposition (EMD) algorithm [6] . Empir-
per minute [1], yet despite this natural variation, breagin ~ ical mode decomposition is an adaptive, data-driven, ntetho
unison among individuals is a prerequisite in choir singingfor the analysis of nonlinear and nonstationary time settes
where the singers’ breathing rhythm is dictated by the tempemploys the so-called sifting process to decompose a given
and demands of a musical score. These demands and physis@gnal into its multiple narrow-band amplitude/frequency
constraints give rise to both direct and indirect synchramyy modulated (AM/FM) components, which are referred to as
causality in cardiac and respiratory activity at multipdgéls  intrinsic mode functions (IMFs) and are used as bases for
— a subject of this study. signal representation.
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Unlike conventional projection based time-frequency al-whereS = — Zlepn In p,, is the Shannon entropy of the
gorithms, such as the short-time Fourier transform and thdistribution of phase differences(t — % 1t %) within a
discrete wavelet transform, the IMFs — the adaptive basiwindow of lengthi?’, with N being the number of bins within
functions within EMD — enable physically meaningful inter- the distribution of phase differences gmdthe probability of
pretation of instantaneous phase and frequency, and ayhighb; (t — % ct+ %) within thenth bin [26]. The maximum en-
localised time-frequency representation via the Hilbeni$-  tropy S,,,... has been found to b#,,,, = 0.62640.4 In(W —
form [7, 8]. Applications of EMD range from biosignal 1) [23]. The PSI values range from 0O to 1, with 1 indicating
analysis [9, 10], through to mechanical systems [11] andhe perfect phase locking and 0 non-phase-synchronous rela
seismology [12]. tionship.

Due to the empirical nature of EMD, its directcomponent-  The intrinsic phase synchrony (IPS) was originally pro-
wise application to multivariate signals may result in: (i) posed in the intrinsic multiscale analysis framework in][23
IMFs with different oscillatory components across mukipl in order to generalise standard phase synchrony by eq@jppin
data channels for a given IMF index — a phenomenon knowit with the ability to operate at the intrinsic scale levek |
as mode mixing and (ii) multiple IMFs containing similar employs MEMD to decompose a given multivariate signal
oscillatory modes for a given data channel — a phenomendnto narrowband intrinsic oscillations (IMFs), which make
referred to asnode splitting To mitigate these problems in it possible to quantify the temporal locking of the phase in-
multivariate scenarios, several extensions of EMD have beeformation in IMFs using the standard phase synchronisation
proposed, which include the bivariate EMD (BEMD) [13], index (PSI). The work in [23] also introduced an intrinsic
trivariate EMD [14], multivariate EMD (MEMD) [15, 16] and correlation metric which measures phase and amplitude rela
noise-assisted MEMD (NA-MEMD) [17]. The general mul- tionships between instantaneous amplitudes and frege®nci
tivariate MEMD has found applications in brain-computerThis measure can be further extended to quantify phase and
interface [18, 19], image processing [20, 21], nuclear €ngiamplitude relationships between intrinsic modes in the dat
neering [22] and system characterisation [23]. via the IMFs (as a function of scale), a procedure to which we

Such a decomposition into multiple multivariate data-refer to as théntrinsic coherencglCoh).
driven bases offers unique opportunities; for example, our The aim of this study is to build upon the enhanced dis-
recent work [23] proposed a framework referred toims  crimination capability of the intrinsic phase synchrony am
trinsic multiscale analysisvhich combines MEMD with  trinsic coherence data association metrics, in order tcacha
standard data-association measures, such as phase synchnerise the scale-wise dependencies in the respiratory &wl H
(PS), sample entropy (SE) and correlation, in order to quarsignals of: (i) choir during a rehearsal and a real perforrean
tify intra- and inter-component dependences of a complexii) the conductor in both of these situations; (iii) a subske
system such as multiple synchronies and causalities. audience during the real performance. The so-enabled-inves

The degree of synchronisation between data channels igation of the manifold couplings in human physiologica r
typically measured using correlation, coherence and phasgponses during a performance promises new, objective mea-
synchrony. Similar to correlation, coherence is a meastire Gures of the degree of human cooperation, together with new
linear synchronisation between the two signals,sgy) and  avenues for multidisciplinary research on theantified self
x;(t). It accounts for both the amplitude and phase informa-
tion, and yields a data association metric which is a fumctio

. 2. DATA ACQUISITION AND PRE-PROCESSING
of frequency,f, given by

2 Respiratory and ECG signals were recorded from a conductor
COH;;(f) = Sij (f) 7 (1) and a subset of five members of an 18-member choir during
Sii(£)S;5(f) 5-minute periods of a low-stress rehearsal and a highsstres

r1oublic performance. During the performance, physioldgica
responses were also recorded from five members of the au-
dience. Respiration of each participant was recorded using
a custom-made respiration belt placed around the chest. For
all participants, the ECG was recorded with three elecsode
rp_laced on the skin, just below the collar bone. The respi-
tifies only the phase relationship betweerit) and ; (t), ration belt_an_d the electrodes were connected to an 8-channe

. . - X AR N portable biosignal data logger powered by a rechargeabie co
without accounting for amplitude information; it is definied .

o - cell battery. The data logger sampled the signalsétz and
terms of the deviation from perfect synchrony via the phase dth . d d . d: th
synchronisation index (PS) [23], given by savel t ere§p|ratoryan ECG data onto a micro-SD card; the

’ respiratory signals were then downsampledddiz, and the
Simaz — S trend was removed. The data logger also recorded timestamps
p(t) = T Soun (2)  onto the micro-SD card in order to guarantee the synchroni-

where S;;(f) is the cross-spectral power density betwee
z;(t) andz;(t), andS;(f) and.S;;(f) are respectively the
power spectral densities of(t) andz;(t). TheCOH values
range from0 to 1, with 0 indicating a non-coherent relation-
ship andl the perfect coherence [24, 25].

Unlike the coherence, the phase synchrony metric qua

720



sation of the devices between rehearsal and performanee. THensities were estimated using the MVAR model of order 3
HRV was estimated from the ECG data by band-pass filterinfpr the HRV signal of both the choir and the audience, and of
betweer8 Hz and30Hz, and the subsequent R-peak detec-orders 1 and 2 respectively for the respiratory signals ef th

tion to obtain the RR-interval (i.e. HRV) time series with a choir and the audience.

sampling frequency of Hz [27].

0.12
- - HRV

} } —— Respiration

3. SYNCHRONY ANALYSIS o

% 0.081

The PSI and COH indices of the respiratory and HRV signal: o.0s-
were estimated in six categories as follows:

1. Among the five members of the choir during the

L]

0.04+

== = s 5 = = s = s 5 5 [ SR )
rehearsal—within-group estimation. £g 22 3% £8 ©35 LRI
2. Between the conductor and the five members of th: §% %% 2% EE BE BLE g2
choir during the rehearsal—between-group estimation g § g § ge ce v *E g *
3. Among the five members of the choir during the £ 55 =& °=
performance—within-group estimation. g5 gF ¢ z
4. Between the conductor and the five members of th: Within group Between groups
choir during the performance—between-group estima-_ . )
tion. Fig. 1. The PSI of the respiratory and HRV signals

5. Among the five members of the audience during thVithin the same subject group and between the subject
performance—within-group estimation. groups, where for brevity Res_p.:Resplratlon, reh.=redadar

6. Between the conductor and the five members of th@€f-=performance, aud.=audience and cond.=conductor.
audience during the performance—between-group es-

timation. 4. RESULTS OF THE ANALYSIS
For the categories (1)-(4), the respiratory (or HRV) signal

of the conductor (channel 1) and the five members of the cholPhase synchrony.Fig. 1 shows the PSIs of the respiratory
(channels 2-6) during both the rehearsal and the perforenanand HRV data for the 6 considered categories, estimated from
were used to form 6-channel data which was decomposed uSe realisations of NA-MEMD. For each trial of NA-MEMD,
ing NA-MEMD with 10 adjacent WGN channels. For the the Z-test at a significance level of 0.05 was performed,-n or
categories (5) and (6), channels 2-6 contained data redordéer to reveal statistical differences in the respiratory ARV
from the five members of the audience, and the decompositidPS| values between the categories.
was carried out in the same manner as for the categories (1)- Observe that in the performance conditions, both the res-
(4). It should be noted that in all the categories NA-MEMD piratory and HRV PSIs among the choir members signifi-
was applied to 6-channel respiratory data and 6-channel HR¥antly increased compared to the rehearsal. This indicates
data separately. that the breathing rhythms, and by virtue of RSA the car-
The IMFs produced by the NA-MEMD with indices 3-7 diac activities too, of the choir members exhibited strange
of the 6-channel multivariate HRV signal of choir membersdynamic coupling which was reflected in an increase in the
contained the physically meaningful frequency ra@d Hz ~ synchrony of their physiological responses.
to 0.4 Hz, that is, exactly the LF/HF frequency band of HRV. Conjecture #1: The intrinsic synchrony of physiological re-
For convenience we have identified and used the same basgonses of choir members is a signature of increased coordi-
in IMF indices 5-9 of respiration. The full band of interest nation between performers and their enhanced mental aware-
in both the HRV and respiration data was produced by sumress in various types of performance. This is for the firsetim
ming up the corresponding IMFs, in order to obtain the dethat we have been able to quantify the involvement of physi-
sired scale in data. The PSI and COH among the members ofogical mechanisms which are responsible for the change in
the choir (and the audience) were obtained by averaging P&ie balance between the SNS and PNS.
and COH values calculated from every combined-IMF pair  Observe that the values of PSI indices of the respiratory
of the data channels 2-6 (choir only), while PSI and COHand HRV signals among the audience were lower than those
between the conductor and each member of the choir (arfdr the choir, both during the rehearsal and performance.
the audience) were obtained by averaging the PSI and COH8onjecture #2: The selection of participants from the audi-
values between the combined-IMF of channel 1 (conductonce did not follow specific selection criteria (e.g. mukica
and combined-IMF of channels 2-6 (choir). The PSI indicesbackground) which may explain the more random nature of
between the combined-IMFs of the noise channels were aldbeir physiological responses.
estimated in order to provide the PSI of random signals as a Fig. 1 also shows that the respiratory and HRV PSIs be-
benchmark. For the coherence analysis, the power specti@leen the conductor and the members of the choir were lower
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than PSIs among the members of the choir, in both the re  [22"goramarmenss | |77 o oramo e
hearsal and pel’fOI’manCe scenarios. —— Audience during performance —— Conductor-audience during performance
Conjecture #3: The physiological responses of the conduc- ' Respiration, within group Respiration, between groups
tor were modulated by both the piece of music performed (a % s " ’
indicated by a degree of coupling with the choir) and the phys§ 084
ical activity involved in the act of conducting. 04
Fig. 1 highlights that PSIs between human subjects wer °2
significantly higher than noise PSils, thus indicating that h % o1 o0z 03 04 05% 01 o2 03 o4 05

man PSIs were not random; also the PSIs of HRV exhibiteu Freauency (Hz) Freauency (Hz)

similar patterns to those present in the respiratory sigiaal (@) (b)
Consequence Of RSA = = = Choir during rehearsal = = = Conductor-choir during rehearsal

H . A . === Choir during performance = Conductor-choir during performance
COhere_nC_e analySISFlg' 2 I_HUStrateS the COherence_ analys'_s — Audience during performance —— Conductor-audience during performance
of respiration and HRV, estimated for the 6 categories abnsi 1 ARV, vithin group| © HRV, between groups

ered. Fig. 2(a) shows respiratory coherence among the mer os 08

bers of the choir during both the rehearsal and performanc _os

together with those among the members of the audience. 3
Observe the peaks in the frequency rar@g2Hz to o2 /

0.35Hz which indicate the coherence in breathing at nor-

mal rates. The members of the audience breathed fasterth % oz (22 S8y oS % o1 F\rgﬁzuencyoigz) 04 05

the choir, resulting in coherence at higher frequencies-Co

versely, owing to long exhalation while singing, the choir © C)

exhibited high coherlences in the low frequency region 0szig. 2. The COH values of the respiratory and HRV data.
0.04Hz 100.05 Hz (ellipse 1). (a) Respiratory COH within the same grouigb) Respira-

Remark #1: 'I'_he_lcoherehncedof _the (;]hoir c:]uring ':he Eﬁrfoztory COH between groupg$c) COH of HRV within the same
mance was similar to that during the rehearsal, while tl roup.(d) COH of HRV between groups.

coherence between between the conductor and the membeérs
of the choir was markedly higher (see Fig. 2(b), ellipse 2).

This indicates a higher degree of cooperation during the pefarked increase in coordination from the rehearsal to the pe
formance, when the stakes are high and both the conductpdmance, less agreement has been observed between the sub-
and the choir feel the pressure and thus the urge to work eth@ct groups (choir, conductor, audience), with the lowestre
hard in order to produce a spot on performance. dination observed for the audience. This can be attributed t
Fig. 2(c) shows HRV coherences among the members Qfach group experiencing the performance in different iaysi
the choir during the rehearsal.and perfprmance, and thosg,q mental ways, as exemplified by the lower synchronisa-
among the members of the audience during the performancgen petween the groups. On the signal processing sidesit ha
Remark #2: The higher COH values among the choir in the yeen shown that intrinsic phase synchrony has capture@phas
HF band (.15 Hz t00.4 Hz) of HRV during the performance, yelationship of both physiological signals in all situatoef-
compared to the rehearsal, can be attributed to the RSA (&kctively, yielding a meaningful and straightforward taein
lipses 3 & 4). This indicates a higher degree of cooperatiopet data association metric. We have also illuminated the
which is reflected in a more pronounced synchronisation besgnerence effects between the sympathetic and parasympa-
tween individuals’ cardiac activity mediated by respivati  hetic nervous systems in the participants, primarily rat
via RSA, additionally notice how virtually no coherence is by respiration; these could not be found using intrinsicsgha
detected in the cardiac activity of the members of the aUdisynchrony, however, the coherence is less amenable to phys-
ence. ical interpretation. Both the considered intrinsic measur
have designated a quantitative approach to assessingjoint
5. CONCLUSIONS deavours, and have paved the way for mathematical charac-
terisation of cooperative physiological systems acrossdru
This study has employed intrinsic phase synchrony andhintri activities. Both the intrinsic phase synchrony and intdns
sic coherence to quantify phase and amplitude relatiosghip coherence, however, are time-varying measures — therefore
the respiratory and cardiac signals of the choir, the cotwluc average PSI and COH are provided. Future work will focus
and the audience, in order to investigate degrees of cooperan the quantification of time-varying dependencies of tise re
tion during a social task. The results have shown that eadpiratory and ECG signals.
group is represented by a distinctive degree of joint symchr Acknowledgement We wish to thank the Eric Whitacre
nisation of participants’ physiological responses, cdusg Choir who participated in our study, during their concert at
the act of performance. While the choir has demonstrated dnion Chapel, London, UK in April 2015.
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