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ABSTRACT 

Multichannel data-driven time-frequency algorithms, 

such as the multivariate empirical mode decomposition 

(MEMD), have emerged as important tools in the analysis 

of inter-channel dependencies that arise in multivariate data. 

Such methods employ uniform projection schemes on hyper­

spheres in order to estimate the local mean, thus requiring 

dense but underutilised sampling when processing unbal­

anced data channels. To this end, we propose a nonuniform 

projection scheme that adapts to the second order statistics of 

trivariate data; this provides the estimation of the local mean 

in the case of power imbalances and correlations between 

the channels. The algorithm is particularly useful for gener­

ating a low number of direction vectors within MEMD. Its 

performance is illustrated on synthetic and real-world data. 

Index Terms- Trivariate EMD, non-uniform sampling, 

Hilbert transform, multiscale processing. 

1. INTRODUCTION 

Empirical mode decomposition (EMD) is a signal decompo­

sition algorithm that was developed for the analysis of non­

linear and non-stationary data [1]. The algorithm adaptively 

identifies a set of basis functions from the signal, termed 

intrinsic mode functions (IMFs), using a sifting process. 

The IMFs are narrow-band amplitude/frequency-modulated 

( AM/FM) components and, via the Hilbert transform, admit 

a highly localised time-frequency representation [2, 3]. Com­

pared to conventional projection-based time-frequency m
.
eth­

ods such as the short-time Fourier transform, the data-dnven 

nature of the EMD has enabled more physically meaningful 

analysis in applications ranging from bio-signal processing 

[4,5] and oceanography [6] to palaeoclimatology [7]. 

An implication of the empirical nature of standard EMD 

is that its application to multichannel data typically results in 

IMFs with differing oscillatory dynamics across data chan­
nels for a given IMF index. Furthermore, similar oscillatory 

modes may appear across multiple IMFs, obscuring multi­

channel data analysis based on the univariate EMD [8]. To 
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this end, several extensions of EMD have been proposed, 

namely complex EMD (CEMD) [9], rotation-invariant EMD 

(RIEMD) [10], bivariate EMD (BEMD) [11], trivariate EMD 

[12] and multivariate EMD (MEMD) [13, 14]. Applications 

of MEMD include feature estimation [15] and artifact re­

moval [16, 17]. 

It should be noted that as EMD-based algorithms perform 

signal decomposition based on the identification of a set of 

adaptive basis functions of a signal, a mathematical descrip­

tion of these techniques is still lacking. To this end, the work 

in [18] proposed an alternative approach to EMD called the 
synchrosqueezing transform (SST). This method reallocates 

the energies of resulting wavelet coefficients generated by 

the continuous wavelet transform (CWT) by combining the 

coefficients containing the same instantaneous frequency, re­

sulting in a highly localised time-frequency representation of 

a univariate signal. More recently a multivariate extension of 

the SST [19] has been proposed to identify a set of modulated 

oscillatory components common to the multivariate data. Ap­

plications include multivariate time-frequency analysis [19] 

and multivariate signal denoising [20], whereby inter-channel 

dependencies are employed for enhanced signal analysis. 

The sifting algorithm employed in both the BEMD and 

MEMD projects the multichannel input signal along mul­

tiple uniformly-sampled direction vectors in multidimen­

sional space so as to estimate the local mean. However, as 

real-world signals often contain power imbalances or inter­

channel correlations, these vectors may not best represent the 

inter-channel dependencies of multichannel data, resulting in 

the sub-optimal estimation of the local mean. To this end, the 

work in [21] introduced the nonuniformly sampled BEMD 

(NS-BEMD), which exploits the second-order statistics of bi­

variate signals, namely inter-channel correlations and power 

discrepancies between data channels, yielding a global set of 

projections which map the signal to the direction of highest 

curvature. The work in [22] introduced dynamically-sampled 

BEMD (DS-BEMD), an adaptive projection scheme based 

on the local signal dynamics. The DS-BEMD quantifies local 

signal dynamics via Menger curvature, so as to generate pro­

jection vectors according to the directions in 2-di�ensional 
space where the signal exhibits highest local dynamICs. 

Both extensions of NS- and DS-BEMD algorithms to 
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the multivariate case (greater than 2 channels) were/are open 

problems for which a potential solution has been proposed 

for the NS-BEMD algorithm. This work extends the bivariate 

case to introduce a non uniformly sampled trivariate EMD 

(NS-TEMD). This is achieved based on global nonuniform 

sampling first introduced in [21], so as to identify direction 

vectors that adapt to the second order statistics of trivariate 

data. 
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Fig. 1. TEMD sampling for unbalanced data. (a) The scat­

ter plot of a three-channel data source, exhibiting a signifi­

cant power imbalance. (b) The proposed sampling scheme 

(left panel) for the three-channel data source shown in (a). 

The corresponding uniform sampling scheme employed for 

the TEMD (right panel). 

2. NONUNIFORMLY SAMPLED TRIVARIATE EMD 

The NS-BEMD algorithm in [21] enhanced the performance 

of the conventional BEMD for bivariate data with non­

circular statistics. This was achieved by relating the second 

order statistical structure of the bivariate data, captured by 

the circularity quotient, to the parameters of an ellipse; such 

that the resulting samples were localised along the directions 

of principal importance. A detailed explanation of the NS­

BEMD can be found in [21]. 

In the case of trivariate signals, identifying the directions 

of highest curvature in three dimensional space is a non­

trivial task. This is particularly the case when attempting to 

identify a set of global nonuniformly sampled projections, 

as the nonuniform samples may not align with the directions 
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of highest curvature within trivariate/multivariate signals, re­

sulting in a suboptimal estimate of the local mean. In order to 

overcome this problem, a combination of uniform sampling 

of the sphere along with a nonuniform sampling scheme is 

proposed. By employing uniform samples, the directions of 

highest curvature not captured by the nonuniform samples 

are also used for projecting the input signal, yielding a more 

accurate estimate of the local mean. 

In order to develop a 'global' nonuniform sampling 

scheme for the trivariate and ultimately multivariate EMD, 

the directions of principal importance need to be determined. 

As with the NS-BEMD, the directions of principal impor­

tance are defined in terms of inter-channel power imbalances 

and correlations. For a given multivariate signal, x(t), with a 

covariance matrix given by C = E{xT(t)x(t)} (where EO 
is the statistical expectation operator and (-)T is the transpose 

operator), the directions of principal importance can then be 

determined by carrying out an eigendecomposition of the co­

variance matrix, C = V A V T, where the entries of a diagonal 

matrix A correspond to the eigenvalues and the matrix V cor­

responds to the eigenvectors of the covariance matrix C. The 

eigenvector matrix, V, captures the directions of principal 

importance of a given trivariate signal, while the eigenvalues 

determine the relative power of the resulting directions. 

In order to generate nonuniform samples based on the 

statistical structure of the input trivariate signal, an ellipsoid 

with the following Cartesian coordinates (x - y - z axis) is 

generated 

x = a cose sin¢ 

y = b sine cos¢ 

z = ccos¢ 

(1) 

where e is the inclination angle, ¢ corresponds to the azimuth 

angle, and the terms a, b, c are parameters used to determine 

the ellipsoid in three dimensional space. The inclination and 

azimuth angles correspond to the directions of a uniformly 

sampled sphere (Hammerseley sequence [13]), such that the 

resulting ellipsoidally distributed samples are located along 

the directions of highest curvature. 

Algorithm 1: Nonuniformly sampled Trivariate EMD (NS­

TEMD) 

1. Given a trivariate signal x(t), perform the eigendecom­

position of the covariance, E {xxT} = V A V T, where 

V is the eigenvector matrix, and 

A = diag{AI, A2, A3}, is the eigenvalue matrix, with 

the eigenvalues, Al > A2 > A3· 

2. Uniformly sample a sphere using the Hammerseley se­

quence, and determine the corresponding azimuth an­

gle ¢ H, and inclination angle e H of the Hammersel y 

projections, in order to identify the Cartesian coordi­

nates of the uniformly sampled sphere. 



3. Determine the nonuniform projection ep on a sphere by 

constructing an ellipsoid with the following parameters 

[At COSeH sin <PH] 
el = A1 si�eH COS<PH 

Ag COS<PH 

(2) 

Rotate the ellipsoid, el, such that the directions of high­

est curvature are sampled, ep = Vel. 

4. Perform the local mean estimation according to the 
conventional MEMD algorithm (see [13] for more de­

tails), using both the uniform samples and the nonuni­

form samples ep. 

3. SIMULATION RESULTS 

The performance of the NS-TEMD algorithm was evaluated 

over simulations on trivariate signals with varying channel 
powers, and on noise assisted signal decomposition on syn­

thetic data and an event-related potential (ER P) signal from 

the electroencephalography (EEG). All the simulations em­

ployed 32 projection vectors, as 16 projection vectors are 

inadequate to capture the direction of highest curvature of 

trivariate signals, and employing a larger number of projec­

tion vectors is computationally intensive. 

3.1. Bivariate Data with Varying Channel Powers 

We next examined the performance of the proposed NS­

TEMD algorithm in denoising a three channel signal consist­

ing of sinusoidal oscillations, and against those of MEMD and 

multivariate wavelet synchrosqueezing denoising (MWSD) 

algorithm [20]. The SNR of the first channel was varied 

between 17 dB and -1 dB, while the SNR of the second and 
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Fig. 2. Reconstruction error (in SNR) for the IMFs of a si­

nusoid (upper panel: 5Hz, lower panel: 10Hz) using the pro­

posed NS-TEMD, MEMD and MWSD algorithms. 
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third channel were fixed at 30 dB; the corresponding recon­

struction SNR of the sinusoid in the first channel was then 

calculated for a given IMF index. 

Fig. 2 shows the reconstruction SNR for the proposed al­

gorithm against the MEMD and the MWSD, when processing 

sinusoidal oscillations with frequencies of 5 Hz and 10 Hz. 

It can be observed that the proposed method outperforms the 

MEMD in recovering the 10 Hz sinusoid with approximatly 

3dB of improvement when there exists a power imbalance be­

tween channel 1 with respect to the second and third channels 

of approximately 18-27 dB (the SNR of the first channel was 

3-12 dB). For the 5 Hz sinusoidal oscillation the reconstruc­

tion SNR of NS-TEMD was approximatIy 3dB higher than 

that of MEMD, when there exists a significant power imbal­

ance between the relevant channels. The proposed algorithm, 

however, performs similar to MWSD in recovering the 5 Hz 

and 10 Hz sinusoidal signals when the power imbalance was 

relatively low (lower than 4 dB). 

3.2. Noise Assisted Signal Decomposition 

In this section the performance of the proposed non uniformly 

sampled TEMD algorithm was assessed against the MEMD 

(using only three channels) for a noise-assisted decomposi­

tion of a two tone sinusoidal oscillation. For this simulation 

the first channel consisted of a discrete time signal (sampled 

at is = 1000 Hz), given by 

(3) 

and the second and third channels were WGN processes. The 

relative power of the second and third channel was constant, 

while the SNR of the first channel relative to noise channels 
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Fig. 3. Reconstruction error (in SNR) for the IMFs for a two­

tone signal in (3) with varying channel power ratio, given 

by 10 10g(Sl), with Sl = NOi;:���lnfie�;'wer. (upper panel) Re­

construction of both the NA-NSTEMD and NA-MEMD al­

gorithm for the 15 Hz tone. (lower panel) Reconstruction of 

both the NA-NSTEMD and NA-MEMD algorithm for the 10 

Hz tone. 
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Fig. 4. ERP ground truth generated by performing MEMD 

and NS-TEMD on EEG data recorded from the Fz electrode 

(upper panel) and Cz electrode (lower panel) during an ERP 

experiment. 

was varied from 0 dB to 20 dB. Fig. 3 shows the reconstructed 

SNRs for both the proposed noise-assisted NS-TEMD (NA­

NSTEMD) and noise assisted MEMD (NA-MEMD, see [23] 

for more details) algorithms; the reconstruction SNR for the 

proposed method improved as the relative SNR increased, 

while for the NA-MEMD the performance decreased with the 

degree of a power imbalance between the data channels. 

3.3. ERP component decomposition 

Event-related potentials are elicited sensory responses of the 

brain, generated primarily from auditory and/or visual stim­

uli and measured via EEG [24]. Major ERP components 

include the PI, N1, P2, N2 and P300. The P300 can be 

elicited through unexpected stimuli. The subject was shown 

randomly coloured boxes (non-target stimuli) and a box with 

white background and red foreground (target stimulus); both 

types of stimuli were generated using an LCD screen. The 

time intervals between each of the desired stimuli were ran­

domised. The ERP signals were band-pass filtered to 1-20 Hz 

and averaged over 10 trials. A multichannel signal was then 

constructed from ERP data recorded from the Fz and Cz elec­

trodes forming the first and second channels, while the third 

channel for both algorithms contained white Gaussian noise 

to enforce a dyadic filterbank structure within the EEG chan­

nels and enable noise-assisted mode-of-operation in both al­

gorithms. Fig. 4 shows the ground truth of the ERP data gen­

erated by averaging 1000 ER P-IMFs obtained from applying 

1000 realisations of the NA-NSTEMD and NA-MEMD on 

the multichannel signal. In order to evaluate the performance 

of both the NA-MEMD and NA-NSTEMD algorithms, the 

mean squared error (MSE) for each realisation of the esti­

mated ERPs was calculated with respect to the ground truth 

ERPs for each electrode. 

Observe from Fig. 5 that the NA-NSTEMD yielded sig­

nificantly lower MSE compared to NA-MEMD for ERP sig-
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Fig. 5. Mean squared error of ERP components at the Fz 

electrode (upper panel) and Cz electrode (lower panel). 

nals from both the Fz and Cz electrodes, and the MSE for the 

NA-MEMD approach was particularly high during the P300 

which, in BCI applications, is the most important component 

of the ER P. 

Observe from Table 1 that the NA-NSTEMD outper­

formed the NA-MEMD. The case when the NA-NSTEMD 

was used to decompose a single channel of an ERP signal 

from either the Fz of Cz electrode with the other two channels 

being WGN did not outperform the NA-MEMD (the result 

is not shown). This is because there was no inter-channel 

dependency or imbalance which is essential in generating 

nonuniformly sampled projection vectors in NS-TEMD. 

Table 1. The average MSE along time of the NA-NSTEMD 

and NA-MEMD algorithms from the Fz and Cz electrodes. 

NA-NSTEMD 

NA-MEMD 

Fz Cz 

5.35 x 10 14 

1.00 x 10-12 
1.67 x 10 13 
9.36 x 10-13 

4. CONCLUSION 

A NS-TEMD algorithm has been introduced in order to gen­

erate projection vectors that represent the principal direction 

in three dimensional space for unbalanced trivariate sig­

nals. The proposed algorithm has been shown to outperform 

conventional MEMD in decomposing trivariate noisy sig­

nals with modest SNRs and outperformed the MWSD when 

SNRs were low. In the presence of white Gaussian noise, 

the proposed algorithm has been shown to be more effective 

than NA-MEMD. Simulations on both synthetic and EEG 

data support the analysis; NA-NSTEMD yielded significantly 

lower MSE in decomposing ERP components compared to 

NA-MEMD, showing its potential to recover responses in 

real-world data. 
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