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Selective Time-Frequency Reassignment
Based on Synchrosqueezing

Alireza Ahrabian and Danilo P. Mandic

Abstract—Reassignment methods seek to sharpen the time-fre-
quency representation of conventional time-frequency algorithms,
such as the continuous wavelet transform (CWT). However, such
methods aim to localize both noise components and signal com-
ponents of interest, which makes the discrimination between such
components for low SNR signals a difficult task. Inspired by the re-
covery of modes (RCM) algorithm, we propose a selective time-fre-
quency reassignment procedure that attempts to identify and lo-
calize oscillatory components of interest for the continuous wavelet
transform (CWT), where the reassignment is carried out for selec-
tive localization. The performance of the proposed method is illus-
trated on both synthetic and real world data.

Index Terms—Continuous wavelet transform, reassignment
methods, synchrosqueezing transform, time-frequency analysis.

I. INTRODUCTION

T HE analysis of nonstationary signals has traditionally
been carried out using time-frequency methods, such

as the short-time Fourier and continuous wavelet transforms.
However, due to the uncertainty principle [1], such techniques
are fundamentally limited in simultaneously resolving oscil-
latory components in both time and frequency. A number
of approaches have been proposed in order to overcome this
limitation, from data driven methods such as the empirical
mode decomposition (EMD) [2] and its multivariate extensions
[3][4] to reassignment methods such as the synchrosqueezing
transform (SST) [5].
The empirical mode decomposition decomposes a signal into

a set of amplitude and frequency modulated monocomponent
signals termed intrinsic mode functions (IMFs). Owing to the
narrowband properties of IMFs, the Hilbert transform can then
be applied in order to obtain physically meaningful instanta-
neous amplitudes and frequencies so as to construct a time-
frequency representation. The empirical mode decomposition
has found many applications as both a time-frequency algo-
rithm and in signal decomposition in fields such as biomed-
ical signal processing [6]. It should be noted that, while data
driven methods have shown great promise in overcoming the
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limitations of conventional time-frequency methods, the non-
parametric nature of such methods does not admit closed form
analysis of their convergence and stability.
Reassignment techniques [7]–[11] such as the syn-

chrosqueezing transform (SST) [5] have been proposed as an
alternative to data driven methods. The synchrosqueezing was
introduced as a post-processing technique applied to the con-
tinuous wavelet and short time Fourier transforms [12] in order
to better localize oscillatory components. This was achieved by
inverting the linear projection based transforms (DTF, wavelet)
around the common instantaneous frequency estimates in each
coefficient of such transforms. The synchrosqueezing trans-
form enhances the time-frequency representation of signals
in applications such as condition monitoring [13], however,
for mono/multicomponent signals with low signal to noise
ratios, the synchrosqueezing transform localizes both the noise
and desired signals, leading to time-frequency representations
that are difficult to interpret. Furthermore, the computational
resources required by the SST for signals of long duration is
also a challenge which can, in many instances, be reduced by
applying reassignment to a subset of the wavelet coefficients.
In order to extract oscillatory components from the time-fre-

quency domain, conventional approaches first identify ridges,
that is, the local maxima of the time-frequency coefficients with
respect to scale or frequency. Ridge detection methods for both
wavelet and synchrosqueezing transforms have been presented
in [14][15], whereby a cost function is employed which both
identifies the local maxima and smooths ridges corresponding
to the instantaneous frequency estimates of oscillatory com-
ponents of interest. However, such methods are computation-
ally expensive and require greedy algorithms for the identifi-
cation of such ridges. The work in [16] introduced a simul-
taneous mode extraction and denoising algorithm inspired by
synchrosqueezing (referred to as the retrieval of components
(RCM) algorithm) that outperformed both the empirical mode
decomposition and the block thresholding wavelet transform in
recovering modulated oscillations in noise. The method did not
perform well for very low SNR conditions. More recently, the
work in [17] has introduced a scheme for partitioning the the
time-frequency domain for the STFT using techniques inspired
by computational geometry in order to either reassign and/or ex-
tract the oscillations of interest.
This work introduces a selective reassignment method (the

first of such methods was introduced in [18]), in order to re-
assign oscillatory components of interest while suppressing the
noise components, using a variant of the retrieval of compo-
nents (RCM) algorithm proposed in [16]. The proposed method
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is shown to be computationally efficient, and the resulting im-
provement in the time-frequency representation is illustrated
both on synthetic and real world data.

II. PROBLEM STATEMENT

Consider the following measurement model

(1)

where is the signal of interest and the additive noise
process. The continuous wavelet transform of is then given
by, , where is the con-
tinuous wavelet transform of the desired signal, while
are the CWT coefficients for the noise process. However, con-
ventional reassignment methods, such as the synchrosqueezing
transform [5], localize the wavelet coefficients which
contain both the noise process and desired signal. This approach
has two drawbacks: (i) for very low SNR signals, visualising the
oscillatory components is more difficult; (ii) the computational
resources used by synchrosqueezing, when analyzing signals of
long duration, are rather prohibitive. Our aim is to show that
by identifying a subset of the wavelet coefficients to reassign, a
significant reduction in the computational and memory require-
ments can be obtained by eliminating the localization of noise
components.
The objective of the proposed selective reassignment is there-

fore to both identity and localize the wavelet coefficients corre-
sponding to the desired signal, .

III. RETRIEVAL OF COMPONENTS FROM A MULTICOMPONENT
SIGNAL (RCM) ALGORITHM

We next provide a brief introduction of the so-called retrieval
of components from a multicomponent signal (RCM) algorithm
[16]. The objective of the RCM algorithm is to identify oscil-
latory modes; the algorithm first identifies the number of oscil-
latory modes then an optimal threshold is determined such that
oscillatory modes can be retrieved.
Within the RCM algorithm, the number of oscillatory modes,

, for various threshold levels, , and time instants , is
calculated as the following set1

(2)
where is the set of thresholds which is bounded be-
tween the maximum value of the wavelet coefficients and
where is the standard deviation of the noise process esti-
mated using the median absolute deviation of the finest wavelet
coefficients2 (an example is shown in Fig. 1). For each time in-
stant, , the number of modes is determined as

(3)

where , and is the operator which
determines the number of elements in a set, while the function,

1Where for are the discrete scales. The term
is an input parameter, while where is the length of the signal

with appropriate zero padding for to be an integer.
2The proposed method uses a lower bound determined by the magnitude of

the finest wavelet coefficient.

Fig. 1. The magnitude of the CWT coefficients (with various threshold levels
(red thin line)) along the scale factors (blue thick line), for a fixed time instant.

, is the statistical mode of a series of data points. The
total number of oscillatory modes, , is then determined as

(4)

where , . Once the number of oscillatory modes
has been obtained, the second step is to calculate a threshold
such that the oscillatory modes can be retrieved. To this end,
the work in [16] defines the following set

(5)

such that is the set of thresholds, , in the set at each
time instant , that yields the number of modes . Finally,
the optimal threshold for each time instant, , is given by

. The oscillatory modes are then extracted
by taking the inverse of the wavelet transform (a detailed expla-
nation can be found in [16]).

IV. PROPOSED ALGORITHM

We propose a variation of the RCM algorithm which robustly
identifies oscillatory modes pertaining to the signals of interest
in high levels of noise such that the resulting identified oscilla-
tory modes are reassigned using synchrosqueezing for selective
localization. The proposed algorithm follows the procedure in
[16] in terms of identifying the number of oscillatory modes,
however, for each algorithmic step a modification is introduced.
In order to find the number of oscillatory modes, the wavelet

coefficients, , are first partitioned along time into
equal non-overlapping windows of length (where appro-
priate zero-padding of is carried out if the original
signal is not divisible by ). The absolute values of the wavelet
coefficients in each non-overlapping window are then averaged
across time, to give

(6)

where corresponds to the set of time indices within each
window and the integer denotes the index of each window.
By averaging the CWT coefficients along time, the signals of
interest tend to be more localized as compared with the noise
components (see the Appendix). The next step is to identify the
number of oscillatory modes within each window by using (2)
and (4), where the coefficients are used instead of the
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coefficients . The set of thresholds which obtain the
same number of oscillatory modes (shown in (5)), is modified
based on

(7)

This restriction allows for the processing of intermittent
oscillations as well as for the reduction in computational re-
sources, as selective reassignment is less restrictive in terms of
finding globally the number of oscillatory modes. The optimal
threshold, , is then determined as ,
where is the statistical expectation operator. In order to
threshold the CWT coefficients, the following hard thresh-
olding is applied

for all pairs, and the final estimates of CWT coefficients
corresponding to the signal of interest are given by .
Synchrosqueezing is then carried out to generate a selectively
reassigned coefficients . Owing to the hard thresholding
of the wavelet coefficients prior to synchrosqueezing, the orig-
inal signal can then approximately be recovered as

, where is the normalization con-
stant [15]. An alternative thresholding method for recovering
the wavelet coefficients proposed in [19][16] first identifies the
wavelet ridges greater than the thresholds . The wavelet
coefficients around the vicinity of the ridge (determined by the
compact support of the mother wavelet) are then used to recover
the oscillatory modes.

V. SIMULATION RESULTS
The time-frequency representations of selective reassignment

were compared quantitatively and qualitatively with that of the
standard synchrosqueezing transform3, for both synthetic and
real world data.

A. Synthetic Signals
The first set of simulations consists of a multicomponent fre-

quency modulated oscillation, given by

where the sampling frequency was 200 Hz and the signal
duration was 10 seconds. The symbol denotes a fractional
Gaussian noise (fGn) process4, with Hurst exponent
(where the energy of the noise process is concentrated at the
lower frequencies). In order to quantitatively compare the
performance of the proposed method with that of SST, we
calculated, for various SNRs, the corresponding energy of the
transforms both along the desired instantaneous frequency and

3The bump wavelet [16] was used with and . Furthermore, the
support of the bumpmother wavelet is dependent upon , where for small values
of the frequency localization is enhanced at the expense of time localization,
therefore it is imperative to select an appropriate .

4The Hurst exponent is bounded as, , where denotes
a white Gaussian noise process. Between there exists positive
correlation for different time lags, while for there is negative
correlation for different time lags [20].

Fig. 2. Comparison of the proposed method and SST.(Upper panel) The total
energy along the instantaneous frequency of interest.(Lower panel) The total
energy across the time-frequency domain not including the instantaneous fre-
quency of interest.

for the whole time-frequency domain (not including the energy
along the desired instantaneous frequency).
Fig. 2 (upper panel) shows the total energy along the desired

instantaneous frequency for both the proposed method and
SST. The energy for both methods decreased for very low SNR
signals, however, the proposed method estimates a subset of the
total energy estimated using the synchrosqueezing transform.
This is due to only the subset of wavelet coefficients being re-
assigned; wavelet coefficients above a threshold are reassigned
irrespective of the instantaneous frequency. Fig. 2 (lower panel)
shows the total energy across the whole time-frequency domain
while not including the energy along the desired instantaneous
frequency, for various input SNRs. It can be observed that the
proposed method significantly reduces the total background
noise for lower SNRs. Fig. 3 illustrates the time-frequency
representation for both the synchrosqueezing transform (upper
panel) and the proposed method (lower panel), for the multi-
component signal with an SNR of 0 dB; the proposed method
clearly recovers and accurately represents the oscillatory com-
ponents of interest. Mode recovery algorithms [15] can also
be used to retrieve smoothed estimates of the instantaneous
frequency with lower computation costs.

B. Real World Data

This simulation considered steady state visual evoked po-
tentials (SSVEP) electroencephalography (EEG) data collected
from a test subject, where a 15 Hz blinking stimulus was used
in the experiment. Data was recorded from the POz electrode,
and bandpass filtering was then carried out between 2-50 Hz.
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Fig. 3. Time-frequency representation of the multicomponent signal, ,
with dB, using SST (upper panel) and using the proposed method
(lower panel).

The synchrosqueezing transform of the SSVEP data is shown
in Fig. 4 (upper panel) where, due to the low SNR, the frequency
signature of interest is not clearly represented. However, for the
proposed method (shown in Fig. 4 (lower panel)), the 15 Hz
SSVEP signal was clearly identified in the time-frequency do-
main.

VI. CONCLUSION

A selective reassignment procedure based on the RCM al-
gorithm has been proposed to identify oscillatory components
of interest from noisy data. The principles of synchrosqueezing
have then been applied in order to generate a selectively local-
ized time-frequency representation. The performance of the pro-
posed method has been demonstrated on both synthetic and real
world data.

APPENDIX

Consider a signal , such that,
and , where and are in-

dependent zero mean Gaussian noise processes [1], with a vari-
ance of . The magnitude of the averaged wavelet coefficients
(shown in (6)) can be approximated as follows

(8)

Fig. 4. Time-frequency representation of SSVEP using SST (upper panel) and
the proposed method (lower panel).

From [21], an approximate expression for the wavelet transform
of the signal was obtained for a general multivariate mod-
ulated oscillation (a similar result is also valid for univariate
modulated oscillations); furthermore, the wavelet transform of
the noise process can also be simplified as follows

(9)

where is the Fourier transform of the mother wavelet and
the absolute value of the noise signal follows a Rayleigh distri-
bution, such that, , to give

(10)
where, . By averaging the absolute
value of the CWT coefficients along time, (10) shows that the
wavelet transform of the noise process (for sufficiently large
number of samples averaged along time) results in wavelet co-
efficient values that are dependent upon both the standard de-
viation of noise process and the scaled mother wavelet. The
expected value of the signal of interest is dependent primarily
on the instantaneous frequency. For modulated oscillations con-
taining slowly varying instantaneous frequencies, the expected
value of the absolute value of the wavelet coefficients would be
more localized over fewer scales and therefore more localized
relative to the noise signal.
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