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Abstract—The electroencephalogram (EEG) signal is very 
important for the diagnosis of epilepsy. The EEG recordings of 
the ambulatory recording systems generate very lengthy data and 
the detection of the epileptic activity requires a time-consuming 
analysis of the entire length of the EEG data by an expert. A 
neural-network-based automated epileptic EEG detection 
method is proposed in this paper, which uses delay time as the 
input feature of an artificial neural network. Mutual information 
method is applied in this paper for computing the delay time 
parameter of EEG signals. The results indicate that the delay 
time values of EEG signals during an epileptic seizure become 
larger than those of normal EEG signals obviously, and then this 
phenomenon is utilized for automated epileptic EEG detection 
combined with probabilistic neural networks (PNN). Delay time 
parameter is used as the input feature of the neural network for 
the first time for the detection of epilepsy. It is shown that the 
overall accuracy as high as 100% can be achieved by using the 
method proposed in this paper. 
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I. INTRODUCTION

The electroencephalogram (EEG) is widely used to 
diagnose brain diseases in clinical applications, which is a 
recording of the electrical activity of the outer layer of the 
cerebral cortex [1], [2]. The recording of epileptic seizures is 
particularly helpful to doctors in the treatment of patients. 
Epilepsy is characterized by the occurrence of recurrent 
seizures in the EEG signal. In majority of the cases, the onset 
of the seizures cannot be predicted in a short period, a 
continuous recording of the EEG is required to detect epilepsy. 
A common form of recording used for this purpose is an 
ambulatory recording that contains EEG data for a very long 
duration of even up to one week [3]. It involves an expert’s 
efforts in analyzing the entire length of the EEG recordings to 
detect traces of epilepsy. Because seizures, in general, occur 
frequently and unpredictably, automatic detection of seizures 
during long term EEG monitoring sessions is highly useful 
and needed. Over the past 20 years, numerous attempts to 
automate the detection of epileptiform activity have been 
made and comparatively good results have been obtained [3-7]. 
In this paper, we will propose another method for the 
automated detection of the epileptic seizure based on an 
artificial neural network, which utilize the difference of delay 

time between normal and epileptic EEG signals. 

The brain can be considered as a nonlinear dynamic system, 
and the EEG signal is the set of continuous values varying as 
time of the nonlinear dynamic system, namely a time series. 
The basic method for the analysis of a time series is called 
phase space reconstruction, delay-coordinate embedding is 
adopted usually to reconstruct an equivalent phase space based 
on any component of the nonlinear dynamic system [8]. The 
choice of the delay time affects the results of the phase space 
reconstruction greatly, an appropriate delay time value can 
make the delay coordinate independent to the extreme extent, 
and the dynamic characteristic of the nonlinear dynamic 
system keep stable [9]. Actually, the delay time values can 
reflect the complexity of the EEG signal directly and the state 
of the function of the brain. In this paper, mutual information 
method is applied to compute the delay time of normal and 
epileptic EEG signals [10], and then the relationship between 
the delay time value and the epileptic seizure is analyze based 
on the results of delay time obtained by the mutual 
information method.  Afterwards, the delay time is used as the 
input feature of the probabilistic neural network (PNN) for the 
automated detection of the epileptic seizure.

The paper is organized as follows: Section 2 describes the 
EEG data and the methods we used in this paper. Section 3 
gives the simulations and the results of the detection. Section 4 
concludes. 

II. MATERIALS AND METHOD

A. Description of EEG time series  
The signals used in this paper were obtained from a 16-

channel EEG data acquisition card according to the 
international standard channel 10~20 system. Two groups of 
EEG signals were obtained, which were both from an epileptic, 
one group was collected when the patient was normal, and the 
other group was collected during an induced epileptic seizure. 
The sampling rate was 200Hz with the sampling time length 
of 80 seconds. Some of the EEG signals used in this paper are 
shown in Fig. 1 with the scalp electrode indices F3, C3, P3 
and O1.  
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Fig.1 Normal and epileptic EEG signals 

B. Mutual information  
  The method of mutual information is applied in this paper to 
compute the delay time parameter of EEG signals, which 
chooses the time corresponding to the first local minimum 
point of the mutual information function as the optical delay 
time [10]. Suppose there are two systems Q  and S  , based on 
the theory of information, the mutual information between Q
and S  can be defined as: 

),()()(),( SQHSHQHSQI −+=                (1) 

where )(QH and )(SH  are the entropies of the systems Q
and S ; ),( SQH  is the joint entropy function.  

Consider S  as the original data series { })(tx
),,2,1( nt = , and Q  as the T time delayed data series 

{ })( Ttx + of S , then the formula for calculating the mutual 
information can be written as: 
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where ),( jisq qsP  is the joint distribution probability when 

isS = , jqQ = , )( is sP  and )( jq qP  are the marginal 
distribution probability. 

Fig. 2 is an example for explaining how to determining the 
delay time of an EEG data segment in this paper. As the first 
minimum value point of the mutual information curve appears 
at (3,0.178) (see in Fig. 2, marked by an open circle), then the 
delay time parameter of this EEG data segment can be 
determined as 3.  
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Fig. 2 Example for determining the delay time of an EEG segment

C. Probabilistic neural network 
PNN is a type of radial basis network. It is a feedforward 

neural network with two middle layers called radial basis and 
competitive layers [11], [12]. The two layers employ radial 
basis and compete activation functions, respectively. Fig. 3 
shows the architecture of a PNN. The delay time values 
corresponding to the normal and epileptic EEG signals are 
used as the input feature of the neural network. The network’s 
target values correspond to a value of 1 for normal EEG and 2 
for epileptic EEG. 

Fig. 3 Architecture of PNN 
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The performance of the PNN is evaluated by overall 
accuracy (OA), which are defined in (3) [1]: 

                                    100(%) ×=
APP

CDP

N
NOA                         (3)

where CDPN  represents the total number of correctly detected 
patterns and APPN  represents the total number of applied 
patterns. A pattern indicates both seizure and nonseizure. 

III. SIMULATIONS

A. How the simulations are organized 
If the dynamic system is invariant, then the determination of 

delay time can be made on any segment of the measured 
signal. This is not true in a time-varying environment. As the 
EEG signal is time-varying, dynamical measures should be 
computed within certain time scale, for which the local 
stationarity assumption is valid. If too long statistics to 
quantify the EEG are used, then the local information will be 
washed away, and most of the temporal characteristics will be 
deprived from their diagnostic values. Therefore, the EEG 
time series have to be divided into several small segments for 
computing delay time. The data we used here are 16-channel 
normal and epileptic EEG signals, the length of the signal is 
80s for each channel, the sampling frequency is 200Hz, and 
therefore there are 16000 points for each channel signal. Each 
channel signal is divided into 16 segments, 
namely 1621 ,,, SSS , each segment )16,,2,1( =iSi  is of 
1000 points. Thus we can obtain 16 delay time values for each 
channel signal. As for the 16 channels of normal or epileptic 
EEG time series, we can get a 16*16 matrix built by the delay 
time values respectively. 

PNN is used to discriminate normal and epileptic EEG 
signals after the seizure feature is extracted, which refers to the 
delay time parameters of the EEG signals in this paper. As the 
amount of the EEG data is limited, the data have to be divided 
into two groups, one group for training the artificial neural  

network, the other group for testing the performance of the 
neural network. 

B. Feature extraction  
Mutual information method is applied to compute the delay 

time of )16,,2,1( =iSi , parts of the results of delay time 
obtained by mutual information method corresponding to the 
former 8 channels of normal and epileptic EEG signals are 
shown in Table 1, in which for each cell the upper number 
corresponds to the delay time value of the epileptic EEG data 
segment and the lower number corresponds to the delay time 
value of the normal EEG data segment. The average values of 
delay time of the normal and epileptic EEG signals computed 
based on the delay time results of total EEG data segments are 
3 for normal EEG signals and 7 for epileptic EEG signals, 
namely the average value of delay time of epileptic EEG 
signals is over 2 times larger than that of normal EEG signals. 
The standard deviation  is computed based on the results of the 
delay times of normal and epileptic EEG signals, the results 
are 0.6143 for normal EEG signals and 1.2425 for epileptic 
EEG signals, which reflect that the delay time of epileptic 
EEG signals varies more intensely during seizure than that of 
normal EEG signals does. Fig. 3 is plotted based on the results 
of delay time, in which 16 pieces of dot curves stand for the 
delay time of the normal EEG signals and 16 pieces of dash 
curves for the delay time of epileptic EEG time series; it can 
be observed in Fig. 3 that the delay time of the normal or 
epileptic EEG signal does not keep constant all the time, the 
delay time curves corresponding to normal and epileptic EEG 
signals both vary in a belt, and the width of the variation belt 
constructed by the delay time curves corresponding to 
epileptic EEG signals is larger than that corresponding to 
normal EEG signals, which means that the delay time of 
epileptic EEG signals has a bigger variation interval than that 
of  normal EEG signals.  

As there is obvious difference between the delay time 
parameters of normal and epileptic EEG signals, it is 
considered to use this feature as the input of a PNN to detect 
epileptic seizure automatically. 

TABLE I. RESULTS OF THE DELAY TIME OF NORMAL AND EPILEPTIC EEG SIGNALS  
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Fig. 4 Delay time values of normal and epileptic EEG signals obtained by the 
method of mutual information. (Note: The 16 dot curves correspond to the 
delay time values of 16-channel normal EEG signals and the 16 dash curves 
correspond to the delay time values of 16-channel epileptic EEG signals. The 
upper curve marked by black point is constructed by the average delay time 
values of epileptic EEG signals for the segment )16,,2,1( =iSi , the lower 
curve marked by black point is constructed by the average delay time values 
of normal EEG signals for the segment )16,,2,1( =iSi . The upper straight 
line corresponds to the average delay time value of epileptic EEG signals, and 
the lower straight line corresponds to the average delay time value of normal 
EEG signals.) 

C. Epileptic seizure detection  
Delay time values are computed for both normal and 

epileptic EEG signals, and are fed as input feature to the PNN. 
Among the available 16 pairs of normal and epileptic EEG 
data sets, 10 pairs are used for training and the remaining are 
used for testing the performance of the neural networks. Each 
channel of EEG signal, which has 16000 points totally, is 
divided into 16 frames, each frame has 1000 points, and the 
delay time values are computed for each data frame. 8-16 data 
frames of each channel are taken respectively as the input of 
the PNN to show the influence of the number of data points on 
the performance of PNN. The results of the performance test 
on 6 pairs of normal and epileptic EEG signals are shown in 
Table 2. 

TABLE II. RESULTS OF THE DETECTION OF SEIZURE  USING PNN 

Number of  Correct Detection  Number 
of Points Normal EEG Epileptic EEG 

Overall 
Accuracy (%)

8 6 5 91.7 
9 6 5 91.7 

10 6 6 100 
11 6 6 100 
12 6 6 100 
13 6 6 100 
14 6 6 100 
15 6 6 100 
16 6 6 100 

The results shown in Table 2 indicate that the overall 
accuracy of the discrimination between normal and epileptic 
EEG signals based on the PNN depends on the number of data 
frames of each channel of EEG signal, which is fed into PNN 
as input, the trend is that more data frames are taken, higher 
the overall detection accuracy is, when the number of data 
frames is over 9, the overall accuracy as high as 100% can be 
achieved.  

IV. CONCLUSIONS

In this paper, the difference of delay time between normal 
and epileptic EEG signals are studied firstly, it is found that 
the delay time of normal and epileptic EEG signals both vary 
in a belt, and the delay time of EEG signals during seizure 
becomes larger than that of normal EEG signals; further the 
delay time is used as the input feature of an artificial neural 
network for the automated detection of epileptic seizure. PNN 
is employed for the automated detection of epileptic seizure. 
The results of simulations show that the overall accuracy of 
the detection as high as 100% can be achieved. As the 
proposed method is of low computation complexity and uses 
not too much EEG data, it is suitable for the real-world 
detection of epileptic seizure. 

REFERENCES

[1] N. Mc Grogan. Neural network detection of epileptic seizures in the 
electroencephalogram, [Online]. Available: http://www.new.ox.ac.uk/ 
˜nmcgroga/work/transfer, 1999. 

[2] L. D. Iasemidis, J. C. Principe, J. C. Sackellares, “Measurement and 
quantification of spatio-temporal dynamics of human epileptic seizures”, 
in “Nonlinear Signal Processing in Medicine”, ed. M. Akay, IEEE Press, 
pp.1–27, 1999. 

[3] V.Srinivasan, C.Eswaran, and N.Sriraam, “Approximate Entropy based 
Epileptic EEG Detection using Artificial Neural Networks”,  IEEE 
Trans. Inf. Technol. Biomed., vol. 11, pp.288–295, 2007. 

[4] W. Weng and K. Khorasani, “An adaptive structure neural network with 
application to EEG automatic seizure detection,” Neural Netw., vol. 9, 
pp.1223–1240, 1996. 

[5] J. Gotman and L. Wang, “State-dependent spike detection: Concepts and 
preliminary results,” Electroencephalogr. Clin. Neurophysiol., vol. 79, 
pp.11–19, 1991. 

[6] N. Pradhan, P. K. Sadasivan, and G. R. Arunodaya, “Detection of 
seizure activity in EEG by an artificial neural network: A preliminary 
study”, Comput. Biomed. Res., vol. 29, pp. 303–313, 1996. 

[7] V. P. Nigam and D. Graupe, “A neural-network-based detection of 
epilepsy,” Neurol. Res., vol. 26, pp.55–60, 2004. 

[8] R. Hegger, H. Kantz, and T. Schreiber, “Practical implementation of 
nonlinear time series methods: The TISEAN package”, Chaos, vol. 9, pp. 
413–435, 1999. 

[9] Gautama T, Mandic D P, Van Hulle M M. “A differential entropy based 
method for determining the optimal embedding parameters of a signal”. 
Proceedings of the 1nt Conf on Acoustics, Speech and Signal 
Processing[C]. Hong Kong, vol. 35, pp.29–32, 2003. 

[10] Fraser A M, Swinney H L. Independent coordinates from mutual 
information [J]. Phys Rev A, vol. 33, pp.1134–1140, 1986. 

[11] H. Demuth andM. Beale, Neural Network Toolbox. Natick, MA: 
MathWorks, 2000. 

[12] C. J. Huang and W. C. Liao, “A comparative study of feature selection 
methods for probabilistic neural networks in cancer classification,” in 
Proc. 15th IEEE Intern. Conf. Tools with Artif. Intell. (ICTAI’03), 
Sacramento, CA, pp. 451–458, 2003. 

505

Authorized licensed use limited to: Imperial College London. Downloaded on November 2, 2008 at 06:18 from IEEE Xplore.  Restrictions apply.


