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In-Ear EEG Biometrics for Feasible and Readily
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Abstract— The use of electroencephalogram (EEG) as a bio-
metrics modality has been investigated for about a decade;
however, its feasibility in real-world applications is not yet conclu-
sively established, mainly due to the issues with collectability and
reproducibility. To this end, we propose a readily deployable EEG
biometrics system based on a "one-fits-all" viscoelastic generic
in-ear EEG sensor (collectability), which does not require skilled
assistance or cumbersome preparation. Unlike most existing stud-
ies, we consider data recorded over multiple recording days and
for multiple subjects (reproducibility) while, for rigour, the train-
ing and test segments are not taken from the same recording days.
A robust approach is considered based on the resting state with
eyes closed paradigm, the use of both parametric (autoregressive
model) and non-parametric (spectral) features, and supported
by simple and fast cosine distance, linear discriminant analysis,
and support vector machine classifiers. Both the verification and
identification forensics scenarios are considered and the achieved
results are on par with the studies based on impractical on-scalp
recordings. Comprehensive analysis over a number of subjects,
setups, and analysis features demonstrates the feasibility of the
proposed ear-EEG biometrics, and its potential in resolving
the critical collectability, robustness, and reproducibility issues
associated with current EEG biometrics.

Index Terms— Wearable sensors, electroencephalography, bio-
metrics.

I. INTRODUCTION

PERSON authentication refers to the process of confirming
the claimed identity of an individual, and is already

present in many aspects of life, such as electronic banking
and border control. The existing authentication strategies can
be categorised into: 1) knowledge-based (password, PIN),
2) token-based (passport, card), 3) biometric (fingerprints,
iris) [1]. Most extensively used recognition methods are based
on knowledge and tokens, however, these are also most vulner-
able to fraud, such as theft and forgery, and can be straightfor-
wardly used by imposters. In contrast, biometric recognition
methods rest upon unique physiological or behavioural char-
acteristics of a person, which then serve as ‘biomarkers’ of
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an individual, and thus largely overcome the above vulnera-
bilities. However, at present, biometric authentication systems
are cumbersome to administer and require considerable com-
putational and man-power overloads, such as special recording
devices and the corresponding classification software.

With the current issues in global security, we have witnessed
a rapid growth in biometrics applications based on various
modalities, which include palm patterns with high spectral
wave [2], patterns of eye movement [3], patterns in the elec-
trocardiogram (ECG) [4], and otoacoustic emissions [5]. Each
such biometric modality has its strengths and weaknesses,
and typically suits only a chosen type of application and its
corresponding scenarios [6]. A robust biometric system in the
real-world should satisfy the following requirements [1]:

• Universality: each person should possess the given
biometric characteristic,

• Uniqueness: not any two people should share the given
characteristic,

• Permanence: the biometric characteristic should neither
change with time nor be alterable,

• Collectability: the characteristic should be readily mea-
surable by a sensor and readily quantifiable.

In addition, a practical biometric system must be harmless
to the users, and should maximise the trade-off between
performance, acceptability, and circumvention; in other words,
it should be designed with the accuracy, speed, and resource
requirements in mind [6].

One of the currently investigated biometric modalities is the
electroencephalogram (EEG), an electrical potential between
specific locations on the scalp which arises as a result of the
electrical field generated by assemblies of cortical neurons,
and reflects brain activity of an individual, such as intent [7].
From a biometrics perspective, the EEG fulfils the above
requirements of universality, as it can be recorded from any-
one, together with the uniqueness. Specifically, the individual
differences of EEG alpha rhythms has been examined [8]
and reported to exhibit a significant power in discriminating
individuals [9] in the area of clinical neurophysiology. The
brain activity is neither exposed to surroundings nor possible
to be captured at a distance, therefore the brain patterns of an
individual are robust to forgery, unlike face, iris, and finger-
prints. The EEG is therefore more robust against imposters’
attacks than other biometrics and among different technolo-
gies to monitor brain function. However, in order to utilise
EEG signals in the real-world, several key properties such as
permanence and collectability must be further addressed.

The ‘proof-of-concept’ for EEG biometrics, was introduced
in our own previous works in [10] and [11], and most of the
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follow-up studies were conducted over only one day (or even
over one single trial) recording with EEG channels covering
the entire head, while in the classification stage, the training
and validation datasets were randomly selected from the same
recording day (or the same trial). Apart from its usefulness as
a proof-of-concept, this setup does not satisfy the feasibility
requirement for a real-world biometric application, since:

• Recording scalp-EEG with multiple electrodes is time-
consuming to set-up and cumbersome to wear. Such a
sensor therefore does not meet collectablity requirement.

• EEG recordings from one day (or a single trial) cannot
truly evaluate the performance in identifying features of
an individual, as this scenario does not satisfy the per-
manence requirement either, see details in Section II-B.

• The training and validation data within this scenario
are inevitably mixed, thereby introducing a performance
bias in classification. The classification results from such
studies are therefore unrealistically high, and we shall
refer to this setting as the biased scenario.

Therefore, for feasible EEG biometrics, the EEG sensor should
be wearable, easy to administer, and fast to set-up, while in
order to evaluate the performance, the recorded signal should
be split in a rigorous way – the training and validation datasets
in the classification stage should be created so as not to
share the same recording days, a setting we refer to as the
rigorous scenario. While a considerable body of research has
been undertaken to explore the EEG biometrics and to find
the most informative subject-specific characteristic of EEG
(uniqueness), most studies either focused on reducing the
number of electrodes (collectability) or on evaluating whether
the traits are temporally robust (permanence) by using EEG
data obtained over multiple recording days; for more details
see Section II-C.

In this paper, based on our works in [11] and [12], we bring
EEG-based biometrics into the real-world by resolving the
following critical issues:

1) Collectability. Biometrics verification is evaluated with
a wearable and easy to set-up in-ear sensor, the so-called
ear-EEG [12],

2) Uniqueness and permanence. These issues are addressed
through subject-dependent EEG features which are
recorded over temporally distinct recording days,

3) Reproducibility. The recorded data are split into the
training and validation data in two different setups,
biased and rigorous setup,

4) Fast response. The classification is performed by both
a fast non-parametric (cosine distance) and standard
parametric approaches (linear discriminant analysis and
support vector machine).

Through these distinctive features, we successfully introduce
a proof-of-concept for a wearable in-ear EEG biometrics in
the community.

II. OVERVIEW OF EEG BASED BIOMETRICS

A. Biometric Systems With Verification/Identification

Depending on the context, the two categories of biometric
systems are: 1) verification systems and 2) identification

Fig. 1. Person recognition systems. Top: Verification system. Bottom:
Identification system.

systems, summarised in Figure 1 [6]. Verification refers to
validating a person’s identity based on their individual char-
acteristics, which are stored/registered on a server. In technical
terms, this type of a biometric system performs a one-to-
one matching between the ‘claimed’ and ‘registered’ data,
in order to determine whether the claim is true. In other words,
the question asked for this application is ‘Is this person A?’ as
illustrated in Figure 1 (top panel). In contrast, an identification
system confirms the identify of an individual from cross-
pattern matching of the all available information, that is, based
on one-to-many template matching. The underlining question
for this application is ‘Who is this person?’ as illustrated
in Figure 1 (bottom panel).

B. Feasible EEG Biometrics Design

Traditionally, EEG-based biometrics research has been
undertaken based on both publicly available datasets [11] and
custom recordings as part of research efforts [13]. However,
most of existing studies failed to rigorously address the key
criterion, collectability, which is also related to repeatability.
A large number of studies, especially those conducted at the
dawn of EEG biometrics research, employed classification of
the clients based on supervised learning with the training
and validation data coming from the same recording trial.
However, this experimental setup cannot truly evaluate the
performance in identifying individual features, since such
classification does not take into account the varying charac-
teristic among multiple recording trials and recording days.
In addition, EEG is prone to contamination by artefacts from
subjects’ movements (e.g. eye blinks, chewing), while the
sources of external noise include electrode noise, power line
noise, and electromagnetic interference from the surroundings.
This opens the possibility to additionally incorrectly associate
‘EEG patterns’ with either trial-dependent features or so-called
noise-related features – in other words, this setup is biased
in favour of high classification rate. Therefore, given the
notorious variability of EEG patterns across days, biometrics
studies based on a single recording day (even for a single
subject) can only validate very limited scenarios, without any
notion of repeatability and long-term feasibility [13].
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TABLE I

RECORDING AND CLASSIFICATION SET-UP, AND PERFORMANCE COMPARISON AMONG EXISTING EEG BIOMETRICS

Fig. 2. Feasible EEG biometrics verification framework. Left: EEG recording
registration. The registered EEG signal must have been recorded beforehand.
Right: Verification and identification system.

Figure 2 shows the concept of a rigorous EEG biometrics
verification/identification system in the real-world. Individuals
participate in EEG recordings and their EEG signals are
registered and stored on a server or in a database (left panel).
The client is granted access to their account by providing
new EEG data in verification scenarios, whereby the algorithm
discriminates the identify of an individual is in identification
scenarios through new EEG recordings. Recall that the regis-
tered EEG must be recorded beforehand.

In order to fulfil the feasibility requirement, several studies
performed successful EEG-based biometrics from multiple
recording trials conducted on multiple distinct days, thus sat-
isfying the collectability requirement. However, the majority
of these studies were still conducted in an unrealistic scenario,
whereby the training and validation data in the classification
process are split into segments, with all the segments coming
from multiple trials but on the same recording day being
randomly assigned to the training and validation datasets.
Therefore, this biased setup, despite being based on the
classification from multiple recording trials, mixes the training
and test recordings from the same recording day and thus
cannot truly evaluate the performance in the identification of
individual features.

In order to truly validate the robustness of a EEG biometrics
application, within a rigorous setup, it is therefore necessary
to both: i) conduct multiple recordings over multiple days, and
ii) to assign recordings on one day as the training data and

use the recordings from the other days as the validation data.
In other words, the training and validation datasets should
be created so as not to share the same recording days (as
illustrated later in Figure 6, Setup-R). As emphasised by
Rocca et al., the issue of the repeatability of EEG biometrics
in different recording sessions is still a critical open issue [14].

C. Previous Protocols

Table I summarises the state-of-the-art of the existing EEG
biometrics applications based on multiple data acquisition
days.

1) Biased Setup: In the first category (Setup: biased) is
the studies where the training and validation features were
randomly selected regardless of the data acquisition days.
Abdullah et al. [15] collected 4 channels of EEG data
from 10 male subjects during the resting state, in the both
eyes open (EO) and eyes closed (EC) scenarios, in 5 separate
recording days over a course of 2 weeks. In each recording
day, 5 trials of 30 s recordings were recorded, and the recorded
data were split into 5 s segments with an overlap of 50 %.
The autoregressive (AR) coefficients of the order p = 21
were extracted from each segment, and the extracted features
were randomly divided into the training (90 %) and valida-
tion (10 %) sets, namely 10-fold cross-validation. An artificial
neural network (ANN) yielded 97.0 % of correct recognition
rate (CRR) for the EC task, and 96.0 % of CRR for the EO
task. Riera et al. [16] recorded 2 forehead channels of EEG
from 51 subjects over 4 separate recording days. The average
temporal distance between the 1st and the 4th recording was
34 ± 74 days. The participants performed the EC task, and
the duration of recordings was between 2 and 4 minutes. The
recorded EEG was split into 4 s segments, and five types
of features were calculated for each segment, namely AR
coefficients of order p = 100, power spectral density (PSD)
in the 1 − 40 Hz band, mutual information (MuI), coher-
ence (COH), and cross-correlation (CC). The authors trained
various classifiers and identified the 5 best classifiers. The
Fisher’s discriminant analysis (FDA) was then employed and
was first trained with different types of discriminant functions
using the 1st to 3rd recording trials; then the 4th recording
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trials were used for testing. Next, the best 5 classifiers from
the training process were utilised for authentication tests, using
the first and the second minutes of recordings from each trial;
therefore, the training data for the classifiers and test data for
the validation were not disjoint (biased setup). The discrimi-
nant analysis with the selected discriminant function achieved
3.4 % of equal error rate (EER). Su et al. [17] analysed
5 minutes of the EC task from 40 subjects, with 6 recording
trials performed in 2 separate recording days for each subject.
The recorded EEG data from the FP1 channel were split
into segments of multiple lengths. The PSD in the 5 − 32 Hz
band and AR coefficients of the order p = 19 were chosen
as features. The extracted features were randomly divided
into the training (50 %) and validation (50 %) sets. As a
result of 100 iterations, the classifier combining Fisher’s linear
discriminant analysis (LDA) and k-nearest neighbours (KNN)
achieved an average CRR = 97.5 %, for a segment length
of 180 s.

2) Rigorous Setup: Multiple research groups considered
EEG biometrics based on splitting the training and valida-
tion data in a rigorous way, so as not to share the data
from the same recording days to highlight the feasibility
of their system (Setup: rigorous). Marcel and Millan [18]
analysed 8 channels of EEG from 9 subjects, with 4 recording
trials over 3 consecutive days. The 15 s trials consisted of two
different motor imagery (MI) mental tasks, the imagination
of hand movements. The recorded data were split into 1 s
segments, and PSD in the 8 − 30 Hz band was calculated
for each segment. The Gaussian mixture model (GMM) was
chosen as a classifier, and maximum a posteriori (MAP)
estimation was used for adapting a model for client data.
By combining recordings over two days as training data,
the authors achieved 19.3 % of half total error rate (HTER),
which is a performance criterion widely used in biometrics;
for more detail see Section III-G. Lee et al. [19] conducted an
experiment of 300 s in duration from four subjects over two
days, based on single channel of EEG in the EC scenario. The
data were segmented into multiple window sizes, and to extract
frequency domain features, PSD was calculated only for the α
band (8 − 12 Hz). Even though the dataset size was relatively
small, with 50 s of segment length, the LDA achieved 100 %
classification accuracy. Rocca et al. [20] recorded two resting
state EEGs, in both the eyes open (EO) and eyes closed (EC)
scenarios, from 9 subjects over 2 different recording days,
which were spanned 1 to 3 weeks. The recording length was
60 s, and the recorded data were split into 1 s segments with an
overlap of 50 %. The AR model (Burg algorithm) of the order
p = 10 was employed for feature extraction, and the training
and validation data were split without mixing the trials from
different recording days. The recognition results, with features
from selected 3 or 5 channels of scalp EEG, were obtained
by linear classification based on minimising the mean square
error (MMSE), to achieve CRR = 100 %. Armstrong et al. [21]
recorded event related potentials (ERPs) and constructed two
datasets. One dataset included EEG recorded from 15 subjects
in two separate days, with a 5 - 40 inter-day interval, and
the other one contained EEG from 9 subjects obtained in
three separate days, with the average interval between the first

and third recordings of 156 days. The recorded data from
the O2 channel were split into 1.1 s long segments, which
contained an ERP and started from a 100 ms pre-stimulus.
The cross-correlation (CC) between the training and validation
data was used as a feature for classification, and CRR =
89.0 % was achieved for validating the 2nd day recordings
whereas CRR = 93.0 % for classifying the 3rd day recordings.
Maiorana et al. [22] analysed 19 channels of EEG from
50 subjects during both EC and EO tasks in three different
recording days, with the average interval between the first and
the third recording of 34 days. Each recording trial consisted
of 240 s of data, segmented into 5 s windows, with an overlap
of 40 %. Three types of features were extracted, including a
channel-wise AR model (using the Burg algorithm) of the
order p = 12, channel-wise PSD, and the coherence (COH)
between the EEG channels. The L1, L2, and cosine distances
were calculated for the extracted features, and the rank-1
identification rate (R1IR) achieved 90.8 % accuracy in the
EC task and 85.6 % in the EO task.

D. Biometrics Based on Collectable EEG Systems

With a perspective of collectability, a biometrics application
with dry EEG electrodes was recently introduced [23]. While
conventional wet EEG headsets require the application of a
conductive gel which is generally time-consuming, the dry
headset with 16 scalp channels took on the average 2 minutes
to be operational. The brain-computer interface based bio-
metrics application with rapid serial visual presentation par-
adigm achieved CRR = 100 % with 27 s window size over
all 29 subjects. Although the recordings were performed over
a single recording day per subject, the application with a dry
headset was a step forward towards establishing collectable
EEG biometrics in real-world.

In a recent effort to enable collectable EEG, the in-ear
sensing technology [12] was introduced into the research
community. The ear-EEG has been proven to provide on-
par signal quality, compared to conventional scalp-EEG,
in terms of steady state responses [12], [24], monitoring
sleep stages [25], [26], and also for monitoring cardiac activ-
ity [27], [28]. The advantages of the in-ear EEG sensing for
a potential biometrics application in the real-world are:

• Unobtrusiveness: The latest ‘off-the-shelf’
generic viscoelastic EEG sensor is made from
affordable/consumable standard earplugs [29],

• Robustness: The viscoelastic substrate expands after the
insertion, so the electrodes fit firmly inside the ear
canal [27], where the position of electrodes remains the
same in different recording sessions,

• User-friendliness: The sensor can be applied straightfor-
wardly by the user, without the need for a trained person.

Therefore, biometrics with ear-EEG offers a high degree
of collectability, a critical issue in real-world applications.
Previously, even based on this biased scenarios, in-ear EEG
based biometrics application has been proposed in [30].

E. Problem Formulation

We investigate the possibility of biometrics verification
with a wearable in-ear sensor, which is capable of fulfilling
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the collectability requirement. The data were recorded over
temporally distinct recording days, in order to additionally
highlight the uniqueness and permanence aspects. Although
the changes in EEG rhythms may well depend on the time
period of years rather than days, the alpha band features
during the resting state with eyes closed were reported as
the most stable EEG feature over two years [31]. Since
EEG alpha rhythms predominantly originate during wakeful
relaxation with eyes closed, we chose our recording task to
be the resting state with eyes closed. This task was used in
multiple previous studies [15]–[17], [19], [20], [22]. In order
to design a feasible biometrics application in the real-world,
we considered imposters in two different ways: i) registered
subjects in a database, and ii) subjects not belonging to a
database. Previously, Riera et al. [16] also used a single
trial of EEG recording from multiple subjects as ‘intruders’,
while the ‘imposters’ data were EEG recordings available
from multiple other experiments. For rigour, we collected
two types of data: 1) based on multiple recordings from
fifteen subjects over two days, and 2) multiple recordings
from five subjects, which were only used for imposters’ data.
The classification was performed by both a non-parametric
and parametric approach. The non-parametric classifier, min-
imum cosine distance, is a simplest way for evaluating the
similarity between the training and validation matrix, whereas
the parametric approach, the support vector machine (SVM),
was tuned within the training matrix in order to find optimal
hyper-parameters and weights for validation. The same hyper-
parameters and weights were used for classifying the valida-
tion matrix. Besides, the linear discriminant analysis (LDA)
was also employed as a classifier. Through the binary client-
imposter classification, we then evaluated the feasibility of our
in-ear EEG biometrics.

III. METHODS

A. Data Acquisition

The recordings were conducted at Imperial College London,
for two different groups of subjects and under the ethics
approval, Joint Research Office at Imperial College London
ICREC12_1_1. One set of data were the recordings used as
both clients and imposters data, denoted by SR , and the other
subset were the recordings for only imposters’ data, denoted
by SN . Table II summarises the two recording configurations
of SR and SN .

For the SR subset of recordings, fifteen healthy male
subjects (aged 22-38 years) participated in two temporally
separate sessions, with the interval between two recording
sessions between 5 and 15 days, depending on the sub-
ject. The participants were seated in a comfortable chair
during the experiment, and were asked to rest with eyes
closed. The length of each recording was 190 s, and the
recording was undertaken three times (trials) per one day.
The interval between each recording trial was approximately
5 to 10 minutes. In total, six trials were recorded per subject.
The in-ear sensor was inserted in the subject’s left ear canal
after earwax was removed; it then expanded to conform to
the shape of the ear canal. The reference gold-cup standard

TABLE II

TWO EEG RECORDINGS AND CORRESPONDING SUBSET

Fig. 3. The in-ear sensor used in our study. Left: Wearable in-ear sensor with
two flexible electrodes. Right: Placement of the generic viscoelastic earpiece.

electrodes were attached behind the ipsilateral earlobe and
the ground electrodes were placed on the ipsilateral helix.
For simplicity, the upper electrode is denoted by Ch1, while
Ch2 refers to the bottom electrode, as shown in Figure 3 (left
panel). The two EEG signals from flexible electrodes were
recorded using the g.tec g.USBamp amplifier with a 24-bit
resolution, at a sampling frequency f s = 1200 Hz.

For the SN subset of recordings, five healthy subjects (aged
22-29 years) participated in three recording trials. Similar to
the SR subset of recordings, the participants were seated in
a comfortable chair, and were resting with eyes closed. The
duration of recording was also 190 s. A generic earpiece with
two flexible electrodes [29] was inserted in the subject’s left
ear canal and the same reference and ground configuration was
utilised for the SR subset of recordings.

Similar to the setup in [22], there was no restriction on the
activities that the subjects performed, and no health test such as
their diet and sleep, was carried out neither before or between
an EEG acquisition and the following one, nor during the
days of the recordings. This lack of restrictions allowed us
to acquire data in conditions close to real life.

B. Ear-EEG Sensor

The in-ear EEG sensor is made of a memory-foam substrate
and two conductive flexible electrodes, as shown in Figure 3.
The substrate material is a viscoelastic foam, therefore the
‘one-fits-all’ generic earpiece fits any ear regardless of the
shape. The size of earpiece was the same for over twenty
subjects (both the SR and SN subjects). Further details
of the construction of such a viscoelastic earpiece and its
detailed recordings of various brain functions can be found
in [27] and [29].

C. Pre-Processing

The two channels of the so-obtained ear-EEG were analysed
based on the framework illustrated in Figure 4. In each
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Fig. 4. Flowchart for the biometrics analysis framework in this study.

recording, for both the SR and SN recordings, the first 5 s
of recording data were removed from the analyses, in order
to omit noisy recordings arising at the beginning of the
acquisition. The two recorded channels of EEG were bandpass
filtered with the fourth-order Butterworth filter with the pass-
band 0.5−30 Hz. The bandpass filtered signals were split into
segments. The symbol N denotes the number of segments per
recording trial from both the SR and SN subsets. The lengths
of segments were chosen as Lseg = 10, 20, 30, 60, 90 s.
Therefore, when the segment length was Lseg = 60 s, N = 3
(190 − 5 = 185 s, �185/60� = 3) segments were extracted
from every recording trial of the SR and SN . Within each
segment, the data was split into epochs of 2 s length. The
epochs with the amplitudes of greater than 50μV for either
Ch1 or Ch2 were considered corrupted by artefacts and
removed from the analyses. This method resulted in a loss
of 4.3 % of the data, namely approximately 7.7 s out of 190 s
per recording trial.

D. Feature Extraction

After the pre-processing, two types of features were
extracted from each segment of the ear-EEG. For a fair com-
parison with the state-of-the-art, these features were selected to
be the same or similar to those used in the recent studies based
on the resting state with eyes closed [19], [20], and included:
1) a frequency domain feature – power spectral density (PSD),
and 2) coefficients of an autoregressive (AR) model.

1) The PSD Features: Figure 5 shows power spectral den-
sity for the in-ear EEG Ch1 (left) and for the in-ear EEG
Ch2 (right) of two subjects. For this analysis, the recorded
signals were conditioned with the fourth-order Butterworth
filter with the pass-band 0.5 − 30 Hz. The PSD were obtained
using Welch’s averaged periodogram method [32], the win-
dow length was 20 s with 50 % of overlap. The PSDs are
overlaid between different recording days (red: Day1, blue:
Day2), as well as among different recording trials with the

Fig. 5. Power spectral density for the in-ear EEG Ch1 (left) and the in-ear
EEG Ch2 (right) of Subject 1 (top panels) and Subject 2 (bottom panels).
The thick lines correspond to the averaged periodogram obtained by the all
recordings from the 1st day (red) and the 2nd day (blue), whereas the thin
lines are the averaged periodogram obtained by a single trial.

same recording days, especially visible from 3 to 20 Hz.
Previously, Maiorana et al. utilised PSD features for EEG
biometrics based on the resting state eyes closed and achieved
the best performance between the PSD features from theta
to beta band, which was classified by the minimum cosine
approach [22]; the inclusion of the delta band decreased
their identification performance. In our in-ear EEG biometrics
approach, the obtained PSDs were visually examined and we
found that the ratio between the the total α band (8 − 13 Hz)
power and the total θ − αhigh band (4 − 16 Hz) power is a
relatively more significant individual factor for biometrics,
rather than the total α band (8 − 13 Hz) power, which is
proposed in [19]. Therefore, in each segment of length Lseg ,
univariate PSD was calculated by Welch’s method with 2 s
of the window length and no overlap. Three features were
obtained for each PSD: 1) The ratio between the total α
band (8−13 Hz) power and the total θ−αhigh band (4−16 Hz)
power, 2) the maximum power in α band, and 3) the frequency
corresponding to the maximum of α band power. In total,
D = 6 (three features × two channels) frequency domain
features were extracted from each segment.

2) The AR Features: The Burg algorithm [32] of order
p = 10 was used to estimate the AR coefficients. For each
segment, we applied univariate AR parameter estimation of
its α band (8 − 13 Hz) with a window length of 2 s and no
overlap. The AR model was chosen as a feature, because it
was used in a previous successful study on EEG biometrics
based on the resting state with eyes closed [20]. A total of
D = 20 features (ten coefficients × two channels) were
therefore extracted for each ear-EEG segment.

E. Validation Scenarios

With the extraction of the both univariate AR and PSD fea-
tures from two channels, the dimension D of features per EEG
segment was twenty six. Recall that the first 5 s of recording
data were removed from the analyses. For each trial of the SR

and SN recordings, the data with the duration of 190 s was split
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Setup-R (Rigorous): Select the Training and Validation Data Without Mixing Segments From the Two Recording Days,
e.g. [i, j, k] = [1,1,1]

1: V C: The matrix of the selected-subject, the selected-day and the selected-trial, [1,1,1]
YV C = X (1,1,1)

R
2: V I : The matrices of the selected-trial and the selected-day from the non-selected-subjects, [(2:15),1,1]

YV I = [X (2,1,1)T
R , X (3,1,1)T

R , . . . , X (15,1,1)T
R ]T

3: T C: The matrices of all recording trials recorded at the non-selected-day from the selected-subject, [1,2,(1:3)]
YT C = [X (1,2,1)T

R , X (1,2,2)T
R , X (1,2,3)T

R ]T

4: T I : The matrices of all recording data recorded at the non-selected-day from the non-selected-subjects, [(2:15),2,(1:3)]
YT I = [X (2,2,1)T

R , . . . , X (2,2,3)T
R , X (3,2,1)T

R , . . . , X (15,2,3)T
R ]T .

5: V IN : The matrices of the selected-trial from the SN recording subjects, [(1:5),-,1]
YV IN = [X (1,−,1)T

N , X (2,−,1)T
N , . . . , X (5,−,1)T

N ]T .

Setup-B (Biased): Select the Training and Validation Data With Mixing Segments From the Two Recording Days,
e.g. [i, j, k] = [2,2,2]

1: V C: The matrix of the selected-subject, the selected-day and the selected-trial, [2,2,2]
YV C = X (2,2,2)

R
2: V I : The matrices of the selected-trial and the selected-day from the non-selected-subjects, [(1,3:15),2,2]

YV I = [X (1,2,2)T
R , X (3,2,2)T

R , . . . , X (15,2,2)T
R ]T .

3: T C: The matrices of all recording trials recorded at the non-selected day from the selected-subject, [2,1,(1:3)], and the
matrices of non-selected trials recorded at the selected-day from the selected-subject, [2,2,(1,3)]

YT C = [X (2,1,1)T
R , X (2,1,2)T

R , X (2,1,3)T
R , X (2,2,1)T

R , X (2,2,3)T
R ]T .

4:
T I : The matrices of all recording data recorded at the non-selected-day from the non-selected-subjects, [(1,3:15),1,(1:3)],
and the matrices of non-selected trials recorded at the selected-day from the non-selected-subjects, [(1,3:15),2,(1,3)]

YT I = [X (1,1,1)T
R , X (1,1,2)T

R , X (1,1,3)T
R , X (1,2,1)T

R , X (1,2,3)T
R , X (3,1,1)T

R , . . . , X (15,2,3)T
R ]T .

5: V IN : The matrices of the selected-trial from the SN recording subjects, [(1:5),-,2]
YV IN = [X (1,−,2)T

N , X (2,−,2)T
N , . . . , X (5,−,2)T

N ]T .

into segments of length Lseg = 10, 20, 30, 60, 90 s. Therefore,
N = 18, 9, 6, 3, 2 segments were respectively obtained. Each
recording trial was represented by the feature matrix X R for
the SR recordings and X N for the SN recordings, such matrices
have N × D elements. In this way, a set of six feature matrices
was obtained from one subject for the SR recordings (three
recording trials per one day, over two different days), whilst
a set of three feature matrices was obtained from one subject
for the SN recordings (three recording trials per one day, one
recording day). We next discuss the use of feature matrices in
two different validation scenarios.

As emphasised in Introduction, we introduce a feasible
EEG biometrics which satisfies the collectability require-
ments, which are also related to repeatability. Therefore, for
rigour, we used all feature matrices X R from the 1st day
of recordings as the training data, and feature matrices from
the 2nd day of recordings as the validation data, and vice
versa (Setup-R).1 Our goal was to examine the robustness of
the proposed approach over the two different time periods
in Setup-R. For the second setup, Setup-B,1 training fea-
ture matrices were also selected from the trials which were
recorded at the same recording day as the validation matrices.
Namely, the training and validation data are split by mixing
the data from the same recording days. Notice that, although
used in most available EEG biometrics studies [15]–[17],
Setup-B could not evaluate the repeatability/reproducibility

of the application, because the training and validation data
were both from the same recording days. In other words, such
an approach benefits from the recording-day-dependent EEG
characteristic in the classification. However, as the number of
feasible biometric modalities with in-ear EEG sensor is limited
and for comparison with other studies, for convenience we also
provide the results for Setup-B.

Figure 6 summarises the two validation scenarios, Setup-R
and Setup-B. For clarity, we denote by V C the validation
feature matrix for the client, by V I the validation feature
matrix for the imposters, while T C is the training feature
matrix for the client, and T I as the training feature matrix
for the imposters. The feature matrix from a single trial of the
subject i , recording day j , and trial k, from the SR recordings
is denoted by X (i, j,k)

R . Then, the training feature matrix YT

and the validation matrix YV are given as

YT = [Y T
T C , Y T

T I ]T ,

YV = YVR = [Y T
V C , Y T

V I ]T .

Besides, in order to evaluate feasibility in the real-world,
we used SN recordings, which are EEG recordings only used
for imposters; Riera et al. termed the imposter only data as
‘intruders’ [16]. For an additional scenario in both Setup-R
and Setup-B (see Section IV-D), SN recordings were used as

1Setup-R: Rigorous setup, Setup-B: Biased setup.
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Fig. 6. Two validation scenarios (Setup-R and Setup-B), where X (i, j,k)
R ∈

R
N×D and X (i,−,k)

N ∈ R
N×D denote a feature matrix from a single trial of

the subject i , recording day j , and trial k, from the SR recordings and the
SN recordings, respectively. The number of segments per recording trial N
depends on the chosen segment lengths Lseg . The dimension D is the number
of features per EEG segment.

TABLE III

DIMENSIONS OF THE TRAINING AND VALIDATION
MATRIX IN SETUP-R AND SETUP-B

the validation data for imposters, V IN . The feature matrix
from a single trial of the subject i , and trial k, from the SN

recordings is denoted by X (i,−,k)
N . Therefore, the validation

matrix is given by

YV = YVR + YV IN = [Y T
V C , Y T

V I , Y T
V IN

]T .

Table III summarises the properties of matrices for the training
matrix and the validation matrix in the both Setup-R and
Setup-B.

F. Classification

For both the Setup-R and Setup-B, we selected every trial
from every subject for the validation of client data, so as to
have validated ninety times (three trials × two days × fifteen
subjects). For each validation, both the largest and smallest

TABLE IV

HYPER-PARAMETERS FOR SVM

values were found for each feature (column-wise) from the
training matrix, then the validation matrix was normalised to
the range [0, 1] based on these largest and smallest values.
Three classification algorithms were employed: 1) a non-
parametric approach – minimum cosine distance [22], 2,
3) parametric approaches – linear discriminant analy-
sis (LDA) [33] and support vector machine (SVM) [34].

1) Cosine Distance: The cosine distance is the simplest way
for evaluating the similarity between the rows of the validation
matrix, YV(l,:) , where l = 1, . . . , 15N for YV = YVR and
l = 1, . . . , 20N for YV = YVR +YV IN , and the training matrix,
YT , and is given by

d
(
YV(l,:) , YT

) = min
n

∑D
m=1 YV(l,m) YT(n,m)√∑D

m=1(YV(l,m) )
2
√∑D

m=1(YT(n,m) )
2
.

In other words, the cosine distance is used for evaluating
the similarity between a given test sample (e.g lth row of
the validation matrix, YV(l,:) ) and a template (training) feature
matrix, YT . The distances between the lth row of the validation
matrix, YV(l,:) , and the each row of training matrix YT were first
computed, then the minimum among the computed distances
was selected.

2) LDA: The binary-class LDA was employed as a clas-
sifier. The LDA finds a linear combination of parameters to
separate given classes. The LDA projects the data onto a new
space, and discriminates between two classes by maximising
the between-class variance while minimising the within-class
variance.

3) SVM: The binary-class SVM was employed as a para-
metric classifier [34]. For both Setup-R and Setup-B, four
hyper-parameters: type of kernel, regularisation constant for
loss function C , inverse of bandwidth γ of kernel function, and
order of polynomial d , were tuned by 5-fold cross-validation
within the training matrix. Then, the same hyper-parameters
were used in order to obtain the optimal weight parameters
within the training matrix. The same hyper-parameters and
weight parameters as in the training were used for validation.
Table IV summarises the hyper-parameters for SVM.

G. Performance Evaluation

Feature extraction and classification with minimum cosine
distance and with LDA was performed using Matlab 2016b,
and the classification with SVM was conducted in Python
2.7.12 Anaconda 4.2.0 (x86_64) operated on an iMac with
2.8GHz Intel Core i5, 16GB of RAM.

For the verification setup (the number of classes M = 2,
client-imposter classification), the performance was evaluated
through the false accept rate (FAR), false reject rate (FRR),
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TABLE V

SUMMARY OF PARAMETER CHOICE IN THE PROPOSED BIOMETRIC APPLICATION

half total error rate (HTER), accuracy (AC), and true positive
rate (TPR), defined as:

F AR = F P/(F P + T N), F RR = F N/(T P + F N),

H T E R = F AR + F RR

2
, AC = T P + T N

T P + F N + F P + T N
,

T P R = T P/(T P + F N).

The parameter TP (true positive) represents the number of
positive (target) segments correctly predicted, TN (true neg-
ative) is the number of negative (non-target) segments cor-
rectly predicted, FP (false positive) is the number of negative
segments incorrectly predicted as the positive class, and FN
(false negative) is the number of positive segments incorrectly
predicted as negative class.

For the identification setup (M = 15), the performance
was evaluated by subject-wise sensitivity (SE), identification
rate (IR) and Cohen’s kappa (κ) coefficient as:

SEi = T Pi/(T Pi + F Ni ), I R =
∑15

i=1 T Pi

Nsegment

λe =
∑15

i=1 {(T Pi + F Pi )(T Pi + F Ni )}
Nsegment

2 , κ = I R − λe

1 − λe
,

where Nsegment is the total number of segments.

IV. RESULTS

The biometric verification results within a one-to-one client-
imposter classification problem are next summarised. In terms
of the verification, we considered the following scenarios:

• Client-imposter verification based on varying segment
lengths Lseg (Section IV-A),

• Verification with various combinations of
features (Section IV-B),

• Verification across different classifiers, both non-
parametric and parametric ones (Section IV-C),

• Verification of registered clients and imposters (SR), and
of non-registered-imposters (SN ) (Section IV-D),

• Subject-wise verification (Section IV-E).

We also considered biometric identification, that is, a one-to-
many subject-to-subject classification problem (Section IV-F).
Table V summarises the details of the considered scenarios.

A. Client-Imposter Verification With Different Segment Sizes

Table VI summarises validation results for both Setup-R
and Setup-B, over different segment sizes Lseg =
10, 20, 30, 60, 90 s. Both the PSD and AR features were
used. The elements in TP, FN, FP and TN columns denote

TABLE VI

CLIENT-IMPOSTOR VERIFICATION OVER DIFFERENT SEGMENT SIZES

TABLE VII

RIGOROUS SETUP: CLIENT-IMPOSTER VERIFICATION OVER
DIFFERENT FEATURES IN SETUP-R

the number of segments classified by a validation stage.
The chance level in this scenario is 14/15 = 93.3 %; this
is because every subject is once used for client data,
VV C ∈ R

N×D in Table III, and imposter data are selected from
the other ‘non-client’ subjects, VV I ∈ R

14N×D in Table III.
The ratio between VV C and VV I is therefore 1 : 14, and thus
the chance level is 14/15. In Setup-R, the results with Lseg =
60 s achieved both the best HTER score, 17.2 %, and the best
accuracy (AC), 95.7 %. Notice that, the number of TP (=183)
is larger than FN + FP (=174) with Lseg = 60 s, therefore,
the likelihood of making a true positive verification is higher
than making a false verification. In Setup-B, the results with
Lseg = 90 s obtained both the best HTER score, 6.9 %, and
the best accuracy (AC), 98.3 %.

B. Client-Imposter Verification With Different Features

Table VII shows the validation results in Setup-R, and
over a range of different selections of features, such as AR
coefficients, frequency band power, and the combination of AR
and band power features for the segment length of Lseg = 60 s.
The classification results using both AR features and PSD
features were the highest in terms of both HTER and AC,
which corresponds to Table VI (upper-panel), for Lseg = 60 s.
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TABLE VIII

CLIENT-IMPOSTOR VERIFICATION WITH DIFFERENT CLASSIFIERS

C. Client-Imposter Verification With Different Classifiers

Table VIII shows the imposter-client verification accuracy
based on the minimum cosine distance, LDA, and SVM, for
both Setup-R and Setup-B, with a segment size of Lseg =
60 s. Both the PSD and AR features were used. In Setup-R,
the results with cosine distance were the best in terms of both
HTER score, 17.2 % and AC, 95.7 %. In Setup-B, the results of
both HTER and AC were the best based on the SVM classifier,
5.5 % and 99.0 %, respectively.

D. Validation Including Non-Registered Imposters

Table IX summarises the confusion matrices of both
Setup-R and Setup-B with segment sizes Lseg = 60 s,
classified by the minimum cosine distance, LDA, and SVM;
these correspond to Table VIII, panels Setup-R and Setup-B.
The confusion matrices were categorised into:

• Client matrix YV C from dataset SR ,
• Imposter matrix YV I from dataset SR

• Imposter matrix YV IN from dataset SN .

Notice that the minimum cosine distance approach assigns the
class (client or imposter) of the nearest data from the training
matrix. In this study, we selected every trial from every subject
for the validation of client data, so as to have validated ninety
times; therefore, the nearest data (from dataset SR) for each
imposter data from dataset SN , also always become the ‘client’
once. Hence, when the nearest data for an SN data become
the ‘client’ data in the training matrix, the imposter data
from dataset SN are straightforwardly classified as ‘client’.
Therefore, regardless of data, the TPR for Imposter matrix
YV IN is 93.3 % for the minimum cosine distance approach;
however for comparison among different classifiers, these
results are also included.

In Setup-R, the TPR of client YV C , achieved by the min-
imum cosine distance was the highest, with respective value
of 67.8 %. However, the TPRs obtained by SVM for imposters
YV I and YV IN were 98.6 % and 96.2 %, respectively, which
was higher than those achieved by LDA. In Setup-B, both
the TPR of client YV C and that of imposters YV I and YV IN

by SVM were the highest, with respective values of 89.3 %,
99.7 % and 96.3 %.

E. Client-Imposter Verification Results per Subject

Table X (middle columns) summarises the subject- and
day-wise validation results with PSD and AR features from

TABLE IX

CONFUSION MATRIX OF THE CLIENT-IMPOSTER VERIFICATION SCENARIO
FROM DIFFERENT DATASETS IN BOTH SETUP-R AND SETUP-B

Lseg = 60 s segments in Setup-R, which corresponds to
Table VI (upper-panel) for Lseg = 60 s. The first and second
columns in the Verification part show respectively subject-
wise HTER and AC, with the training matrix YT selected
from all the first day recordings and classified based on
the second day recordings. The third and fourth columns in the
Verification part show classification results obtained based on
the training matrix YT , which was selected from all the second
day recordings in order to classify the first day recordings.

F. Biometrics Identification Scenarios

Table X (right column) summarises the subject-wise identifi-
cation rate obtained by the minimum cosine distance classifier
with the PSD and AR features from Lseg = 60 s segments in
Setup-R. Previously, we considered a binary client-imposter
classification problem (e.g. M = 2) for each subject, each
day, and each trial, however, the classification algorithm used
in this study was the simple minimum cosine distance between
the validation matrix and training matrix. For the prediction of
lth row of the validation matrix, YV(l,:) , the minimum distance
between the training matrix, YT , was found, e.g. the nth row
of the training matrix, and the same label was assigned to the
nth row of the training matrix as the prediction label for lth
row of the validation matrix, YV(l,:) . Notice that the minimum
distance approach is applicable for biometrics identification
problems, which is a one-to-many classification. The number
of classes was M = 15, which corresponds to the the number
of subjects in the SR recordings, therefore the chance level was
1/15 = 6.7 %. The achieved identification rate was 67.8 % with
Lseg = 60 s segments in Setup-R, while the achieved Cohen’s
kappa coefficient was κ = 0.65 (Substantial agreement) [35].

Figure 7 shows identification rate of both Setup-R
and Setup-B, with different segment sizes Lseg =
10, 20, 30, 60, 90 s. In Setup-B, the identification rate with
Lseg = 10 s was 67.7 %, which was almost the same as the
result with Lseg = 60 s in Setup-R. The highest identification
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TABLE X

RECORDING DETAILS, ACCURACY AND HTER IN THE VERIFICATION PROBLEM, AND SENSITIVITY IN THE IDENTIFICATION PROBLEM
FOR EACH SUBJECT WITH DIFFERENT TRAINING AND VALIDATION DATA IN SETUP-R

Fig. 7. The identification rate with different segment size in Setup-R and
Setup-B. The error bars indicate the standard error.

rate, 87.2 %, was achieved with Lseg = 90 s, where corre-
sponding Kappa was κ = 0.86 (Almost Perfect agreement) in
Setup-B.

V. DISCUSSION

This study aims to establish a repeatable and highly col-
lectable EEG biometrics using a wearable in-ear sensor.
We considered a biometric verification problem, which was
cast into a one-to-one client-imposter classification setting.
Notice that, as described in Section III-F, before classifica-
tion, the validation matrix was normalised column-wise to
the range [0, 1] using the corresponding maximum/minimum
values of the training matrix.

A. Verification With Different Segment Sizes

Firstly, the classification results were compared for different
segment lengths Lseg , shown in Table VI. Within the same
setup, i.e. Setup-R or Setup-B, the performance of HTER
and AC increased with the segment length, although the
results with Lseg = 60 s and Lseg = 90 s are almost the
same. Longer segments allowed for more data epochs to be
averaged over, hence the EEG noise inference for classification

diminished and the inherent EEG characteristic were able to
be captured by averaging. However, a longer segment length
also implies a longer recording time, which is not ideal for
feasible EEG biometrics. Compared to the results in Setup-R
and Setup-B for the same segment length, both the HTERs and
accuracy (ACs) of Setup-B were clearly better than those of
Setup-R. In terms of client discrimination, the decrease in FRR
was significant from Setup-R to Setup-B. In Setup-B, a larger
number of client segments was correctly classified (see TP)
than in Setup-R. In setup-R, only the result with Lseg = 60 s
achieved TP > (FN + FP), which indicates that the likelihood
of making a true positive verification is higher than making
a false verification; in Setup-B, the shortest segment size,
Lseg = 10 s, achieved TP > (FN + FP).

The difference between Setup-R and Setup-B was that
the training matrices YT in Setup-B included the trials
which were recorded on the same day as the validation
trial. In other words, the assigned validation data (trial)
and the part of assigned training data (trials) were recorded
within 5 - 10 minutes in the same environment. Therefore,
the training matrix contains significantly similar EEG record-
ings to the validation matrix in Setup-B, and this leads to
a higher classification performance than the classification in
Setup-B.

With an increase in the segment size Lseg , the number of
segments per recording trial, N , became smaller, especially
for N = 2 with the segment size Lseg = 90 s; therefore,
the training matrix only contains six (2 × 3 trials) examples
of client data in Setup-R (c.f. ten examples in Setup-B),
which might not be enough for training client data. Hence,
the performance with Lseg = 90 s was slightly lower than
that with Lseg = 60 s in Setup-R.

B. Verification With Different Classifiers

Table VIII shows the classification comparison among the
minimum cosine distance methods, LDA and SVM. The SVM
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was used as a parametric classifier; firstly, the optimal hyper-
parameters (see details in Table IV) were selected from 5-fold
cross-validation within the training matrix, and then weight
parameters based on these chosen hyper-parameters were
obtained. Notice that we could tune the classifier in different
ways, e.g. in order to minimise false acceptance or minimise
false rejection. The optimal tuning in this study was performed
so as to maximise class sensitivities, i.e. maximise the number
of TP and TN elements, which resulted in minimum HTERs.
In both Setup-R and Setup-B, the FARs by SVM were smaller
than those achieved by both the minimum cosine distance and
the LDA, because the tuning was performed for maximising
TN elements. Since the number of imposter elements was
fourteen times bigger than the number of clients in both
Setup-R and Setup-B (i.e. chance level was 14/15), the SVM
parameters were tuned for higher sensitivity to imposters.
As a result, the FRR by SVM, which were related to client
sensitivity given in Table IX, were higher than those achieved
by both minimum cosine distance and LDA in Setup-R.

In Setup-B, as mentioned above, the training matrix contains
the data from the same recording day, which are more similar
EEG patterns than the data obtained from a different recording
day. Therefore, the SVM model chose hyper-parameters and
weight parameters from the training matrix, so as to better the
validation data in Setup-B, which led to higher performance
than by both the minimum cosine distance and LDA.

Notice that, as described before, tuning of the hyper-
parameters was performed within the training matrix, then
the so-obtained hyper-parameters were used for finding the
optimal weight parameters within the training matrix. The
same hyper-parameters and weight parameters were used for
classifying the validation matrix. This setup is applicable for
feasible EEG biometrics scenarios in the real-world.

C. Validation Including Non-Registered Imposters

In Table IX, the confusion matrices for the client matrix
YV C and imposter matrix YV I from dataset SR and imposter
matrix YV IN , are given, which were then used for a compari-
son between Setup-R and Setup-B. Compared to the results
obtained within the same classifier (minimum cosine dis-
tance, LDA, SVM) in Setup-R and Setup-B, the true positive
rate (TPR) of clients YV C and the sensitivity of imposter YV I

from dataset SR in Setup-B were higher than those in Setup-R.
As described before, in Setup-B, the two client trials from
the same recording day as the validation trial were included
into the training matrix, and therefore more segments were
correctly classified. In contrast, the TPRs of imposter YV IN

from dataset SN by both the LDA and SVM in Setup-B were
almost the same to those in Setup-R; 89.9 % and 88.7 % for
LDA, 96.2 % and 96.3 % for SVM. Compared to the TPR
between two imposter data (YV I and YV IN ), regardless of the
classifiers, the TPR of YV I were higher than those of YV IN .
Since the imposter data from SN were not included in the
training matrix, the more SN data were misclassified as ‘client’
than SR data misclassified as ‘client’.

However, in the real-world scenarios for biometrics,
imposters are not always ‘registered’. The lower TPR for YV IN

Fig. 8. Power spectral density for the in-ear EEG Ch1 (left) and the in-ear
EEG Ch2 (right) of Subject 8. The thick lines correspond to the averaged
periodogram obtained by the all recordings from the 1st day (red) and the
2nd day (blue), whereas the thin lines are the averaged periodogram obtained
by a single trial.

means that the application is inadequate for attack from
non-registered subjects. One potential way to overcome the
vulnerability of the minimum cosine distance classifier is by
introducing threshold for classification. If the nearest distance
is larger than the given distance parameter, the segment is
excluded from the classification or is classified as imposter.

D. Client-Imposter Verification Results per Subject

For subject-wise classification, Table X summarises clas-
sification results obtained by the minimum cosine distance in
Setup-R, for different training-validation scenarios. The results
varied across subjects and for training-validation configura-
tions between 91.1 % to 100 % of AC and between 0.0 % to
35.8 % of HTER.

The size of viscoelastic earpiece was the same for twenty
subjects (both SR and SN subjects), therefore all the sub-
jects were able to wear it comfortably. The upper bounds
of the electrode impedance over three recordings per day
of each participant are given in Table X (Impedance part).
The highest performance was achieved by Subject 1, with
maximum impedances of 9 k� and 10 k� for the 1st and
2nd recording, respectively. Even though the impedances for
Subject 2 and Subject 5 were smaller than those for Subject 1,
the corresponding performance was below average over fifteen
subjects. Besides, the lowest performance was exhibited by
Subject 8, for whom the impedances were smaller than 11 k�
for Day1 and 11 k� for Day2. Figure 8 shows average PSDs
for Subject 8 – observe that the PSDs for the EEG recorded
on Day2 (blue) is slightly larger than those on Day1 (red).

E. Biometrics Identification

In terms of biometrics identification results, a one-to-many
subject-to-subject classification problem, the average sensi-
tivity over fifteen subjects, i.e. the identification rate, was
67.8 % in Setup-R with Lseg = 60 s, as shown in Table X
(right column). Figure 7 illustrates the identification rates
of both Setup-R and Setup-B, with different segment sizes
Lseg = 10, 20, 30, 60, 90 s. The identification rate increased
with segment length, although the results with Lseg = 60 s
and Lseg = 90 s are almost the same.

Notice that the performances with Lseg = 10 s in Setup-B
and Lseg = 60 s in Setup-R were almost the same, 67.7 % and
67.8 %, respectively. The highest identification rate in Setup-B



660 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 3, MARCH 2018

Fig. 9. Power spectral density for the in-ear EEG Ch1 (left), and the in-ear
EEG Ch2 (right) of one subject. The thick lines correspond to the averaged
periodogram obtained by the recordings from ‘sleepy’ trial (red) and ‘normal’
trial (blue). Observe that the alpha power attenuated during the ‘sleepy’ trial.

was 87.2 % with Lseg = 90 s. Indeed, the training matrix for
Setup-B included the trials which were recorded at the same
day as the validation trial; therefore the performance was better
than in Setup-R.

In a previous biometrics identification study,
Maiorana et al. [22] analysed 19 channels of EEG during
EC tasks in three different recording days, and achieved the
rank-1 identification rate (R1IR) of 90.8 % for a segment
length 45 s. Notice that it is hard to compare the performance
with our approach, because the number of channels was
very different, as 19 scalp EEG channels covered the entire
head vs our 2 in-ear EEG channels embedded on an earplug.
Therefore, although our results were lower, the proof-of-
concept in-ear biometrics emphasised the collectability aspect
in fully wearable scenarios.

F. Alpha Attenuation in the Real-World Scenarios

One limitation of using the alpha band, is the sensitivity to
drowsiness, a state where the alpha band power is naturally
elevated. For illustration, Figure 9 shows the PSD obtained
from a subject, calculated by Welch’s averaging periodogram
method. The subject slept during one recording, then the
subject was woken up and another recording started less
than 10 minutes after the first recording. The PSD graphs
in Figure 9 are overlapped except for the alpha band; the alpha
power observed during the ‘sleepy’ recording trial was smaller
than that at the ‘normal’ recording, thus demonstrating the
alpha attenuation due to fatigue, sleepiness, and drowsiness.
The alpha attenuation is well known in the research in sleep
medicine [26], [36], where it is particularly used to monitor
sleep onset.

VI. CONCLUSION

We have introduced a proof-of-concept for a feasible, col-
lectable and reproducible EEG biometrics in the community
by virtue of an unobtrusive, discreet, and convenient to use
in-ear EEG device. We have employed robust PSD and AR
features to identify an individual, and unlike most of the
existing studies, we have performed classification rigorously,
without mixing the training and validation data from the same
recording days. We have achieved HTER of 17.2 % with AC
of 95.7 % with segment sizes of 60 s, over the dataset from
fifteen subjects.

The aspects that need to be further addressed in order to
fulfil the requirements for ‘truly wearable biometrics’ in the

‘real-world’ will focus on extensions and generalisations of
this proof-of-concept to cater for:

• Intra-subject variability with respect to the circadian cycle
and the mental state, such as fatigue, sleepiness, and
drowsiness;

• Additional feasible recording paradigms, for example,
evoked response scenarios;

• Truly wearable scenarios with mobile and affordable
amplifiers;

• Inter- and intra-subject variability over the period of
months and years;

• Fine tuning of the variables involved in order to identify
the optimal features and parameters (segment length,
additional EEG bands).
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