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Abstract—Univariate thresholding techniques based on high res-
olution time-frequency algorithms, such as the synchrosqueezing
transform, have emerged as important tools in removing noise
from real world data. Low cost multichannel sensor technology
has highlighted the need for direct multivariate denoising, and to
this end, we introduce a class of multivariate denoising techniques
based on the synchrosqueezing transform. This is achieved by
partitioning the time-frequency domain so as to identify a set of
modulated oscillations common to the constituent data channels
within multivariate data, and by employing a modified universal
threshold in order to remove noise components, while retaining
signal components of interest. This principle is used to introduce
both the wavelet and Fourier based multivariate synchrosqueezing
denoising algorithms. The performance of the proposed multi-
variate denoising algorithm is illustrated on both synthetic and
real world data.

Index Terms—Multivariate signal analysis, multivariate signal
denoising, short-time Fourier transform, synchrosqueezing trans-
form, wavelet denoising.

I. INTRODUCTION

R EAL-WORLD data is often contaminated with noise
and it is widely accepted that noise characterization is

best performed at the level of the instantaneous frequency.
Existing denoising algorithms range from adaptive filtering
based methods, such as the least mean square (LMS) algorithm
[1], to more sophisticated multiscale methods based on the
discrete wavelet transform (DWT) [2] and empirical mode
decomposition (EMD) [3]. In particular, multiscale denoising
algorithms have found numerous applications ranging from
geophysical engineering [4] to location estimation in commu-
nications systems [5].
Due to their low resolution at high frequency, wavelet based

denoising algorithms [2] are best suited for the separation of
additive noise from a signal of interest that occupies lower fre-
quency bands. This is achieved by a decomposition into a set
of scales separated in frequency, whereby the noise component
is typically present across scales and the signal of interest oc-
cupies a low frequency subset of the wavelet scales. Then, de-
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noising is carried out by rejecting the frequency bands corre-
sponding to noise (typically performed by thresholding), while
preserving the frequency bands that contain the signal of in-
terest. A popular threshold is the universal thresholding tech-
nique proposed in [2], [6], while a multivariate extension of
the univariate wavelet denoising technique has been proposed
in [7]. This was achieved by using principal component anal-
ysis (PCA) in combination with conventional univariate wavelet
denoising, aiming to exploit the inter-channel dependencies in
multivariate data.
The wavelet transform is a projection based decomposition

algorithm that is fundamentally limited in resolving oscillatory
features that occur simultaneously both in time and frequency.
An alternative data driven approach to time-frequency analysis
was recently introduced in [8], termed the empirical mode de-
composition (EMD), that adaptively decomposes a signal into
a set of localized amplitude/frequency modulated (AM/FM)
oscillations termed intrinsic mode functions (IMFs). Recently,
EMD-based denoising algorithms have emerged [3], these
modify the universal thresholding criterion, as well as the
thresholding characteristics, to adapt the denoising techniques
in [2], [9] for EMD. Denoising methods based on EMD have
been shown to outperform the wavelet transform [3], [10],
while a recent multivariate extension of EMD (MEMD) [11]
has been successfully applied to artifact removal in electroen-
cephalography (EEG) [12].
Recently, a reassignment technique termed the syn-

chrosqueezing transform (SST) [13]–[16], was introduced to
produce highly localized time-frequency representations of
modulated oscillations [17]–[20]. The SST is a post-processing
technique that enhances the localization properties of conven-
tional linear projection based methods such as the continuous
wavelet transform (CWT) and short-time Fourier transform
(STFT) [21] by reassigning the energies of time-frequency
coefficients around the frequency of oscillations present in the
signal at hand. Inspired by the synchrosqueezing transform,
the work in [22] introduced a denoising technique that outper-
formed both the empirical mode decomposition and wavelet
transform in recovering modulated oscillations in noise, how-
ever, the method was defined for univariate signals.
To this end, we here propose a multivariate denoising al-

gorithm that employs synchrosqueezing for both the CWT
and STFT in order to identify a set of modulated oscillations
common to all data channels within a multivariate signal.
Upon partitioning the time-frequency domain, a thresholding
technique suited for the multivariate oscillatory framework is
introduced and is applied to the modulated oscillations for each
data channel, enabling the removal of noise from multichannel
data. Illustrative simulations verify the performance of the
proposed method on both synthetic and real world data.
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The organization of this paper is as follows. Section II intro-
duces the univariate and multivariate wavelet denoising algo-
rithm. Section III addresses the modulated multivariate oscilla-
tion model, Section IV describes synchrosqueezing based time-
frequency techniques, while Section V presents the proposed
multivariate extension of the synchrosqueezing algorithm and
the corresponding denoising algorithms. Section VI assesses the
performance of the algorithm through simulations.

II. WAVELET DENOISING TECHNIQUES

A. Univariate Wavelet Denoising

The signal denoising problem. Consider an observation,
, of a signal of interest, , which is contaminated with

noise , that is

(1)

The objective is to remove as much as possible the effects of
the additive noise component, while preserving the signal of
interest. Multiscale techniques, such as the discrete wavelet
transform, decompose a signal into multiple frequency bands
(scales) [9], by projecting the signal across a set of orthogonal
basis functions. It is usually assumed that the signal of interest
is localized across a small set of frequency scales, while the
noise signal is present across all scales (assuming that the
noise process is broadband). By employing a threshold, scales
corresponding to noise are removed and the scales containing
the signal are preserved. The two popular methods used for
thresholding are the hard and soft thresholding, and are given
respectively by

(2)

and

(3)

where the symbol refers to the sign function. An optimal
threshold that removes noise components with a high proba-
bility is known as the universal threshold [2], [6], given by

(4)

where is the standard deviation of noise and is the length of
the signal. A modified universal threshold has been proposed in
[3], as a multiple of the original universal threshold, that is

(5)

where is a positive constant. It has the advantage of being
able to fine-tune the original universal threshold for signal de-
composition algorithms other than the DWT [3].

B. Multivariate Wavelet Denoising

Consider the multivariate extension of the signal denoising
problem in (6), given by

(6)

where , and is the number of data chan-
nels. As in the univariate case, the objective is to recover the
multivariate desired signal, , by exploiting the inter-channel
dependencies that may exist (either between the noise or desired
signals). In order to improve denoising over the conventional
application of univariate wavelet denoising applied directly to
each data channel independently, the multivariate wavelet de-
noising (MWD) algorithm employs principal component anal-
ysis in conjunction with univariate wavelet thresholding [7], and
is outlined in Algorithm 1.

Algorithm 1: Multivariate Wavelet Denoising (MWD)

1) Given an -channel multivariate signal , apply the
DWT channel-wise at a level J, to obtain a set of discrete
wavelet coefficients .

2) Using the detail coefficient obtain a covariance
estimate of the noise . Carry out the eigendecomposition
of the covariance, . Next, carry out the
following matrix multiplication, , and apply the
universal threshold , where
are the eigenvalues for each channel index .

3) Apply the inverse of the projection, , to the coefficients
where the universal threshold was applied, and then make
an inverse of the wavelet transform in order to obtain the
denoised signal .

4) Carry out PCA on the reconstructed signal, , and
by using an appropriate rule, retain the most significant
principal components.

III. MODULATED MULTIVARIATE OSCILLATIONS

Many real world univariate signals can be modeled by the
modulated oscillation model

(7)

where and are respectively the instantaneous ampli-
tude and phase; the derivative of the instantaneous phase is re-
ferred to as the instantaneous frequency . In order to iden-
tify a unique pair for and , the work in [23] employed
the Hilbert transform, to generate a complex analytic signal

(8)

where and can be identified using complex algebra.
For signals with slowly varying instantaneous amplitudes and
frequencies, time-frequency algorithms aim to localize oscilla-
tory components of the form (7), while spreading out the energy
of the noise components in the time-frequency plane; this is the
basis of univariate signal denoising algorithms [22]. In order to
extend this concept for the analysis of multichannel signals, a
multivariate extension of the univariate modulated oscillation
model has been introduced whereby, the notion of the instanta-
neous frequency and amplitude were extended to model multi-
variate signals. Based on a multivariate analytic signal, ,
of the following form

...
(9)
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where and represent the instantaneous amplitude
and phase for each channel index , the work in [24] introduces
the concept of modulated multivariate oscillation, whereby the
joint oscillatory structure of the multivariate analytic signal,

, is modeled by the joint instantaneous frequency

(10)

where is the conjugate transpose operator.
Furthermore, the joint global moments of a multivariate

signal can be related to both the joint analytic spectrum and joint
instantaneous frequency and bandwidth [24]. The joint analytic
spectrum of a multivariate signal is determined according to

(11)

where corresponds to the channel-wise application of the
Fourier transform and denotes the total energy of the joint
analytic spectrum

(12)

The joint analytic spectrum is then the power weighted average
of the channel-wise Fourier coefficients, while the joint global
mean frequency is given by

(13)

and corresponds to the average frequency of the joint analytic
spectrum. The multivariate bandwidth squared1 is given by

(14)

where the multivariate bandwidth, , is a measure of the stan-
dard deviation of the joint analytic spectrum. It should be noted
that the global moments of the analytic spectrum can be related
to the moments of joint instantaneous frequency and bandwidth
as

(15)

(16)

where is the joint instantaneous
second central moment and the joint instantaneous bandwidth

is given as

(17)

The joint instantaneous bandwidth, measures the normalized
error of the joint instantaneous frequency from the rate of

1The multivariate bandwidth squared in [25] is the joint global second central
moment.

change of the multivariate signal, whereby inserting (9) into
(17), the following expression is obtained

(18)

Accordingly, it can be observed that the joint instantaneous
bandwidth measures both the deviations of the individual
channel-wise instantaneous frequencies from the joint in-
stantaneous frequency, along with any amplitude modulation
within each channel of the multivariate signal. Assuming
slowly varying instantaneous amplitudes within each channel,
for a given multivariate signal with large deviations of the
channel-wise instantaneous frequencies from the joint instanta-
neous frequency, expression (18) implies that the multivariate
signal would not be well modeled as a single oscillatory
structure.

IV. SYNCHROSQUEEZING TRANSFORM
The synchrosqueezing transform belongs to the class of fre-

quency based reassignment techniques and was originally de-
veloped for the continuous wavelet transform, however, more
recently the principles behind the synchrosqueezing transform2

[21] have also be been applied to the STFT.

A. Wavelet Based Synchrosqueezing
The CWT is a time-frequency algorithm that convolves a se-

ries of finite energy oscillations, termed wavelets , with the
signal of interest , given by

(19)

where are the wavelet coefficients. A wavelet is a
square integrable function that satisfies the admissibility con-
dition

(20)

where is the Fourier transform of the mother wavelet .
The scale factor (shown in (19)) shifts the wavelet , in fre-
quency, such that oscillatory features across different frequency
scales are captured. It should also be noted that, for different
scale factors there is an overlap between the wavelet filters.
This can be illustrated by the following example: given a sinu-
soid with a frequency , the resulting CWT coefficients of the
sinusoid will spread out around the vicinity of the scale factor

, where is the wavelet center frequency. In this way,
the estimated instantaneous frequency present in the scales in
the vicinity of is equal to the original frequency .
It is now possible, given an estimate of the instantaneous fre-
quency for each scale-time pair ,

(21)

2In this work, when referring to both wavelet and Fourier based syn-
chrosqueezing transforms, the following term, synchrosqueezing techniques
(ST) is used.
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to invert the wavelet coefficients containing the same in-
stantaneous frequency estimates in a procedure known as
synchrosqueezing [18]. Given the wavelet coefficients ,
the synchrosqueezing transform3 is given by

(22)

where is the delta function.

B. Fourier Based Synchrosqueezing
The short time Fourier transform (STFT) operates by first em-

ploying a window function to localize the signal in time,
then the Fourier transform is applied in order to obtain the fre-
quency content [27]. Given a signal the STFT is given by

(23)

The instantaneous frequency for each frequency index is cal-
culated as follows [21]

(24)

The wavelet based SST algorithm effectively inverts the
wavelet transform and maps the resulting energy into appro-
priate frequency bins. Accordingly, the reassignment operation
using the STFT is carried out by inverting the coefficients

along the instantaneous frequency estimates .
The synchrosqueezing of the STFT [21] is given by

(25)

V. DENOISING USING MULTIVARIATE EXTENSION OF
SYNCHROSQUEEZING TECHNIQUES (ST)

The work in [7] introduced a multivariate extension of the
univariate wavelet denoising algorithm in a statistical frame-
work, due the use of principal component analysis in processing
the inter-channel dependencies. Recently, the notion of themod-
ulated multivariate oscillation has been introduced in [24], such
that modulated oscillations in multiple channels are modeled
by a single oscillatory structure that captures the joint instan-
taneous amplitude and frequency of the multivariate signal. In-
spired by the modulated multivariate oscillation model, a multi-
variate thresholding technique was also proposed [24]. We next
propose a multichannel extension of the relevant algorithms,
by partitioning the time-frequency domain into a set of fre-
quency bands , where each frequency band con-
tains oscillatory components that are matched across multiple
channels. Along with the proposed thresholding technique, a
multivariate denoising algorithm is also developed.

A. Partitioning of the Time-Frequency Domain
Consider a multivariate signal with data channels,

where the corresponding ST coefficients for each channel are
given by . The proposed technique for partitioning the
ST coefficients along frequency uses a multivariate extension
of a frequency tiling technique proposed in [28] based on mul-
tivariate bandwidth, so as to identify a set of modulated mul-

3See [26] for details on the implementation of the SST.

Fig. 1. The multivariate bandwidth of the partitioned frequency domain given
by , where corresponds to the level of the frequency band (
typically), and is the frequency band index.

tivariate oscillations [29] that are well separated in frequency.
We first propose to partition along frequency the time-frequency
domain into equal width frequency bands, as shown in Fig. 1,
where each frequency band is given by

(26)

where , corresponds to the level of the frequency
bands ( typically) and is the index
of the frequency band. The multivariate bandwidth is then
calculated for a given frequency band , where is split
into two frequency subbands and , as fol-
lows [28]:
• If the frequency band contains a multivariate mono-
component signal, then, ,
that is, , is not split into the frequency subbands.

• If each frequency subband contains separate multivariate
monocomponent signals that are well separated along fre-
quency, then , accord-
ingly is split into the frequency subbands and

.
The first condition can be illustrated by the following example:
consider a bivariate monocomponent FM signal, where the
instantaneous frequency paths for each channel of the bi-
variate signal are shown in Fig. 2. From Fig. 2 the multivariate
bandwidth within the frequency band is
equal to . Accordingly, if the frequency band is
then split into two equal frequency subbands, with frequency
ranges given by and ,
the corresponding sum of the multivariate bandwidths within
each frequency subband is equal to 0.398, where it can be
observed that the sum of the multivariate bandwidths within
each frequency subband is approximately equal to the multi-
variate bandwidth within the frequency band. This example
implies that for a given multivariate modulated oscillation, the
frequency variation within each partition must be less than
or equal to the frequency variation without partitioning. We
next demonstrate that provided sufficient frequency separation
between multivariate monocomponent oscillations, the mul-
tivariate bandwidth can be used to identify such oscillations.
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For example, consider a bivariate linear frequency modulated
oscillation4

(27)

where , corresponds to the instantaneous phase
of the linear frequency modulated signal with chirp rate . In
order to illustrate how the multivariate bandwidth is affected
by the frequency separation between two separate monocompo-
nent signals, we have included a constant frequency deviation
between the channels. The multivariate bandwidth of

(using (15)–(17)) is given by , while the
bandwidth in each channel is given by, .
The resulting summation of the individual channel bandwidths
is given by , where it should be observed
that for the multivariate bandwidth, , to be greater than the
sum of the individual bandwidths for each channel, , the fre-
quency deviation needs to be greater than, . As a result,
multivariate monocomponent functions that are well separated
in frequency can be identified by splitting a larger frequency
band into smaller frequency subbands using the multivariate
bandwidth in conjunction with frequency partitioning [28].

Algorithm 2: Multivariate Time-Frequency Partitioning

1) Partition the time-frequency plane into equal-width
frequency bands .

2) For a given frequency band, , at level and index
, determine the multivariate bandwidth , using

(11)–(14), for the following multivariate signal,

3) Starting from , a frequency split is carried out if the
following condition is satisfied,

where

where and correspond to the
multivariate instantaneous amplitudes for the respective
frequency subbands and is defined by

4Appendix B provides an example using bivariate oscillations with a polyno-
mial instantaneous phase.

Fig. 2. The overlayed instantaneous frequency paths of a bivariate monocom-
ponent FM signal. The instantaneous frequency of the first channel (red line) is
given by, , and the corresponding instantaneous fre-
quency of the second channel (blue line) is given by .
The multivariate bandwidth between the frequencies is equal
to 0.3921, while the sum of the individual multivariate bandwidths in the fre-
quency partitions and is equal to 0.398.

Algorithm 2 outlines the procedure for identifying a set of
adaptive frequency bands given by , where is
the number of oscillatory scales and .
It should be noted that the condition required for splitting fre-
quency bands, that is (3), has been modified in Algorithm 2 so
as to factor the total energy of the frequency subbands, such
that subbands with negligible signal content are not considered.
Finally, as the partitioning algorithm requires accurate estima-
tion of the multivariate bandwidth which in turn depends upon
accurate estimation of the joint global mean frequency, for the
STFT based synchrosqueezing method, the joint global mean
frequencymay not be accurately estimated and therefore incom-
plete partitioning may occur when processing multicomponent
modulated multivariate oscillations.

Algorithm 3: Multivariate Denoising using ST

1) Given an -channel multivariate signal , apply
the ST channel-wise in order to obtain the coefficients

.
2) Determine a set of partitions based on the multivariate

bandwidth, such that the ST coefficients are
separated into a set of oscillatory scales , for each
channel index and scale index .

3) For a noise process, determine the variance for each
channel and scale, shown in Appendix C.

4) Using the multivariate instantaneous amplitude ,
carry out thresholding as shown in (30).

B. Denoising Using Synchrosqueezing Techniques

Consider a multivariate signal , with the corresponding
partitioned ST coefficients, , given by

(28)
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where denotes the channel index, while corresponds to the
oscillatory scale. We first need to estimate the variance of the
noise signal in each oscillatory scale. Recall that for the dis-
crete wavelet transform, the variance of noise in each oscilla-
tory scale remains constant, while for the partitioned ST coeffi-
cients the variance of the noise varies across scale—an expres-
sion for the power within each oscillatory scale is provided in
Appendix C where only the estimate of the noise variance in the
first oscillatory scale is required.
The conventional hard and soft thresholding applied to the ST

coefficients would yield discontinuities in the recovered signal
of interest even in the absence of noise, which is not desirable.
To this end, to capture the inter-channel dependencies that arise
between multichannel signals we propose a thresholding tech-
nique that employs the multivariate instantaneous amplitude

(29)

Such thresholding is then directly applied to the multivariate
instantaneous amplitude, as

(30)

where is the modified universal threshold (typical values
for given in (5), is between5 0.1–0.3). The recovered signal
can then be obtained by summing the coefficients, , as
follows

(31)

where corresponds to the denoised signal for each
channel. A summary of the proposed multivariate denoising
algorithm is given in Algorithm 3.

VI. SIMULATIONS

The performance of the proposed multivariate wavelet
synchrosqueezing denoising (MWSD) algorithm and the mul-
tivariate STFT based synchrosqueezing denoising6 (MFSD)
algorithm is next demonstrated on both synthetic and real
world signals. The proposed algorithm was compared to MWD,
BEMD denoising (BEMD-D) algorithm, which combines the
proposed multivariate threshold within BEMD [30], and also
the multivariate partitioned CWT in combination with the
proposed multivariate threshold (MCWT-D). The synthetic
signals consist of monocomponent sinusoids as well as a multi-
component frequency modulated oscillation, in varying levels
of noise. The three real world case studies were: accelerometer
data pertaining to arm swings during walk, oceanographic data
collected from freely drifting floats, and motor imagery data in
EEG based brain computer interface (BCI).

5The values were selected based on a qualitative assessment of both the recon-
structed SNR and smoothness of the resulting denoised signals, where priority
was given on smooth denoised signals with no spurious noise artifacts in the
recovered signal.

6The MATLAB code for both MWSD and MFSD algorithms are available on
request.

A. Denoising Monocomponent Sinusoidal Oscillations

The first set of simulations considers a bivariate sinusoidal
oscillation in white Gaussian noise, given by

(32)

where the sinusoidal oscillation was sampled at 1000 Hz,
and the corresponding frequency of the sinusoids are

. Fig. 3(a) shows the reconstruction SNRs
(averaged for both channels) corresponding to the sinusoids
in varying levels of white Gaussian noise, with equal SNR
between the two channels. It can be observed from Fig. 3(a) that
the proposed MWSD method consistently outperforms the
MWD and MCWT-D algorithms,7 especially at higher frequen-
cies; furthermore the proposed MWSD algorithm outperforms
the BEMD-D algorithm for both high and low frequencies.
For the bivariate sinusoidal oscillation with a frequency of 100
Hz, the reconstruction SNR for the proposed method decayed
rapidly when the input SNR falls below 0 dB. This is due
to the underlying behavior of SST (including CWT) at high
frequencies in the presence of noise; the wavelet transform has
a dyadic filter bank structure such that at higher frequencies the
bandwidth of the wavelet filter is wider. As the SST requires an
accurate estimate of the instantaneous frequency within each
wavelet coefficient in order to accurately reassign, the accuracy
in the estimation of the instantaneous frequency degrades at
higher frequencies in the presence of broadband noise. From
Fig. 3(a) it can be seen that the performance of the MFSD
algorithm is also frequency dependent; for low frequencies
the MFSD was outperformed by both the MWSD and MWD
algorithms. This is due to the incomplete partitioning of the
STFT based synchrosqueezing coefficients into modulated
oscillations. For high frequencies, the MFSD outperformed
both the MWD and MWSD, as the STFT does not have the
dyadic filter bank property of the CWT, and exhibits uniform
resolution dependent only on the length of the data window.
Accordingly, the estimated instantaneous frequency for higher
frequencies in the presence of noise did not degrade, and STFT
based synchrosqueezing coefficients did not depend as much
on the frequency of the sine waves. Finally, the multivariate
partitions and threshold were also applied to STFT (not shown
in the figures), where MFSD outperformed STFT denoising
for higher frequencies, however for low frequencies, due to
incomplete partitioning of MFSD, the STFT based method
outperformed MFSD.
For rigor, a variation of the previous simulation for unbal-

anced powers in data channels was next considered. We only
consider the proposed MWSD algorithm, similar results can
also be obtained using the MFSD algorithm. Consider a bi-
variate sinusoidal oscillation (as in (32)) with frequencies

, in white Gaussian noise, where an inter-
channel power imbalance was introduced both at the SNR in
each channel was different. The SNR of the second channel was
fixed at 20 dB, while the SNR of the first channel was varied
between 10 to 20 dB. Fig. 3(b) compares the performance
of proposed denoising algorithm for both the balanced inter-

7This is due to the energy of the oscillatory scales when partitioning CWT
which may not be localized completely within the partitions due to the trade-off
between the time and frequency resolution.
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Fig. 3. Denoising of bivariate sinusoids. (a) The reconstruction SNRs of the denoised signal of interest for both the proposed methods (MWSD and MFSD),
MWD, MCWT-D and BEMD-D algorithms for bivariate sinusoidal oscillations in white Gaussian noise, and with equal channel SNRs. (b) The reconstruction
SNR for bivariate sinusoidal oscillations in noise using the MWSD algorithm. The blue line corresponds to the reconstruction error for equal SNRs in data channels,
while the red line corresponds to the reconstruction error for different SNRs in data channels. (a) Balanced channel SNR; (b) unbalanced channel SNR.

channel SNR and the unbalanced inter-channel SNR scenario
(for the unbalanced bivariate signal the reconstruction error in
the first channel was calculated). Observe that for the frequen-
cies 100 Hz and 150 Hz and for high noise powers, the perfor-
mance of the proposed method for the unbalanced inter-channel
SNR case showed a significant improvement over the balanced
inter-channel SNR scenario.

B. Denoising Multicomponent Frequency Modulated
Oscillations

Consider a bivariate multicomponent frequency modulated
(FM) signal in white Gaussian noise (sampled at 200

Hz), where the underlying frequency modulated signals con-
tain both a sinusoidal instantaneous frequency combined with
a linear instantaneous frequency, that is

where

and , are independent white Gaussian noise real-
izations. As with the previous simulation (where a sinusoidal
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Fig. 4. The reconstruction SNRs of the bivariate multicomponent FM signal
in noise for both the proposed methods (MWSD and MFSD), MPW, MCWT-D
and BEMD-D algorithms (upper panel). Comparison of the proposed MWSD
algorithm when processing a bivariate multicomponent FM signal with equal
(balanced) and different (unbalanced) inter-channel powers (lower panel).

oscillation was considered) two cases were considered: the first
case assumes that the bivariate signals have equal inter-channel
SNRs, while in the second case there was an imbalance in
the inter-channel SNRs. Fig. 4 (upper panel) shows that the
proposed MWSD algorithm outperformed MWD, for channel
SNRs greater than 5 dB, while the MWSD algorithm out-
performed the BEMD denoise (BEMD-D) algorithm for input
channel SNRs greater than 4 dB. Furthermore, MSWD outper-
formed MCWT-D algorithm for all input signal SNRs, this is
due to the multicomponent signal occupying the mid- to high-
frequency ranges such that the resulting CWT coefficients had
lower frequency resolution. The proposed MFSD algorithm
outperformed both MWD and BEMD-D algorithms for input
channel SNRs of 6 dB and 10 dB respectively. For SNRs lower
than 5 dB, the performance of the proposed algorithms and
MWD algorithm were similar, with the BEMD-D having a
lower reconstruction SNR for very low input channel SNRs.
Finally, it should also be noted that MFSD outperformed mul-
tivariate STFT denoising algorithm, for very low input signal
SNRs, however the performance of both methods at higher
input signal SNRs were equal. Fig. 4 (lower panel) compares
the performance of the proposed method (MWSD) for equal
channel SNRs versus different channel SNRs in the bivariate
FM signal. As the noise power increased, the reconstruction
SNR for the unbalanced bivariate signal was higher than that for
the balanced bivariate signal, demonstrating that the proposed
algorithm is able to exploit inter-channel dependencies in order
to recover the signal of interest.

Fig. 5. Waveform of the body motion accelerometer data, pertaining to arm
swings of a subject during walk.

TABLE I
THE RECONSTRUCTED SNR FOR THE BIVARIATE DATA

PERTAINING TO HUMAN WALK

C. Human Motion Denoising
The data was obtained from the arm swings of a test subject

using two 3D accelerometers attached to the wrists. A bivariate
signal was then constructed (shown in Fig. 5) by using the y-axis
accelerometer data (the y-axis of the accelerometer was perpen-
dicular to ground, when the subject was at rest) collected from
the left and right wrists of the test subject.
Fig. 5 shows that both the instantaneous frequency and

amplitude of the bivariate accelerometer data are time-varying,
also additive white Gaussian noise of varying powers was
added to further complicate the recording. Table I shows
that both of the proposed multivariate denoising algorithms
(MWSD and MFSD) outperformed the MWD algorithm for
input SNRs below 10 dB, while as expected at higher input
SNRs the performances of all techniques were similar.

D. Float Drift Denoising
We next considered data collected from a freely drifting

oceanographic float, that is used by oceanographers to study
ocean current drifts.8 The position (latitude and the longitude)
of the float was recorded, and the resulting drift velocities for
both the latitude and longitude were then used to construct a

8The float drift data is obtained from the Jlab toolbox, and is available at
http://www.jmlilly.net. Data used for this simulation is available on request.
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Fig. 6. Oceanographic float drift recordings. (a) Time domain representation
of the bivariate float drift data. (b) The amplitude spectra of the latitude (upper
panel) and longitude (lower panel). (a) Float data; (b) amplitude spectra.

bivariate signal. Fig. 6(a) shows the time domain waveforms
of the drift velocities for both the latitude and longitude; the
bivariate signal contains a time-varying oscillation that is
common to both channels with an approximately constant phase
difference. Fig. 6(b) illustrates the respective amplitude spectra,
showing that the oscillatory signals of interest reside within the
frequency range [0,0.05], while the frequency content above
the normalized frequency of 0.05 is due to white noise.
The resulting time domain representations of the denoised bi-

variate float data using both the proposedMWSD and theMWD
algorithms are shown in Fig. 7(a); both algorithms correctly
identified monocomponent bivariate oscillations; observe that
the denoised float data estimated using the MWSD algorithm
has smoother features over the MWD, while Fig. 7(b) presents
the resulting amplitude spectra of the denoised signals. It can be
seen that both methods preserved the frequency content below
the normalized frequency of 0.05 and suppress the frequency
content above the normalized frequency 0.05. Fig. 7(b) shows

that the proposedMWSD algorithm outperformed theMWD for
high frequency component suppression.

E. Denoising in Motor Imagery BCI
The final simulation considers the electroencephalography

(EEG) data collected from a test subject performing motor im-
agery tasks. The objective of motor imagery (MI) experiments
is to generate a response in the brain electrical activity when
the subject imagines movement of a limb, manifested by a 10
Hzmu rhythm in EEG. A bivariate signal was constructed using
two EEG electrodes FC3 and T7 (located on the left hemisphere
of the skull), and the MI task involved the imagining left hand
movement9 [31]. The frequencies of interest for motor imagery
tasks fluctuates in the range 8–12 Hz [32], and the physiolog-
ical noise corrupting EEG signals tends to contain strong low
frequency components, so that at the power spectra of EEG sig-
nals are proportional to the inverse of frequency . To
this end, the Hurst exponent value of was used to
model the noise characteristics of the motor imagery data.
Fig. 8(a) shows the time-frequency representations of the

original EEG channels FC3 and T7; observe the presence of the
mu rhythm along with strong background low frequency EEG
components (at 0–4 Hz). Fig. 8(b) shows the denoised EEG
using the MWSD algorithm; the mu rhythm was recovered
while the low frequency background EEG components were
removed.

VII. CONCLUSION
We have introduced a class of multivariate denoising algo-

rithms based on synchrosqueezing in conjunction with the short
time Fourier transform and the wavelet transform. By parti-
tioning the time-frequency domain, a set of matched monocom-
ponent signals has been obtained, while a multivariate exten-
sion of the thresholding method and a multivariate denoising
algorithm have been proposed so as to exploit the inter-channel
dependencies that exist between multiple data channels. Sim-
ulations on both synthetic and real world data have demon-
strated the effectiveness of the proposed multivariate denoising
methods. Finally, the proposed multivariate partitioning and de-
noising algorithms have also been applied to conventional time-
frequencymethods such as wavelet and short time Fourier trans-
forms, and are advantageous for applications that require lower
computational complexity over accurate signal recovery.

APPENDIX A
The implementation of the synchrosqueezing transform

based on the STFT [21] is as follows.

A. STFT Implementation
The discrete implementation of the STFT (detailed in [27]),

generally requires the specification of three parameters: 1) the
type of window employed, 2) the window length used, and 3) the
overlap between windows. For the first case, it has been shown
that the Gaussian window, given by

(33)

9The data used in this simulation was obtained from the BCI Competition IV
Dataset I, and is available from http://www.bbci.de/competition/iv/. Data used
for this simulation is available on request.
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Fig. 7. Ocean float denoising. (a) The denoised bivariate float using the proposed MWSD method (upper panel) and the MWD algorithm (lower panel). (b)
The amplitude spectra for both the MWSD and multivariate wavelet denoising algorithms for denoised signal corresponding to the latitude (upper panel) and the
longitude (lower panel). (a) Denoised float data; (b) amplitude spectra.

Fig. 8. Motor imagery denoising aiming to recover a drifting 10 Hz mu-rhythm from noisy EEG. (a) The time-frequency representations of EEG data pertaining
to the left hand motor imagery, from the FC3 electrode (upper panel) and T7 electrode (lower panel). (b) The time-frequency representations of the denoised EEG
signals using the MWSD algorithm, for the FC3 electrode (upper panel) and T7 electrode (lower panel). (a) Original FC3 and T7 electrodes; (b) denoised FC3 and
T7 electrodes.

provides the best trade-off between both time and frequency
localization, while for the third case, a sliding window is em-

ployed to allow for the reconstruction of the original signal,
as well as providing information at each point in time. The
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window length is effectively a parameter that controls the de-
sired time and frequency resolution. A discrete implementation
of the STFT is given in Algorithm 4.

Algorithm 4: Discrete implementation of the STFT

1) Given a discrete signal , where ,
and a discrete Gaussian window function given by ,
where , and the maximum of the window
function is at .

2) Zero pad each side of the signal with zeros,
yielding the following signal .

3) Next apply the discrete Fourier transform

(34)

where ,
, and corresponds to the

elementwise product.

B. Instantaneous Frequency Estimation
Once the STFT coefficients have been determined,

the instantaneous frequency for each frequency index needs
to be calculated. An elegant solution (as outlined in [26] for
the wavelet based SST) utilizes the derivative properties of
the Fourier transform, that is, given the STFT coefficients,

, apply the Fourier transform along the time dimen-
sion, yielding

(35)

By taking the inverse Fourier transform, of the fol-
lowing expression, we then obtain

(36)
yields the instantaneous frequency for each frequency index .

C. STFT Synchrosqueezing
Finally, the discrete implementation of the synchrosqueezing

for the STFT is given as follows. The inverse of the STFT co-
efficient, in a discrete implementation, is given by

(37)

This implies that the final reconstruction formula for the discrete
implementation of the Fourier based synchrosqueezing trans-
form is given by

(38)
for .

APPENDIX B
Consider a bivariate frequency modulated signal given by

(39)

where the instantaneous phase is given by, ,
where . The objective is to determine the condi-
tions under which the multivariate bandwidth, , of the
bivariate signal , is greater than the sum of the individual
channel-wise bandwidths , where and
correspond to the bandwidth of each channel. Using (15)–(17)
from Section III, the bandwidth for each separate channel is
given by

(40)

Accordingly the multivariate bandwidth of is given by

(41)

In order to determine so as to satisfy the following condition,
, that is, , which implies the following

(42)

In order to obtain a condition on that satisfies (42), it is suffi-
cient for to satisfy the following

(43)

Rearranging (43) results in the following

(44)

Given that instantaneous frequency ,
has some maximum value such that , (44)
can be expressed as follows

(45)

where . Implying that provided there ex-
ists sufficient frequency separation between bivariate frequency
modulated oscillations, then the multivariate bandwidth using
the method outlined in [28] enables the identification of modu-
lated multivariate oscillations.

APPENDIX C
We shall now derive the variance of the partitioned coeffi-

cients using synchrosqueezing techniques (where cor-
responds to the channel index, while is the oscillatory scale),
starting from the wavelet based synchrosqueezing transform.
The variance for each scale and channel is given by
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. An approximation in order to simplify the
derivation is given by

(46)

where is the inverse of the wavelet transform within
each frequency scale, and , are the wavelet scale
factors with center frequencies within the frequency partitions

. Then, using (46) the variance within each fre-
quency scale is given by

(47)

Therefore, in order to calculate the variance, , for each
scale and channel an expression needs to be determined for

(where is the discrete time
continuous wavelet transform). The first step is to carry out a
change of variable of the continuous wavelet transform (shown
in (19)),

(48)

In discrete time, (48) is given by

(49)

where denotes the length of the signal, which yields

(50)

Given a fractional Gaussian noise (fGn) signal, , with the
following autocorrelation

(51)

where is the Hurst exponent and corresponds to the stan-
dard deviation of the time series . A substitution between
(51) and (50) gives

(52)

For white Gaussian noise with a Hurst exponent , ex-
pression (50) can be simplified into

(53)

where corresponds to the standard deviation of white noise.
The final expressions for , determined for
both fractional and white Gaussian noise are then substituted
into (47), resulting in the variance for each oscillatory scale,

, is given by

(54)

The same reasoning applied to the STFT based syn-
chrosqueezing transform yields the following estimates of the
noise variance within each scale, where we first determine an
expression assuming white noise

(55)

where is the window of length used in the STFT and
corresponds to the frequency partitions, , adapted
for the STFT. For the fGn scenario, we then arrive at

(56)
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