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A multivariate sample entropy metric of signal complexity is applied to EEG data recorded when sub-
jects were viewing four prior-labeled emotion-inducing video clips from a publically available, validated
database. Besides emotion category labels, the video clips also came with arousal scores. Our subjects
were also asked to provide their own emotion labels. In total 30 subjects with age range 19–70 years
participated in our study. Rather than relying on predefined frequency bands, we estimate multivariate
sample entropy over multiple data-driven scales using the multivariate empirical mode decomposition
(MEMD) technique and show that in this way we can discriminate between five self-reported emotions
(p < 0.05). These results could not be obtained by analyzing the relation between arousal scores and
video clips, signal complexity and arousal scores, and self-reported emotions and traditional power spec-
tral densities and their hemispheric asymmetries in the theta, alpha, beta, and gamma frequency bands.
This shows that multivariate, multiscale sample entropy is a promising technique to discriminate multiple
emotional states from EEG recordings.
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1. Introduction

Identification of emotional states from EEG in
response to associated stimuli has long been sought
for diagnosing and treating patients with dysfunc-
tional processing of emotional information.1 More
recently it has been linked to advanced applica-
tions such as emotion-sensitive interactive games,
affective interfaces, and emotion-sensitive tutoring
systems.2–4 However, as electromagnetic activity
elicited by cortical structures involved in processing
emotional information is hard to gauge from EEG
electrodes,5 the identification and discrimination of
emotional states is regarded as notoriously challeng-
ing in EEG research. In this paper, we will take
up this challenge and develop a new approach for
discriminating multiple emotional states from EEG
when viewing emotion-inducing video clips.

Emotions versus EEG frequency bands

The traditional approach is to evaluate the overall
power within a given frequency band. As already
reviewed in the work of Davidson,6 alpha band activ-
ity (8–13Hz) is commonly evaluated for changes
related to the induction of different emotions.
Kostyunina and Kulikov7 found that different emo-
tional states correspond to different peak frequencies
in the alpha band. Shemyakina and Danko8 showed
that significant differences in local EEG power and
spatial synchronization between electrodes can be
observed with different emotions. This effect was
largest over the temporal area of the brain. Other
researchers did not attempt to distinguish emotions
from one another but rather grouped those into pos-
itive and negative ones (“valence”). This classifica-
tion was promoted through the widespread use of
the International Affective Pictures System,9 a well-
validated set of visual stimuli in which valence is
further delineated in arousal (and later also domi-
nance). Overall changes in alpha power and lateral-
ization effects related to these changes have fed the
Hemispherical Emotional Valence (HEV) hypothesis,
the lateralized representation of negative and posi-
tive emotions on the human scalp, albeit that the
empirical evidence has been called into question.10,11

In addition to alpha, changes in the lower theta band
have also been noted. Jaušovec and co-workers12

asked subjects to process emotional content in video
clips. They observed that changes in theta occurred

2–3 s into the video clip and differentiated between
subjects with low versus high scores on assessments
of emotional intelligence. Krause and co-workers13

studied differences between EEG bands instead of
between brain areas. They showed that the 4–6Hz
band (termed theta 1) elicited a greater synchro-
nization when viewing an aggressive film than when
viewing a neutral or sad film. Vecchiato and co-
workers14 observed an increase in theta power in
the left frontal brain areas of participants that liked
the commercials they viewed compared to those
they disliked. Overall, there are two general prob-
lems with simply using spectral power changes to
measure immediate responses to affective stimuli.15

First, while studies abound that show differences
between negative and positive emotional valences,
spectral power patterns that distinguish between
emotions of the same valence have not been con-
sistently reported. Spectral power changes seem not
to be optimal in this case. Second, the limited
temporal resolution could be ineffective to distin-
guish between different emotional states. To curb the
latter, event-related desynchronization/event-related
synchronization (ERD/ERS) has been suggested as
it can detect rapid amplitude changes within spec-
ified frequency bands. ERD/ERS measures have
been used for assessing emotional responses to affec-
tive stimuli thereby focusing on the lower theta
band (3–8Hz).16,17 Patterns of increased theta power
using ERD/ERS were also detected in the video
clip study of Jaušovec and co-workers.12 Another
approach is to compute density functions of instan-
taneous amplitudes of wavelet transformed EEG
recordings and verify whether for certain wavelet
scales these density functions collapse across elec-
trodes and/or subjects (universal scaling behavior),
a technique that has been used to distinguish cogni-
tive states including listening to music18 and mental
imagery.19

Emotions versus EEG-ERPs

Another line of research is based on the event-
related potential (ERP), a stereotyped, transient
response to a sensory or cognitive stimulus or a
motor event.20 Traditionally, ERPs are measured
as latencies and amplitudes of positive and neg-
ative potentials. However, Paulmann and Kotz21

reported that ERP components did not differ based
on emotional valence. In contrast, Spreckelmeyer
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and co-workers22 showed that ERP components did
differentiate between short vocalizations represent-
ing happy and sad emotions.

Several researchers reported that ERP measures
alone do not provide convincing evidence but some
ERP components may have a direct correlation with
theta activity. For example, Balconi and Pozzoli17

observed an increased theta activity in response to
affective pictures that correlated directly with the N2
ERP component.

Emotions versus EEG signal complexity

A well-known hypothesis is the decrease in com-
plexity of a physiological or behavioral signal with
disease or aging.23 An observed loss in complexity
is attributed to a loss or impairment of func-
tional components and/or their (nonlinear) cou-
pling. This has motivated researchers to look at sig-
nal complexity as a diagnostic EEG marker.24–34

However, signal complexity has also been related
to emotional states. Aftanas and co-workers.35

showed that negative and positive emotions occurred
with higher values of EEG dimensional complex-
ity (correlation dimension) estimates compared to
the neutral viewing condition. Hosseini et al.36

applied two entropy metrics (approximate and
wavelet entropy) to discriminate between two emo-
tional states (calm-neutral and negative-excited) in
response to viewing sequences of emotion induc-
ing pictures and achieved 73.25% classification accu-
racy. Jie et al.37 applied sample entropy on two
binary emotion recognition tasks (positive versus
negative emotion both with high arousal and music
clips with different arousal levels) and achieved
80.43% and 79.11% classification performance. We
will continue with this putative connection between
complexity (in particular, sample entropy) and
emotion and explore it on a multiscale and
data-adaptive level.

Multiscale measure of EEG complexity

Costa et al.38 proposed multiscale sample entropy
(MSE) which calculates SE, a measure of the degree
of randomness of a signal, across multiple scales.
This method reveals the interdependence between
entropy and scale and led researchers to associate
complexity with the ability of the sensed system
(i.e. the brain of a healthy subject) to adjust to

a changing environment. In the original (MSE)
method, the scales are determined by the so-called
coarse-grained procedure where the original signal is
averaged over nonoverlapping windows of increasing
length.38 The MSE is then computed by applying
sample entropy.39 But as the coarse-grained pro-
cedure essentially corresponds to a linear smooth-
ing and decimation of the original time series, only
low-frequency components are captured as the high-
frequency ones at fine scales are lost. A way to over-
come this is to apply multivariate empirical mode
decomposition (MEMD),40 a fully data-driven, time-
frequency technique that decomposes a signal into a
finite set of amplitude/frequency modulated compo-
nents, called intrinsic mode functions (IMFs). The
successful application of empirical mode decomposi-
tion for the detection of epileptic seizures with EEG
is shown in the work of Martis et al.41,42 When apply-
ing empirical mode decomposition to EEG record-
ings, sample entropy can be estimated in each IMF
individually. Sharma and co-workers.43 recently used
this approach for classifying focal from nonfocal
EEG signals of epileptic patients and achieved 87%
correctness. A further improvement is multivariate,
multiscale entropy (MMSE), to account for both
within and cross-channel dependencies, and its com-
bination into MEMD-enhanced MMSE.44 to exploit
multiple data-driven scales in the entropy calcula-
tion. In our previous work, we showed the connec-
tion between cognitive task performance (based on
the participant’s behavioral response) and EEG sig-
nal complexity using MEMD-enhanced MMSE.45 In
the present work, we assert that EEG signal com-
plexity measured by MEMD-enhanced MMSE can
be used to discriminate between emotional states.
We will test our assertion using EEG from 30 par-
ticipants that viewed four prior-labeled emotion-
inducing video clips taken from a publicly available
database developed by Schaefer and co-workers.46

Our participants were also asked to provide their
own emotion labels. We apply mixed models with
quadratic functions for the obtained multiscale com-
plexity curves and show that for mid-frontal EEG
electrodes we can distinguish between five self-
reported emotions (anger, disgust, amusement, ten-
derness, and sadness). We also compare our complex-
ity results with Schaefer’s emotion labels and arousal
scores and also with the traditional EEG power
spectral densities and their hemispheric asymmetries
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in the theta (4–7Hz), alpha (8–15Hz), beta (16–
31Hz), and gamma (30+Hz) frequency bands.

2. Materials and Methods

2.1. Materials

We took our emotion-eliciting video clips from the
publicly available database developed by Schae-
fer and co-workers46 (http://nemo.psp.ucl.ac.be/
FilmStim/). The spoken language of the video clips
is French or dubbed into French. Each video clip is
labeled in terms of emotional category (fear, anger,
sadness, disgust, amusement, tenderness, neutral —
further called “standard label”) and scored by their
participants on a 7-point scale in terms of emotional
arousal: “While I was watching the film...” (1) =
“I felt no emotions at all” to (7) = “I felt very
intense emotions” (further called “self-reported emo-
tional arousal”). The participants were encouraged
to report what they actually felt in reaction to the
video clips, not what they believed people should
feel. For our study, we selected four video clips with
top three mean self-reported arousal levels from four
different emotional categories (Table 1). The average
duration of the four clips was 3 min.

2.1.1. Participants

The experiment was performed with 30 healthy vol-
unteers (20 female, 10 male, mean age = 32.48, SD
= 15.77, age range 19–70) that mastered French lan-
guage (i.e. French as mother tongue or French-Dutch
bilinguals). They were recruited via emails, flyers,
and announcements. Some were graduate students,
often regular subjects in EEG experiments, and were
paid. No participant had any known neurological or
psychiatric disorder. The age range was intentionally
broad and age was a parameter in our statistical tests
(cf., the hypothesis on the decrease in signal com-
plexity with age47). Ethical approval for this study
was granted by an independent ethical committee
(“Commissie voor Medische Ethiek” of UZ Leuven,
the university hospital). This study was conducted
in accordance with the most recent version of the
Declaration of Helsinki.a

aOctober 2013, Fortaleza, Brazil, see http://www.wma.

net/en/30publications/10policies/b3/.

Table 1. Video clips used and their standard labels,
their mean self-reported emotional arousal levels,
standard deviation (SD) and number of participants
(N) (data from Schaefer and co-workers, see also
Appendix A).

Video Standard Mean SD N
clip label arousal

“Sleepers” Anger 5.63 1.17 57
“Life is beautiful (4)” Tenderness 5.59 1.19 50
“City of angels” Sadness 5.15 1.70 56
“La cité de la peur” Amusement 4.52 1.75 55

2.1.2. Labels and variables

The experimental paradigm consists of four trials,
one for each video clip. The clips were presented in
random order. After having watched a video clip,
participants were asked to report their emotional
category (fear, anger, sadness, disgust, amusement,
tenderness, neutral). We further call these the “self-
labels”. Note that our participants were not informed
about the video clip’s standard labels. To summarize,
we have three labels:

— standard label: the emotional category of each
video clip as reported in Ref. 46;

— self-label: the emotional category of each video
clip as reported by our subjects;

— self-reported emotional arousal scores of each
participant in the Schaefer et al. study46 for the
considered video clips (scores provided to us by
Alexandre Schaefer).

As our participants’ self-labels could not always be
in alignment with Schaefer’s standard labels, we cre-
ated the variable standard self with “standard” refer-
ring to the standard label and “self” to the self-label.
Unless noted otherwise, we use self-labels for labeling
MMSE curves.

2.1.3. EEG recording and preprocessing

Participants were tested in a sound-attenuated, dark-
ened room with a constant temperature of 20◦, sit-
ting in front of an LCD screen. The participant’s task
was to watch the four video clips and report their
emotional categories. When viewing a clip, EEG
was recorded continuously using 32 active electrodes,
evenly distributed over the entire scalp (position-
ing and naming convention following a subset of the

1650005-4

In
t. 

J.
 N

eu
r.

 S
ys

t. 
20

16
.2

6.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

ro
f 

D
an

ilo
 M

an
di

c 
on

 0
3/

10
/1

6.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

January 25, 2016 14:17 1650005

EEG-Based Emotion Discrimination

extended 10–20 system) with a BioSemi ActiveTwo
system (BioSemi, Amsterdam, the Netherlands) as
well as an electro-oculogram (EOG) using the setup
of Croft and co-workers.48 The EEG signal was re-
referenced offline from the original common mode
sense reference49 (CMS, positioned next to electrode
Pz) to the average of two additional electrodes that
were placed on the mastoids of the subject. The dura-
tion of the experiment excluding electrode setup was
20min. The EEG signal was filtered using a 4th-order
Butterworth filter with range 0.5–30Hz. Then the
initial sampling rate of 2048Hz was downsampled
to 128Hz (including anti-aliasing), to reduce compu-
tational costs. Finally, the EOG signal was used to
remove eye artifacts following the method of Croft
and co-workers.48

2.1.4. Channel selection

As not all EEG electrodes are expected to be rel-
evant for capturing differential emotional responses,
we selected electrodes F3 and F4 (mid-frontal areas).
Our motivation stems from several studies. For
example, in the work of Oschsner and Gross50 it was
shown that the orbital frontal cortex plays a critical
role in cognitive control of emotion (especially in the
case of suppressing emotional responses), and activ-
ity in this region reflects subsequent appraisal pro-
cesses related to viewing emotional stimuli. For com-
parison’s sake, besides temporal electrodes T7 and
T8, which are thought to gauge memory and imagery
processes as well as emotional state modulation,51,52

we also consider electrodes O1 and O2 from the
occipital pole so as to verify whether observed differ-
ences in complexity can be explained by differences
in visual processing.

2.2. Methods

2.2.1. Multivariate empirical mode
decomposition (MEMD)

Empirical Mode Decomposition (EMD) decomposes
a signal into a finite number of narrow-band, ampli-
tude/frequency modulated components known as
IMFs53:

Signal = IMF1 + IMF2 + IMF3 + · · · + IMFn

with IMF1 corresponding to the highest frequency
component and subsequent IMFs to gradually lower,
more narrow-banded frequency components. The

last IMF is the trend in the signal and is usu-
ally omitted from further analysis. The decompo-
sition operates as follows, starting with IMF1: first
locate the local maxima and minima in the origi-
nal signal, then construct an envelope that interpo-
lates between these local minima, respectively the
local maxima, and subtract the average of the max-
imum and minimum envelopes from the original
signal yielding the so-called “detail” signal. These
steps are then repeated until the “detail” satis-
fies two IMF criteria.53 When this is the case, the
“detail” becomes IMF1, and is subtracted from the
original signal. This process is repeated until all
IMFs are extracted and only a monotonic residue
or trend remains. The multivariate extension of
EMD (MEMD)40 aligns similar frequency bands
of multiple channels thus providing an assessment
of their possible interdependence (mode alignment
property). The MEMD algorithm operates in the
same way as the EMD algorithm, but as the average
of the maximum and minimum envelopes cannot be
defined for multivariate signals directly, MEMD esti-
mates the average from projections along different
p-dimensional spaces, with p the number of channels
(dimensions).

2.2.2. Sample entropy (SE)

Sample Entropy (SE)39 is the conditional probability
that two sequences that are close to each other for
m consecutive data points up to a tolerance level r

remain so when one more data point to each sequence
is added. Formally, SE is expressed as follows:

SE(r, m, N) = −log
Am(r)
Bm(r)

with Bm(r) the probability that two sequences
of length m match the given tolerance level r,
Am(r) the probability that two sequences of length
m + 1 match given r, and N the total length
of the data from which the sequences are taken.
The tolerance level is usually a percentage of the
standard deviation of the normalized data; for
our case we took 15%.40 In order to estimate
sample entropy in the multivariate case (MSam-
pEn), the sequences are formulated as follows.
Recalling multivariate embedding theory,54 for p-
variate time series {xk,i}N

i=1, k = 1, 2, . . . , p, the
multivariate embedded sequence is the composite
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delay vector:

Xm(i) = [x1,i, x1,i+τ1 , . . . , x1,i+(m1−1)τ1 , x2,i,

x2,i+τ2 , . . . , x2,i+(m2−1)τ2 , xp,i,

xp,i+τp , . . . , xp,i+(mp−1)τp
]

with Xm(i) ∈ Rp, m =
∑m

k=1 mk,
M = [m1, m2, . . . , mp] ∈ Rp the embedding vec-

tor, and τ = [τ1, τ2, . . . , τp] the time lag vector. The
above sample entropy definition is then applied to
the composite delay vectors.

2.2.3. MEMD-enhanced MMSE

In order to arrive at a multiscale version of multi-
variate sample entropy (MMSE), instead of relying
on the popular coarse grained procedure,38 which
is known to favor low-frequency components, we
first apply MEMD to compute our multiple scales.
For the purpose of this paper, the MSE software of
Ahmed and Mandic was extended towards MEMD-
enhanced MMSE and applied to the EEG record-
ings of each individual participant, for each video
clip. The MEMD-enhanced MMSE algorithm can be
summarized as follows:

(i) obtain n IMFs over each subject’s entire
recording length of each clip (approx. 3min on aver-
age) by applying the MEMD method given N = 2
EEG channels,

(ii) accumulate the n IMFs (cumulative IMF,
CIMF) one by one starting with the first one, which
captures the highest frequencies, CIMF1 =
IMF1, and then adding the second IMF to the
former, CIMF2 =IMF1 +IMF2, and the third IMF,
CIMF3 =IMF1 +IMF2 + IMF3, and so on, until
all IMFs are added and the original signal is
reconstructed,

(iii) for each CIMF, calculate the MMSE for 1000
non-overlapping 100ms snippets taken from a prior
defined EEG signal track and take the average as the
final MMSE estimate of that track,

(iv) plot the MMSE estimates as a function
of CIMF1,CIMF2, . . . ,CMFn to obtain the MEMD-
enhanced MMSE of the EEG recording track under
consideration. Note that the algorithm selects by
itself the number of IMFs, however, as this is subject-
dependent (in our case, the range is 15 to 17
IMFs), we decided to take n = 15 IMFs for all
subjects.

2.2.4. Statistical analysis

For our statistical modeling, we use linear mixed
models.55,56 We first need a statistical model for our
MMSE curves. We adopt a forward model selection
approach. Starting with a linear model and, after an
additional use of explorative graphs of the data, the
model was extended to a quadratic one. Hence, two
regression functions became competitive:

Model 1 (linear model) For example, the MMSE of
standard self=amusement amusement (am am) can
be modeled as follows:

MMSEam am = aam am + bam amCIMFi.

Model 2 (quadratic model) For example, the
MMSE of “amusement amusement” (am am) can be
modeled as follows:

MMSEam am = a′
am am

+ b′am amCIMFi + b′′am amCIMF2
i .

The covariance structure in the model was taken
as general unstructured. Using a Likelihood Ratio
test (null-hypothesis: there is no difference between
the models and the term with the second degree
is nonsignificant), we compared the significance of
the quadratic versus the linear model. The resid-
uals were satisfactory (normally distributed) for
both models (assessed with Q–Q plots, not shown).
In addition, a “deleted observation” technique was
implemented in order to show that there are no influ-
ential observations present in the data. Model 1 had a
−2loglikelihood of −8656.5, Model 2 −10,481.4. The
difference is more than 1000 (the threshold value is
4 for the chi-square statistic with 1 degree of free-
dom) which signifies that Model 2 provides a much
better fit than Model 1. Hence, we continue with
Model 2. Each statistical test to decide whether pairs
of curves are distinguishable is split into two parts:
(a) We test if the shapes of the modeled curves are
the same. For example, for “amusement amusement”
(am am) and “anger anger”, (an an) we test the
following null-hypothesis: H0: b′am am = b′an an and
b′′am am = b′′an an. (b) We test if the shifts of the
curves are the same. Continuing with the same exam-
ple, we test for the following null-hypothesis H0:
aam am = aan an. For parts (a) and (b), we apply
a chi-square test using the “contrast” statement in
“proc mixed” (SAS 9.4). We choose p = 0.05 as our

1650005-6

In
t. 

J.
 N

eu
r.

 S
ys

t. 
20

16
.2

6.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

ro
f 

D
an

ilo
 M

an
di

c 
on

 0
3/

10
/1

6.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

January 25, 2016 14:17 1650005

EEG-Based Emotion Discrimination

overall significance level and apply Bonferroni
correction (p = 0.05/2).

3. Results

3.1. Evolution of signal complexity

We computed the MEMD-enhanced MMSE of a typ-
ical participant’s EEG recordings over the entire
length of each video clip and also over the first,
middle, and last 100 s (Fig. 1). One immediately
observes that the complexity curves of the last 100 s
of the video clips are much better distinguishable
than those of the entire length and the first and mid-
dle, 100 s. This is probably not surprising as the video
clips have their climax at the end. Note also that the
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Fig. 1. MEMD-enhanced MMSE curves of participant M. J. when computed over the entire length of each movie, and
over the first, middle and last 100 s of the video clips. Curves are averages over 1000 segments used for MMSE estimation
and labeled according to the participant’s self-reported emotional category (self-label, one for each video clip); error bars
correspond to standard deviations.

overall complexity level seems to settle towards the
end of each video clip. All this motivates us to select
the EEG recordings of the last 100 s for further
analysis.

3.2. Signal complexity of video clips

One could argue that the observed differences in
EEG data complexity are due to the streamed video
clips rather than the emotions they are supposed
to elicit. As the video clips are in an entirely dif-
ferent format as the EEG recordings, we computed
the MEMD-enhanced MMSE for electrodes O1 and
O2, on the occipital pole, which are supposed to
be more related to the visual input (Fig. 2, right
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Fig. 2. MEMD-enhanced MMSE curves of participant D. V. calculated for the last 100 s of each video clip’s EEG
recordings of the frontal (left panel), occipital (right panel) and temporal electrode pairs (bottom). Other conventions are
as in Fig. 1.

panel). As can be seen from Fig. 2 (left versus right
panel), the complexity curves of the occipital chan-
nels are ordered differently and less distinguishable.
This proves that the frontal channels’ complexity
curves are not explained by those of the occipital
channels. When looking at the curves for T7/T8
(bottom panel) we observe that they are less dis-
cernible compared to their F3/F4 counterparts and
that the ordering of the curves is reversed but this
is a coincidence as, unlike the curves for F3/F4, the
ones for T7/T8 (and also O1/O2) are much more
subject-dependent (not shown).

The outcome of both comparisons indicates the
relevance of mid-frontal electrodes F3/F4 complexity
curves in emotional state discrimination.

3.3. Signal complexity versus
self-reported emotions

The results of self-labeling are summarized in
Table 2. We observe that only in the case of “anger”

(first video) the reports are not univocal as 16 par-
ticipants reported disgust instead (the video clip was
about incest). A similar discrepancy was reported
for this particular video in the Supplementary mate-
rial of Ref. 46: the extent to which their partici-
pants felt disgust received a slightly higher rating
than anger. The resulting complexity curves for all
30 participants are shown in Fig. 3. Using Model 2,
as explained above, with MMSE as dependent vari-
able, standard self and CIMF index as independent
variables, and gender and age as covariates, we ver-
ified that all complexity curves differ significantly
(p < 0.05). This shows that with MMSE several emo-
tional states can be discriminated from mid-frontal
electrode recordings.

3.4. Arousal scores

Schaefer and co-workers46 collected emotional
arousal scores from their participants. The question
arises whether the video clips we considered can be
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Table 2. Emotions reported by our N = 30 participants
(“Self-label”) with numbers between brackets indicat-
ing how many participants reported that emotion. Other
conventions as in Table 1.

Video clip Standard label Self-label

“Sleepers” Anger Anger (14)/
Disgust(16)

“Life is beautiful (4)” Tenderness Tenderness (30)
“City of angels” Sadness Sadness (30)
“La cité de la peur” Amusement Amusement (30)
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Fig. 3. MEMD-enhanced MMSE curves labeled in
terms of our participants’ self-reported emotions.

distinguished from these arousal scores (Appendix A,
summarized in Table 1). As this analysis was not
reported in Ref. 46, we performed an ANOVA analy-
sis on the arousal scores provided to us by Alexandre
Schaefer with “arousal” as dependent variable and
“video clip” as independent variable. The analysis
was performed with the GLM procedure in SAS. We
found that only “La cité de la peur” could be distin-
guished from “Life is beautiful (4)” (p = 0.0018) and
also from “Sleepers” (p = 0.0007). The other video
clips were indistinguishable from each other. Hence,
based on arousal scores the four video clips cannot
be discerned.

3.5. Complexity versus arousal

Our complexity results can also be compared with
Schaefer et al.’s arousal scores. As the latter refer
to the entire video clips,46 we computed the MMSE
curves accordingly. We performed a linear mixed

model regression analysis, with MMSE as depen-
dent variable, “arousal” as fixed effect and “subject”
as random effect to correct for within subject asso-
ciation. To render the comparison manageable, we
considered MMSE for CIMF index 10 only. As our
subjects differ from those of Schaefer et al.’s (and
in their case even between video clips), we adopt a
multiple imputations procedure. We simulate arousal
scores for each one of our 30 participants and for
each video clip by drawing samples from the distri-
bution of Schaefer et al.’s arousal scores. We sim-
ulate for each video clip 10 arousal scores per par-
ticipant (in total 4 × 10 × 30 imputations) suppos-
ing that the missing mechanism is operating at ran-
dom. The number of imputations can be lower, but
recent publications pointed out that small numbers
of imputations lead to results that are affected by
Monte Carlo error.57,58 After multiple imputation,
data sets were analyzed separately using general-
ized estimating equation (GEE) models, which were
applied by using the GENMOD procedure in SAS,
and finally the results of the separate analyses com-
bined into a single one using the MIANALYZE pro-
cedure. We found no statistically significant associ-
ation between MMSE and arousal score. For com-
pleteness sake, the analysis was redone now using
our MMSE results of the last 100 s of each video
clip (cf., Fig. 3). Also here we found no statistically
significant association between MMSE and arousal
score. In conclusion, based on our data set, there does
not seem to be a clear relation between signal com-
plexity, as assessed with MMSE, and self-reported
arousal scores.

3.6. Power spectrum analysis

Finally, given the popularity of the spectral approach
to emotion detection with EEG, we also computed
the power spectral density (PSD) in the following fre-
quency bands: theta (4–7Hz), alpha (8–12Hz), beta
(13–24Hz), gamma (25–40Hz) (more precisely the
area under the PSD curve in each band). We did this
for each subject and for the last 100 s part of each
movie. The question is now: can we separate emo-
tions based on one or more of those bands? And, is
there any asymmetry between electrodes F3 and F4?
We start with the PSDs of both channels (by con-
catenating the corresponding F3, F4 recordings) and
apply unstructured linear mixed models55,56 with the
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following variables as a possible response: PSDs of
the theta, alpha, beta, gamma bands, and the vari-
able “self-reported emotion” (self-label case) as an
independent group variable. As four emotions were
reported by each subject, “subject” was taken as ran-
dom effect. The responses were transformed to a log-
arithmic scale to reach normality of the residuals.
We choose p = 0.05 as our overall significance level.
For multiple comparisons, Bonferroni correction was
used. We found no significant difference between
any pair of self-reported emotions. Next, we verified
whether there is any asymmetry between the PSDs
of the F3 and F4 channels that can be used for sep-
arating the emotions. We again apply unstructured
linear mixed models with the same possible responses
as independent variables, but now with two group
variables, “self-reported emotion” and “channel”. In
the model, the latter two were taken with an inter-
action. Since several measurements were done within
the same subject, “subject” was taken as random
effect. The responses were again transformed to a
logarithmic scale to reach normality of the residuals.
This meant that for the gamma band, based on the
Q–Q plot, five outliers needed to be removed. Again
Bonferroni correction was applied. We found no sig-
nificant differences between the two channels for any
of the emotions, except for the gamma band and
across emotion labels (albeit marginally: p = 0.037).
In summary, we found no difference in frequency
bands and no asymmetry between the F3 and F4
channels from which emotions (or video clips) could
be discerned.

4. Discussion

4.1. Spectral analysis

EEG spectral analysis studies designed to unravel
neural correlates of discrete emotions tend to focus
on the so-called “frontal asymmetry”, usually in
alpha power between left and right frontal regions.59

We observed in our study an asymmetry in gamma
band activity between electrode F3 and F4, cor-
responding to the mid-frontal region of the scalp
(p = 0.037, Bonferroni corrected), but it was not spe-
cific for any of the video clips or their self-reported
emotions. Contrary to reports on the importance
of alpha,7,8 gamma,60,61 and theta band activity,14

and differences between these bands,13 we could not
replicate any of those in our study. We observed a

marginally nonsignificant difference in alpha band
activity between the anger and sadness video clips
(p = 0.0833, Bonferroni corrected) and in beta band
activity between electrodes F3 and F4 (p = 0.0546,
Bonferroni corrected).

4.2. Complexity analysis

Bekkedal and co-workers15 attribute the failure to
clearly demonstrate distinct EEG response patterns
for individual emotions to the universal use of visual
stimuli (pictures, movies) that tend to carry informa-
tion irrelevant to their emotionality and whence sug-
gest auditory stimuli instead. However, it still could
be that further strides can be made in EEG process-
ing and in the detection of EEG patterns that can
be linked to distinct emotional states. In the per-
tinent paper, we showed that multiscale, multivari-
ate complexity, as assessed with MEMD-enhanced
MMSE, is a promising technique for discriminating
multiple emotional states from EEG recordings in
response to emotion-inducing video clips (Fig. 3).
Furthermore, unlike previous studies62,63 we used a
single-trial design to show our assertion: the emo-
tional state was discriminated even from a single
video clip. Jie and co workers37 performed emotion
recognition from univariate, uniscale sample entropy
analysis of prefrontal EEG recordings. They con-
sidered two emotion recognition tasks and trained
classifiers to distinguish positive from negative emo-
tions, both with high arousal, and music clips but
with different arousal levels. The EEG recordings
of subjects whose emotion self-reports were not in
line with the pre-defined ones were excluded from
their analysis. Similarly we also had self-reports that
were not in line with the standard labels of the video
clips used (disgust instead of anger, Table 2). How-
ever, contrary to Jie and co-workers, we considered
those self-labels and corresponding EEG recordings
in our analysis. As a result of this, instead of four
emotions, one for each video clip, we could discrim-
inate five emotions (anger, disgust, sadness, tender-
ness, amusement). This number is also in contrast
with previous work where only two or three emo-
tional states could be discriminated.2,14,35 Hosseini
and Naghibi-Sistani.36 stipulate that during an emo-
tional state evoked by pictures, the EEG signal is less
complex (assessed with approximate- and wavelet
entropy) compared to the normal state. Using video
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clips instead of pictures, we observed that complexity
decreases and seems to settle towards the end of our
recordings (Fig. 1, note that MMSE scales logarith-
mically). As the amusement inducing video clip “La
cité de la peur” has its punchline (i.e. the funny part)
only during the very last scene, we split the last 100s
into two 50 s intervals and repeated the extended
MEMD-enhanced MMSE analysis for all video clips
(see Appendix B). For all video clips, except “La
cité de la peur”, there was no difference. For that
clip a significant decrease in complexity was observed
for the last 50 s (t-test on squared distance between
the complexity curves, p = 0.014). One might there-
fore be tempted to perform complexity analysis in a
scene-based manner but bearing mind that the over-
all complexity level also decreases as the subject is
viewing the video clip.

4.3. Arousal versus complexity

We also examined the relation between EEG com-
plexity and emotional arousal. The connection was
not significant (using a linear mixed model regres-
sion analysis) neither for the whole video clip (as
the self-reports were collected in this way.46) nor
for the last 100 s (targeted in our EEG complexity
analysis). Visual inspection of Fig. 3 reveals that the
ordering of the complexity curves labeled anger, ten-
derness, sadness, and disgust corresponds to that of
the mean arousal levels of the video clips (Table 1).
The only exception is for the amusement curve. The
self-reported arousal level of the amusement induc-
ing video clip “La cité de la peur” is the lowest of
all video clips whereas its complexity level is one of
the highest. This discrepancy could be due to the
fact that the punchline is in the very last scene.
As suggested in the previous paragraph, one could
restrict the complexity analysis of this video clip to
the last 50 s. This time the ordering of the complex-
ity curves is completely in alignment with the order-
ing of Schaefer’s mean arousal levels. On the other
hand, it should be noted that our statistical anal-
ysis of Schaefer’s arousal levels indicated that only
“La cité de la peur” could be distinguished from two
other video clips (“Life is beautiful (4)”, “Sleepers”);
the other video clips could not be distinguished. Per-
haps the collection of the arousal scores should be
improved, e.g. by letting participants press a but-
ton when an individual scene raises their emotional

arousal.64 Another argument in favor of a connec-
tion between complexity and emotional arousal is
the work of Hepach and co-workers.65 They asked
100 healthy individuals to indicate the valence and
arousal levels of 62 emotion words in a question-
naire. They showed that the arousal level of anger
was higher than that of disgust (8.06 versus 6.87). It
can be observed from our results in Fig. 3 that the
complexity level of anger is significantly higher than
that of disgust. In summary, there seems to be a rela-
tion between complexity and emotional arousal, but
more research is needed to be conclusive. If success-
ful, it would confirm Cannon–Bard’s theory66 that
physiological arousal and feelings occur together.

5. Conclusion

We have shown that the MEMD-enhanced MMSE
approach to EEG signal complexity was success-
ful in discriminating five emotional states from
mid-frontal recordings in response to four emotion-
inducing video clips. When applied to temporal elec-
trode recordings the results turned out to be subject
dependent. We also observed that, when viewing the
video clip, the complexity level of the mid-frontal
recordings decreases and then levels off.
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Appendix A

Distribution of arousal scores of 4 video clips used

Appendix B
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