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ABSTRACT
Varicose vein surgeries are routine outpatient procedures, which are often performed under local anaesthesia.
The use of local anaesthesia both minimises the risk to patients and is cost effective, however, a number
of patients still experience pain during surgery. Surgical teams must therefore decide to administer either a
general or local anaesthetic based on their subjective qualitative assessment of patient anxiety and sensitivity
to pain, without any means to objectively validate their decision. To this end, we develop a 3-D polynomial
surface fit, of physiological metrics and numerical pain ratings from patients, in order to model the link
between the modulation of cardiovascular responses and pain in varicose vein surgeries. Spectral and
structural complexity features found in heart rate variability signals, recorded immediately prior to 17 varicose
vein surgeries, are used as pain metrics. The so obtained pain prediction model is validated through a leave-
one-out validation, and achieved a Kappa coefficient of 0.72 (substantial agreement) and an area below
a receiver operating characteristic curve of 0.97 (almost perfect accuracy). This proof-of-concept study
conclusively demonstrates the feasibility of the accurate classification of pain sensitivity, and introduces
a mathematical model to aid clinicians in the objective administration of the safest and most cost-effective
anaesthetic to individual patients.

INDEX TERMS Pain, heart rate variability, ECG, HF, LF, permutation entropy.

I. INTRODUCTION
Modern healthcare systems maintain patient safety as their
foremost priority, while acknowledging that clinical proce-
dures must also be cost effective. These requirements are
by no means mutually exclusive - for example both patient
safety and cost effectiveness are maximised when undergoing
surgery under a local or regional anaesthetic, as opposed to
a more intensive general anaesthetic. The quantitative assess-
ment of the safety of clinical procedures, under the constraints
of patient comfort and economic costs, is however an open
and challenging issue.

An indirect way to assess the safety of surgical procedures
is through the examination of relevant litigation claims. In a
review of 841 anaesthesia related litigation claims against
the National Health Service in England, from 1995-2007,
it was revealed that local and regional anaesthesia accounted
for 8% of anaesthesia related deaths, with complications
related to general anaesthesia accounting for the remain-
ing 92% [1]. In addition to loss of life, there are eco-

nomic implications related to the use of general anaesthesia.
For example, in 2010, it was reported that the average cost of
general anaesthesia in hip surgery was 40% higher than the
corresponding cost of regional anaesthesia [2].

Although these findings are strongly in favour of local and
regional anaesthesia, their effectiveness is harder to control,
and up to 25% of regionally anaesthetised patients experience
pain during surgery [3]. The ability to objectively predict
a patient’s sensitivity to pain immediately prior to surgery
would therefore be invaluable, both in terms of patient safety
and economic costs, yet the crucial decision to administer
a general or local anaesthetic is often left to the subjective
judgement of the presiding clinician.

We therefore set out to identify markers of pain sensitivity
from electrocardiograms (ECGs), recorded prior to varicose
vein surgery under local anaesthesia, using unobtrusive wear-
able technology. These findings are then used to build an
objective predictive mathematical model of pain, as an aid
in surgical decision making. The proposed model is based on
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the analysis of heart rate variability (HRV) - the most relevant
features were found to be the power of the high frequency
components, and the structural complexity within the low
frequency components of HRV signals. The efficiency of the
proposed model is reflected in a kappa coefficient of 0.72
(indicating a substantial agreement) and the area below a
receiver operating characteristic (ROC) curve of 0.97 (almost
perfect accuracy). To the best of our knowledge, this is the
only study to date to achieve such a reliable and accurate
prediction of patient pain.

An objective criterion is therefore established to tailor
anaesthesia to the psychophysiological profile of individual
patients. The eventual more widespread adoption of such a
technology promises not only a radically improved experi-
ence for day-surgery patients and significant economic sav-
ings, but also a dramatic reduction in the number of patients
who are unnecessarily administered a potentially harmful
general anaesthetic.

II. PAIN AND THE AUTONOMIC NERVOUS SYSTEM
A. PAIN
Although the precise mechanisms which control wound pain
remain largely unknown [4], the open literature suggests that
all three major types of pain (nociceptive, inflammatory and
neuropathic) are regulated through the peripheral or central
nervous systems [4]. Both the peripheral and central nervous
systems regulate the transduction of a noxious stimulus into
an electrical impulse, which is then transmitted by nerves to
the spinal cord and the brain [5]. Structures within the brain-
stem, collectively referred to as the limbic system, govern
both the perception of pain and the physiological response
to pain [5]. It should be noted that numerous other processes,
such as the action of hormones, modulate pain intensity dur-
ing both transmission and perception [5].

In addition to subjectivity, pain prediction is further com-
plicated by the relationship between sex and physiologi-
cal responses; in particular, the response in young females
has been shown to be different from that in males [6].
In their 1996 study, Fillingim and Maixner [7] examined
the relationship between resting blood pressure and pain,
whereby 23 female and 25 male participants were sub-
jected to ischaemic pain [7]. It was reported that blood
pressure values exhibited a significant negative correla-
tion with pain sensitivity in the male subjects only [7].
In 2005, Tousignant-Laflamme et al. [8], recorded the heart
rates of 19 male and 20 female subjects after the immersion
of their hands in hot water [8]. It was found that the change in
the heart rates from the males was positively correlated with
their subjective pain ratings, whereas the change in the heart
rates from the females had a weak negative correlation with
their pain ratings [8].

A 2008 paper by Schlereth and Birklein concluded that
the context of pain can affect physiological responses [9];
it has been found that fear in response to an imme-
diate threat increases pain thresholds, whereas anxiety,
when anticipating a threat, decreases pain thresholds [10].

In summary, thoughmany studies have investigated the phys-
iology of pain, to date, the accurate prediction of pain
has not been realised. This study however, achieves pain
prediction.

B. AUTONOMIC NERVOUS SYSTEM
Two key parts of the physiological reaction to pain are the
responses of the sympathetic and parasympathetic compo-
nents of the autonomic nervous system [8]. The sympathetic
nervous system (SNS) is associated with the energisation of
the body, whereas the parasympathetic nervous system (PNS)
is associated with the conservation of energy in the body;
for example, the activity of the SNS causes an increase in
heart rate and blood pressure [11]. Short term SNS activa-
tion has been suggested to supresses pain [9]; for instance,
SNS activation releases the hormone norepinephrine, which
is known to attenuate pain [5]. A study from 2002 inves-
tigated the relationship between the hormone cortisol, and
pain, in 65 subjects [6] (cortisol is also released after SNS
activation). A negative correlation between pain ratings and
resting cortisol levels was reported to be statistically signif-
icant in the 31 male subjects only, although cortisol levels
increased in both the male and female subjects following
the onset of pain [6]. It was therefore concluded that the
modulating effect of the SNS on pain may only occur in
males [6]. A 2002 review on the effect of sex hormones on
the autonomic control of the cardiovascular system suggested
that oestrogen hormones enhance parasympathetic activity in
females [12]. Given that female oestrogen levels naturally
vary throughout the menstrual cycle, the effect of oestrogen
on pain is also expected to vary throughout the menstrual
cycle [6]. To this end, our study excluded pre-menopausal
women from the patient cohort.

The assessment of the SNS and PNS activities is there-
fore a pre-requisite for objective pain prediction, and it has
become widely accepted, though not without some con-
troversy [13], that the low frequency (LF) and high fre-
quency (HF) power spectral components of HRV signals can
reflect the activities of the SNS and PNS respectively [14].
The Task Force of The European Society of Cardiology and
The North American Society of Pacing and Electrophysiology
recommend that the LF and HF components are best captured
within the respective frequency bands of 0.04-0.15 Hz and
0.15-0.4 Hz [14]. However, a conclusive interpretation of the
activities within both bands is increasingly the subject of
ongoing research [15].

It is important to highlight that the interpretation of the LF
component in HRV is complex [13], as the LF component
has been suspected to reflect modulation of both the SNS and
PNS [14]. It has also beenwidely reported that HRV, and so its
LF andHF components, is influenced by respiration [16]. The
use of paced breathing has therefore been recommended to
minimise the influence of respiration on HRV [16]. The range
for typical respiratory frequencies is reported to coincide with
the HF band [17], whereas slow breathing has been shown
to produce respiratory frequencies which coincide with the
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LF band [16]. However, the use of paced breathing is not real-
istic in real-world applications. Next, it has been suggested
that frequencies within the LF band can be modulated by
the myogenic contraction of smooth muscles in blood ves-
sels [17]. The relaxation and contraction of the muscles in
blood vessels increases and decreases blood pressure, respec-
tively [17]. This further confounds the interpretation of the
activity within the LF band, as a decrease in blood pressure
is typically associated with parasympathetic activity, and
would be expected to produce changes in the HF band only.
Nonetheless, it is therefore evident that the activities within
LF and HF components of HRV signals are of physiological
significance.

In our work, special emphasis is placed on utilising the
LF and HF components of HRV to model the complex link
between HRV and quantitative levels of pain.

III. MATERIALS AND METHODS
A. PATIENTS AND SURGERY
Data from 16 varicose vein surgery patients were analysed
in this study. Seventeen ECGs were recorded from 9 male
patients aged 54.8 ± 16.3 years, and 7 female patients
aged 60 ± 9 years, during varicose vein surgeries, between
August 2015 and October 2016. Two ECGs were recorded
from one male patient on two separate occasions. Due to the
retrospective nature of the data analysis, it was not possible
to determine whether the female patients were pre- or post-
menopausal. Therefore, only women aged 49 years or older
were included in the data analysis, as the mean age for natural
menopause in the UK was 48 in 2011 [18].

The recording protocol consisted of an initial period of rest,
which varied between 14 minutes and 67 minutes, a period of
surgery, which varied between 19 minutes and 50 minutes,
and a final rest period after surgery, which varied between
5 minutes and 60 minutes. The ECGs were recorded from
a single channel of a custom made portable data logger at a
sampling frequency of 1000 Hz, with electrodes placed on the
torso; to ensure the faithful acquisition of pain-related HRV
dynamics, the breathing of patients was not paced.

The surgical procedures performed were either the abla-
tion or avulsion, or both the ablation and avulsion of long
saphenous varicose veins. Skin punctures were performed
using 0.5 ml of 1% lidocaine, and ultrasound was used to
correctly place a catheter in the affected vein. A tumescent
anaesthetic containing 360 ml of 0.9% sodium chloride and
40 ml of 1% lidocaine with adrenaline (at a concentration
of 5micrograms/ml) was infiltrated through the affected vein.
An additional 10 ml of 1% lidocaine was subcutaneously
administered at the site of the skin incisions.

All recordings took place in hospitals within the Imperial
College Healthcare Trust, London, with full consent from
the participating patients. Ethics approval for physiological
sensing was granted by the Joint Research Office at Imperial
College London (reference ICREC_12_1_1).

Prior to surgeries, all patients completed standard state

and trait anxiety questionnaires, respectively known as Form
Y1 and Form Y2 [19], in order to establish the agreement
between the state and trait anxietymeasures and the perceived
level of pain. The minimum anxiety scores from these ques-
tionnaires is 20, and the maximum is 80 [19]. Following the
surgeries, patients were asked to rate their pain on a scale
of 1 to 10, where 10 indicates extreme pain. Pain scores
of 7 or greater were defined as high; a predicted score of 7 is
therefore defined as the threshold at which the clinicians will
administer general anaesthesia to a patient.

B. DATA ANALYSES
1) PRE- PROCESSING
All analyses were performed in the MATLAB programming
environment. Our own custom software, introduced in [20],
was used to extract R-waves and generate HRV signals, which
were then interpolated at a sampling frequency of 4 Hz.

2) SPECTRAL ANALYSIS
The powers within the LF and HF bands in all HRV signals
were computed, and were normalised by the power within the
considered 0.04-0.5 Hz band, using the formulas

Normalised LF =
LFP
NP

(1)

Normalised HF =
HFP
NP

(2)

where LFp and HFp are the respective powers in the LF and
HF bands, and Np is the power in the whole of the 0.04-0.5 Hz
band.

The normalisation was performed using the 0.04-0.5 Hz
band instead of the full band, as the physiological expla-
nation for powers below 0.04 Hz is questionable in short
recordings [14]. In addition, as mean heart rate is usually at
least 1 Hz, and can be defined as the sampling frequency of
HRV, the Nyquist theorem states that the meaningful infor-
mation in HRV signals will be contained below 0.5 Hz [21].
A 5-minute sliding window was used for the analysis,
in accordance with the recommendations in [14], with a
1 second increment.

3) NON-LINEAR ANALYSIS
The complexity loss theory states that constraints on a
physiological system, such as illness or age, reduce the
inherent structural complexity within the system, which is
manifested as a reduction in entropy [22], [23]. We there-
fore employed structural complexity analysis, performed
through the permutation entropy method, to examine the
change in structural complexity in HRV. The LF and HF
components of HRV were obtained through band-pass fil-
tering the HRV signals by respective LF and HF finite
impulse response filters of order 3000, using the Blackman-
Harris window. The pass-bands for the LF and HF filters
were 0.04-0.15 Hz and 0.15-0.4 Hz respectively, in accor-
dance with the frequency ranges recommended in [14]. The
complexity within the LF and HF components of the HRV
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signals was analysed using the robust permutation entropy
method. Permutation entropy uses partitions, formed by com-
paring data-points to their neighbours, to create symbols;
the entropy is defined as the source entropy of the relative
frequency of each symbol [24]. We used the permutation
entropy formulation from [25], whereby, a time series of N
points,

x(i)Ni=1 (3)

is embedded to create vectors, X (i),

X (i) = [x (i) , x (i+ τ) , x (i+ 2τ) . . . , x [i+ (m− 1) τ ]]

(4)

where m is the embedding dimension, and τ the time delay.
The elements in X (i) are then ranked into ascending order,

x [i+ (j1−1) τ ]≤x [i+ (j2−1) τ ]≤ . . . ≤x [i+ (jm − 1) τ ]

(5)

where j is the time index of each element (note that
if x [i+ (j1 − 1) τ ] = x [i+ (j2 − 1) τ ] , the vectors are
ordered according to their time index). The time indices are
then used to map each re-ordered vector onto a symbol,

A (i) = [j1, j2, . . . , jm]. (6)

The relative frequency of every unique symbol, is then found
as Pi, and the permutation entropy, PE, is computed as the
Shannon entropy of the k relative frequencies,

PE (m) =
∑k

i=1
PilnPi. (7)

To enable the comparison of the PE computed from signals
of different lengths, PE can be normalised as follows,

normPE =
PE(m)
ln(m!)

(8)

where 0 ≤ normPE ≤ 1, and normPE = 0 defines a
completely regular or chaotic signal [25].

The normalised permutation entropies for the LF and HF
components of HRV are respectively denoted by LFPE and
HFPE, and were computed within 5-minute sliding windows,
with a 1 second increment. The embedding dimension of
m = 5 was found to be sufficiently large to fully capture the
dynamics within the signal, while ensuring that the number
of data points in x(i) did not exceed m!, as recommended
in [24]. The time delay of τ = 1 is recommended to preserve
the original temporal relationship between data-points. The
values m = 5, and a τ = 1 were therefore employed to
compute PE.

To summarise, the signal features used in the subsequent
modelling were the normalised LF powers, normalised HF
powers, LFPE values, and HFPE values; these were seg-
mented to create epochs of data pertaining to the pre-surgery
rest period, the surgery, and the post-surgery rest period.

C. MODEL FITS
The analysis parameters were the subjective Y1 and
Y2 scores from the questionnaires, and the objective param-
eters from the pre-surgery period, of the mean of the nor-
malised LF powers, the mean of the normalised HF powers,
the mean of the LFPE values and the mean of the HFPE
values. Linear regressions and polynomial surface fits (PSFs)
were created independently, based on the above analysis
parameters, and the self-reported pain scores from patients
were used for training to classify patients into low- and high-
pain predicted categories. The independence of the PSFs and
linear regressions ensures a full exploration of the linearity,
degree of coupling, and/or nonlinearity of the physiology of
pain.

For rigour, the linear regression models were created
though an iterative approach, whereby the input parame-
ter with the least significant contribution was successively
removed until the resulting linear regression was based only
on the parameter with the most significant contribution.
In total, six linear regression models were created; the best
performing model is defined as the model with the highest
accuracy.

An empirical evaluation was also employed to deter-
mine the optimal nonlinear PSF. This consisted of evalu-
ating the quadratic, cubic and quartic polynomials derived
from assigning the above computed parameters as either the
abscissa or the ordinate. The optimal fit was found to be
of order-2 in the abscissa, and order-3 in the ordinate (the
polynomial is described in equations 9 to12, where x and y
represent the abscissa and ordinate, respectively),

PSF = f (x, y) (9)

f (x, y) = θTX (10)

where,

X = [1, x, y, x2, xy, y2, x2y, xy2, y3] (11)

and the polynomial coefficients are given in θ,

θ = [θ0, θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8]. (12)

For simplicity, the normalised LF and HF powers will be
denoted by LF and HF in the remainder of this paper.

D. STATISTICAL ANALYSES
The accuracies of the proposed linear regressions and surface
fits were evaluated using a leave-one-out (LoO) validation,
that is, every model for the pain score prediction of a given
patient was created without the patient’s data. The consis-
tencies of the polynomial surface fits created through the
LoO validation were evaluated using the Wilcoxon rank-sum
test, which established whether the model coefficients from
a given LoO computation came from a distribution with the
same median as that of the coefficients from the other LoO
computations.

The predicted pain scores from the LoO validation were
then defined as binary, i.e. high or low pain sensitivity, and
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performances were evaluated with the following standard
metrics: (i) Kappa coefficients and (ii) receiver operating
characteristic (ROC) curves.

The Kappa coefficient is commonly used to evaluate the
performance of a classifier, and indicates the level of agree-
ment between two ‘observers’ [26], i.e., the level of agree-
ment between the actual pain score and the predicted pain
score. Ranging from -1 to 1, a coefficient of -1 suggests
systematic disagreement, a coefficient of 0 suggests agree-
ment due to chance, and a coefficient of 1 suggests perfect
agreement [26]. The Kappa coefficient is therefore a measure
of precision [26], and was used to evaluate the agreement of
the predicted pain scores with the scores stated by patients.

In addition, ROC curves can be used to indicate the
accuracy of a diagnostic test [27]. The area under a ROC
curve (AUC) quantifies the accuracy of a diagnostic test;
a combination of a high true positive rate and a low false
positive rate is reflected in an AUC close to unity, whereas
an AUC of 0.5 suggests an accuracy owing to chance [27].
To create a ROC curve, true positive rates are plotted against
false positive rates, as the cut-off threshold of a diagnostic test
is varied [27].

In summary, the optimal linear regression or polynomial
surface fit will have the highest accuracy, and the Kappa
coefficient will indicate its precision. The Kappa coefficients
and AUCs from all linear regressions and polynomial surface
fits are given in Table 5 in the appendix.

IV. RESULTS
In all the subsequent analyses, a statistical significance level
of 0.05 was employed, and statistically significant p-values
are shown in bold. All results are shown to two significant
figures.

Linear regression model 4 (see Table 5 in the appendix for
all linear regressions) yielded the highest AUC from the linear
regression analyses, at 0.78; the p-values for the parameters
in the regression are shown in Table 1. The LFPE parameter
was found to contribute most significantly to the prediction
of pain in every linear regression examined.

TABLE 1. Statistical results from linear regression 4.

Table 2 shows the statistical results from PSF 21, which
produced a Kappa coefficient of 0.72 and an AUC of 0.97;
the first parameter listed in the table, LFPE, is the abscissa,
and the second parameter, HF, is the ordinate. In total, 30 sur-
face fits were created using all possible combinations of the
parameters.

The mean coefficients and standard deviations computed
from the 17 LoO computations of PSF 21 are shown
in Table 3.

TABLE 2. Statistical results from PSF 21.

TABLE 3. Mean coefficients and standard deviations from PSF 21.

FIGURE 1. Polynomial surface fit 21. The red lines indicate the distance
between each data point and the surface fit.

The statistical results from the Wilcoxon rank-sum test are
shown in Table 7 in the appendix. No significant differences
were found between the surface fits from the 17 LoO compu-
tations.

Figure 1 shows PSF 21, created using data from all patients.
Table 4 summarises the classification results from PSF 21,

showing that low pain was correctly predicted in 11/11 cases
while high pain was correctly predicted in 4/6 cases (many
of the patients who experienced high pain complained of
a sharp pulling/pushing pressure). The true negative rate
of 100% (low pain prediction) demonstrates the feasibility
of objective pain prediction from HRV, while the result for
high pain indicates that a larger-scale study is needed to
fine tune the parameters of the highly nonlinear pain pre-
diction polynomial. Figure 2 shows the agreement between
the pain scores predicted by PSF 21 and those stated by
the patients.
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TABLE 4. Confusion matrix of prediction results from PSF 21.

FIGURE 2. Agreement between the predicted pain scores from
PSF 21 and the pain scores stated by patients.

FIGURE 3. Relationship between reported pain score and pre-surgery
LFPE.

V. DISCUSSION
The results have demonstrated that pain in surgery can be
predicted from ECG, recorded prior to surgery. Our results
show conclusively that the optimal prediction was achieved
from a nonlinear polynomial surface fit, using LFPE and
HF, as demonstrated by a very high area under a ROC curve
of 0.97. Upon closer inspection of PSF 21, the pain scores had
negative correlations with both LFPE and HF (see Figs. 3 and
4, in which the red lines indicate the principal directionality
in the data). The negative correlation between LFPE and
pain score indicates greater pain intensity with decreased

FIGURE 4. Relationship between reported pain score and pre-surgery HF.

structural complexity within the low frequency component
of HRV. In accordance with the complexity loss theory, low
complexity within the low frequency component of HRV is
indicative of a reduced adaptivity (in the system, or systems,
contributing to the LF band) to physiological and environ-
mental changes [23]. Therefore, despite the disagreement
over the origins of the contributions to the LF band (i.e. the
SNS alone, or both the SNS and PNS [13], or both autonomic
and myogenic activity [17]), the negative correlation between
LFPE and pain indicates that increased pain sensitivity is the
result of poor physiological adaptivity/responsiveness. This
theory is supported by [6], in which high resting levels of
cortisol, a key hormonal component of the SNS response to
stress, were reported to correlate with low pain ratings.

Furthermore, findings in [9] established that prolonged
anxiety decreased pain thresholds, therefore, the anxiety in
patients who were extremely nervous before surgery would
have placed constraints upon the physiological systems
related to pain, leading to reduced structural complexities.

In accordance with the widely accepted hypothesis that
the dominant contributor to the power in the HF band is
the activity of the PNS, the negative correlation between
HF and pain score indicates that those with high PNS tone
perceived less pain. However, given the negative correlation
between LFPE and pain, and that other studies have found
that markers of high SNS tone, are correlated with reduced
pain sensitivity (known as a hypoalgesia effect) [6], [7], it can
be concluded that hypoalgesia is not the result of the specific
action of either nervous system. Instead, both nervous sys-
tems must share a common feature which has a hypoalgesic
effect. One such feature shared by both nervous systems is
activation from baroreceptors [28].

Baroreceptors in the venae cavae and atria of the heart
detect low blood pressure and activate the SNS, whereas
baroreceptors located in the aortic arch of the heart and the
carotid sinus in the neck, detect high blood pressure and
activate the PNS [28]. The hypoalgesic effects of either a
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TABLE 5. Statistical results from the linear regression models.

dominant SNS or PNS are therefore likely to be the result
of baroreceptor activation. This is particularly relevant as it
has been found that individuals with higher resting blood
pressures experience greater hypoalgesia than those with nor-
mal resting blood pressure [7]. The hypoalgesic effects of
baroreceptors are well documented and it is reported that the
stimulation of baroreceptors triggers a release of opioids and
reduces cerebral arousal [29]. Hence, if baroreceptor activa-
tion is the primary cause of the varying levels of hypoalgesia
experienced by the patients in this study, the computed HF
values from the patients could indicate levels of baroreceptor
activation.

The positive correlation between LFPE and HF is also
informative. High HF power accompanied by high structural
complexity within the LF band could indicate, a decreased
determinism in the activity of the SNS as PNS tone increases.
However, as other studies report strong negative correlations
between indicators of SNS tone and pain [6], [7], it can be
concluded that if LF was an indicator of sympathetic tone
alone, it would have performed exceptionally well in the pre-
diction of pain. In this study, LF was not a strong predictor of
pain, thus indicating that it does not solely reflect the activity
of the SNS. The positive correlation between LFPE and HF

TABLE 6. Precision and accuracy of all 30 polynomial surface fits.

therefore provides support for the theory that LF also contains
contributions from the PNS [30], as increases in LFPE are
likely to reflect a shift of PNS contributions from the LF band
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TABLE 7. Statistical p-values computed from the Wilcoxon rank-sum test, assessing the consistency of the surface fit coefficients from the LoO validation
of PSF 21.

further into the HF band. Furthermore, the varying perfor-
mances of LF and HF in the prediction of pain indicate that
LF and HF do not have a strictly linear relationship.

The results from this study have also highlighted that
responses from subjective qualitative measures of state anxi-
ety, such as questionnaires, are of limited use in the prediction
of pain sensitivity. This could be due to repressors within the
patient cohort, that is, those who deny being in a stressed
state [31]. The presence of repressors undermines the use
of questionnaires as these patients understate their anxiety.
Future attempts to predict pain using the responses to anxiety
questionnaires will therefore have to consider the presence of
repressors.
Limitations: The main limitation of this study is the rela-

tively small size of the patient cohort, 16 in total, which may
have affected the extrapolations of the surface fit. In addition,
we were not able to determine the extent to which respi-
ration influenced the power within the HF band, due to a
lack of respiratory data in a form which would permit its
extraction from the heart rate data. The lack of data related
to myogenic activity also prevents an investigation into
myogenic influences on HRV, and the retrospective nature
of the analyses means that it was not possible to confirm
which female patients were pre- or post- menopausal. The
study cohort may therefore have included pre-menopausal
females.

Future studies will examine the correlation between the
information in the LF band and the level of pain during
the actual surgery. Also, further analyses will be undertaken
to realise PSF 21 through recurrent neural networks [32],
allowing future studies to explore machine learning and deep

network frameworks. An investigation into the performances
of other established structural complexity measures, such as
Fuzzy Entropy [33] and Multivariate Multiscale Entropy [34]
would also be of interest.

VI. CONCLUSIONS
Surgery under local anaesthesia is both safer and more cost
effective than surgery under general anaesthesia, yet, it is
not unusual for locally anaesthetised patients to experience
pain during surgery. To this end, we set out to investigate
the feasibility of pain prediction in varicose vein surgeries,
based on electrocardiograms recorded before surgery. To our
knowledge, this is the first such study, and could profoundly
affect how clinicians determine the patients who are best
suited to general anaesthesia.

The results show, conclusively, that it is feasible to pre-
dict patient pain, and hence determine if a patient requires
general anaesthesia. The most accurate predictions have been
obtained using a polynomial surface fit of order-2 in the
abscissa and order-3 in the ordinate. The respective abscissas
and ordinates are the permutation entropies computed from
the LF components of HRV signals, and the power in the
HF components of HRV signals. A leave-one-out validation
using 17 electrocardiograms has resulted in a true negative
rate of 100%, a Kappa coefficient of 0.72 (substantial agree-
ment) and an area under a ROC curve of 0.97 (almost perfect
accuracy).

APPENDIX
Table 5 evaluates the statistical results from the iterative
refinement of six linear regressions to predict patient pain.
Significant p-values are shown in bold.
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The results from the polynomial surface fits created using
all combinations of LF, HF, LFPE, HFPE, the Y1 and the
Y2 questionnaire scores are shown in Table 6.

The results from the Wilcoxon rank-sum test of the poly-
nomial coefficients computed from the LoO validation are
shown in Table 7. The lack of significant p-values amongst
the results indicates the consistency of the surface fit coeffi-
cients computed from the LoO validation.
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