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Abstract—The potential of brain electrical activity generated as a response to a

visual stimulus is examined in the context of the identification of individuals.

Specifically, a framework for the Visual Evoked Potential (VEP)-based biometrics

is established, whereby energy features of the gamma band within VEP signals

were of particular interest. A rigorous analysis is conducted which unifies and

extends results from our previous studies, in particular, with respect to

1) increased bandwidth, 2) spatial averaging, 3) more robust power spectrum

features, and 4) improved classification accuracy. Simulation results on a large

group of subject support the analysis.

Index Terms—Biometrics, EEG gamma band, Elman neural network, MUSIC,

k-nearest neighbors, visual evoked potential.
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1 INTRODUCTION

THE recent progress in machine learning and computing power has
been instrumental in the development of modern interdisciplinary
research areas, such as biometrics. The goal of biometrics is to
recognize and differentiate between humans based on their physical
and behavioral characteristics [1], the most common example is the
fingerprint. We have witnessed an increasing number of fingerprint
biometric systems [2], most typically in various government-run
person identity databases [2]. Despite its widespread use, the
limitations of this approach (e.g., its intrusiveness), have motivated
research on alternative biometrics; these include approaches based
on signature [3], face features [4], palmprint [5], hand geometry [6],
iris [7], and voice [8]. The potential benefit of using these alternative
biometric modalities is two-fold: 1) they are potentially less prone to
forgery and 2) they can be used within a multimodal biometric
system. Some of the emerging biometrics techniques include those
based on keyboard dynamics [9], ear force fields [10], heart signals
[11], odor [12], and brain signals [13], [14], [15], [16], [17], [18].

Brain electrical activity has become the de facto standard in the
diagnosis of brain related diseases, but there are very few reported
studies on brain electrical activity-based biometrics; these can
further be classified into electroencephalogram (EEG)-based and
Visual Evoked Potential (VEP)-based. The advantage of using brain
electrical activity in this context is its uniqueness; the recorded brain
response cannot be duplicated, and a person’s identity is therefore
unlikely to be forged or stolen. In addition, some important practical
issues, such as the size of the feature vectors needed for such
biometrics and the associated database storage requirements are
much less prohibitive as compared to the image-based methods
(e.g., face recognition). Despite the somewhat cumbersome data
collection procedures, there are clear indications that future

improvements in the brain activity-based biometrics will relax this

problem, and that the discrimination ability of this approach has

great potential in highly secure environments.
Some early work on EEG-based biometrics includes the work by

Paranjape et al. [13] who examined the use of autoregressive (AR)

models of various orders computed from EEG signals recorded from

the subjects with eyes open and eyes closed. They examined 349 EEG

trials from 40 subjects, and the subsequently employed discriminant

analysis gave the classification accuracy of about 80 percent. Poulos

et al. [14] used a Learning Vector Quantizer1 network to classify AR

parameters describing the alpha rhythm EEG feature, where the

classification performance of 72-84 percent was obtained based on

the experiments involving four subjects and 255 EEG patterns. In

another study, Poulos et al. [15] utilized the same data set but a

different classification technique, which was based on computa-

tional geometry (convex polygon intersections) and gave an

improved average classification of 95 percent. These experiments

were conducted for a relatively small number of subjects.
In our previous studies, we used VEP-based biometrics [16]

whereby the energy of the gamma band VEP potentials was used

as a feature. The underlying hypothesis underpinning this

approach was that the perception of a visual stimulus (black and

white drawings of common objects) evokes brain activity related to

recognition and memory, which is known produce a significant

change in gamma band oscillations [19]; these are known to be

distinct among humans and, therefore, a candidate for biometrics.
Applications of this kind of biometrics include those related to

access to classified documents and situations where fingerprints

could be easily forged. Most of other biometrics modalities, such as

the palmprint, face, and iris are also prone to forgery, whereas it is

not possible to duplicate mental activity within the brain.
We here present a framework for brain electrical activity-based

biometrics, where our emphasis is on revealing the potential of this

biometric modality. We first introduce the VEP-based biometrics

and propose several modifications of our previous work, in order to

improve the classification accuracy. These include a much more

comprehensive data set and a rigorous analysis of the classification

performance. Techniques used include those based on the k-Nearest

Neighbors (kNN), Elman Neural Network (ENN) clasifiers, and

10-fold Cross Validation Classification (CVC).

2 EXPERIMENTAL SETTING

The VEP signals were recorded from the subjects being shown

black and white drawings of common objects, extracted from the

Snodgrass and Vanderwart picture set [20]. Fig. 1 shows some of

these pictures, which were displayed on a computer monitor

located 1 m from the subject. The mental task was to recognize and

remember the picture shown. This is a well-known experiment,

originally designed to study short-term differences in human

memory [21], whereby a second picture is subsequently shown

where the object belongs either to the same class of objects or

different. For the purpose of this study, we shall only use the VEP

signals recorded during the presentation of the first picture.
We have analyzed the VEP measurements (sampled at 256 Hz)

coming from 61 active channels, where the electrodes were placed

on the scalp according to the extension of the 10-20 electrode

positioning system (Standard Electrode Positioning Nomenclature,

American Encephalographic Association), as shown in Fig. 2. The

stimulus duration of every picture was 300 ms. One second

measurements after each stimulus onset were stored for analysis.
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3 DATA LEVEL PROCESSING OF RAW EEG DATA

In technical terms, biometrics analysis after data extraction consists
of three stages:

1. signal conditioning,
2. feature extraction, and
3. classification (decision making).

We shall now briefly summarize some previous approaches to the
EEG-based biometrics and indicate the machine learning techni-
ques used at the different processing stages.

In [16], the sum and difference (SD) finite impulse response (FIR)
filter was used to extract gamma band VEP signals in the 3 dB range
of 32-48 Hz. VEP data from 10 subjects with 40 artifact free2 VEP
signals from each subject were used. The features were produced by
normalizing the signal power of every of the 61 channels with the
total power from all the channels, and then concatenating the
obtained features into a single feature vector. Based on this, a
Simplified Fuzzy ARTMAP neural network (NN) gave classification
accuracy of 90.95 � 2.24 percent when tested on 20 previously
unseen VEP patterns from every subject. The vigilance parameter
was varied from 0 to 0.9 in steps of 0.1.

The approach presented in [17] was similar to that of [16] except
that a Butterworth Infinite Impulse Response (IIR) filter was used to
extract gamma band VEP in the 3dB range of 30-50 Hz. Also, a
slightly larger VEP data set from 20 subjects (with 40 artifact free
VEP signals from each subject) was used. Filtering in both the
forward and reverse direction was performed in order to remove
phase distortion. The power of the filtered VEP signal from each
channel was normalized with the total energy from 61 channels to
form the VEP features. A multilayer-perceptron (MLP) trained by
the standard backpropagation (BP) algorithm gave classification
accuracy of 99.06 � 0.08 percent when tested on the unseen half of
the data set. The number of hidden units (HU) in the single hidden
layer ranged between 10 and 50 in the increments of 10. The features

used in [18] were similar to those from [17] except that an Elliptic IIR
filter was used (since it requires a lower order than a Butterworth
filter) with an ENN employed in the classification stage.

4 PROPOSED VEP BIOMETRICS METHOD

The proposed method involves a number of improvements on the
methods presented in Section 3, and these are applied to every
level of the data analysis.

4.1 Signal Conditioning—SD Filtering over Increased
Bandwidth

Raw EEG data are notoriously noisy and difficult to analyze.
Feature extracted from these raw data would not be robust and
reliable enough for further processing. An SD filter with the 3dB
bandwidth of 25-56 Hz (rounded to the nearest integer) was used
for the initial filtering of VEP signal. This filter, which consists of a
cascade of a sum (low-pass) and difference (high-pass) filter, can
be expressed by the following difference equation:

y½n� ¼
XM

k¼0

M!

k!ðM � kÞ! x½n� k�; and

z½n� ¼
XN

k¼0

ð�1Þk N !

k!ðN � kÞ! y½n� k�;
ð1Þ

where x½n� is the input at time instant n, and y½n� and z½n� are
respectively, the outputs of the sum and difference filters. The filter
length parameters were M ¼ 7 and N ¼ 2, and objective of the filter
order selection was to include a relaxed gamma band spectral range,
that is, to obtain a wider bandwidth. The advantage of this filter over
the Butterworth or Elliptic filter is that the coefficients are integers
and the phase response is linear. Also, the symmetry (for low pass)
and antisymmetry (for high pass) properties reduce the computa-
tional complexity by half. Fig. 3 shows the SD filter gain responses,
while Fig. 4 shows an example of VEP signal before and after
filtering.

4.2 Signal Conditioning—Spatial Averaging

To reduce the intraclass variance, we adopt standard spatial
averaging. In this method, an average of the filtered VEP signals
from all the channels is computed and used as a baseline measure.
This operation produces a new data sequence xx½n�, whose
elements are calculated as

xx½n� ¼ z½n� � 1

61

X61

i¼1

zi½n�: ð2Þ
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2. Eye blink artifacts contaminated VEP signals were discarded. Eye
blink were detected if the amplitude of VEP signals exceeded 100 �V. A
similar procedure was followed for the improved method in this paper.

Fig. 3. Gain response of the SD filters with different orders.

Fig. 2. Electrode locations for the 61 channel EEG recording system.

Fig. 1. Examples of pictures from the Snodgrass and Vanderwart data set [20].



Notice that there is a possibility that the same subject exhibits
similar gamma band energy patterns in different sessions,
however, the recorded signal power is not likely to be the same.
In order words, we have strong indications that the ratios among
the gamma band energies across the channels do not vary over
time but instead the subjects exhibit scaling of gamma band
energies in all the channels. The baseline measure using common
spatial average (2) serves to reduce this intraclass variance. Fig. 5
shows the reduction in intraclass standard deviation through the
use of common spatial average as a baseline measure for one
subject (from 50 VEP signals) over 61 channels. The sum of the
standard deviation values over all the 61 channels was 0.215 for the
case with spatial averaging, and 0.237 with no spatial averaging.

4.3 Feature Extraction: MUSIC Dominant Power

After the low-level signal processing (Sections 4.1 and 4.2), in the
second stage of the proposed EEG data analysis, we perform feature
extraction. These features will serve as unique descriptors of
person’s brain activity and will provide an input to the classification
stage. In addition, by extracting features from raw data, the
dimensionality of the problem is dramatically reduced. The Multiple
Signal Classification (MUSIC) algorithm [22] was used to estimate
the dominant frequency and power content for the cases where it
was assumed that there was only one dominant sinusoid in each
channel of the filtered VEP signal. The MUSIC algorithm belongs to
the class of subspace methods, also known as high-resolution
methods or superresolution methods, and is based on the eigenana-
lysis or eigendecomposition of the data correlation matrix. The
choice of the MUSIC algorithm in order to produce feature vectors
was also suggested by some previous studies on the analysis of EEG
for sleep spindles [23]. In addition, in [24], it was shown that MUSIC-
based spectral analysis is particularly suitable for spectral estimation
of a combination of modulated sinusoidal signals; the VEP signal in
gamma band exhibits exactly this behavior (as shown in Fig. 4b).

Since the dominant frequencies within the VEP spectrum varied
from subject to subject and from channel to channel, we only used
the power spectrum component within the MUSIC spectrogram.
These were subsequently normalized using the total power from
all the 61 channels. These normalized power values from each of
the 61 channels were concatenated into a feature vector.

4.4 Feature Vector Classification

In the third stage of our proposed framework for VEP-based
person identification, the features extracted in the second stage
were classified (decision making process). In the kNN algorithm
[25], the classification is performed based on the class of k-nearest
neighbors of the feature vector. Here, the kNN algorithm was
implemented using the Manhattan distance metric to locate the
nearest neighbors. The decision rule used as a discriminant
criterion within kNN was the majority rule. The number of nearest
neighbors used to classify the new VEP test vector was varied from
1 to 5 in integer increments.

For comparison, an ENN with three layers of units was
employed, with the hyperbolic tangent activation function in its
hidden layer, and a sigmoid activation function in its output layer.
The resilient-backpropagation (RBP) algorithm [26] was used to
train the ENN, and the training was conducted until the mean-
square error fell below a threshold of 0.0001. The ENN architecture
and RBP training algorithm were chosen based on our previous
experience, and also empirically after some preliminary experi-
ments. These preliminary experiments (using a small subset of the
data set) were conducted to decide the suitable training algorithm
(fastest with available memory) among different types of back-
propagation (BP) algorithms—standard BP, BP with momentum, BP
with adaptive learning, Levenberg-Marquardt BP and RBP. Other
preliminary experiments were also conducted using the standard
MLP with three layers of units and ENN, which showed that ENN
gave better classification performance. The number of input layer
units was 61 as there were 61 normalized dominant frequency
power features for each VEP signal. The inputs were normalized to
fit within the range [�1, 1] using the minimum and maximum value
of each feature from all the VEP feature vectors, as this would
improve the ENN training. The number of output layer units was
102 so that the ENN could classify into one of the 102 categories
representing the subject. One-hot encoding was used for the target
values (either 0 or 1). The number of hidden layer units was varied
between 50 and 300 in steps of 50. These parameters of ENN were
chosen based on the results from [18], where ENN was shown to be a
suitable classifier for VEP biometrics.
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Fig. 4. Example of VEP (a) before filtering and (b) after filtering.

Fig. 5. Standard deviation values for 50 VEP signals over 61 channels. Solid line:

standard deviation with spatial averaging as baseline measure. Dotted line:

standard deviation without the use of spatial average.



5 EXPERIMENTAL STUDY

In the experiments, we used a total of 3,560 VEP signals from

102 subjects. There was a minimum of 10 and a maximum of 50 eye
blink free VEP signals from each subject (in multiples of 10). Three

different experiments were conducted with features produced by
the EL, SMT, and the proposed improved features. Two classifiers

were used: ENN and kNN. For comparison, kNN was chosen due to
its simplicity. A 10-fold CVC scheme was used to increase the

reliability of the results. Using this scheme, the VEP feature vectors
were split randomly into 10 sets, each containing equal number of

VEP feature vectors from each subject. Training was conducted

using nine sets of feature vectors, while testing was conducted using
the remaining set. This was repeated for 10 times, each time using

nine different sets for training and the remaining set for testing,
whereby the averages and standard deviations of the classification

performances were calculated.

6 CLASSIFICATION RESULTS AND DISCUSSION

From the results in Tables 1 and 2, we can see that the classification
performances based on the proposed improved features were better
than those based on EL3 and SMT features. This is the case for both
ENN and kNN classifiers. ENN classification performances were
slightly higher than those of kNN, which proved true for all the
different used feature extraction methods. The maximum ENN
classification accuracy for the improved feature extraction method
was 98.12 � 1.26 ðHU ¼ 200Þ, while the classification performances

for EL and SMT methods were 96:94� 1:44 ðHU ¼ 250Þ and
96:54� 1:23 ðHU ¼ 300Þ. For kNN, the corresponding maximum
classification accuracies were 92.87 � 1.49, 91.94 � 1.54, and
96.13 � 1.03 and were obtained for k ¼ 1.

To perform statistical analysis of the classification results, the
Kuskal-Wallis one way variance analysis was utilized, which gave
p ¼ 0:0016 and p ¼ 4:25e� 7 for ENN and kNN classifiers, respec-
tively. This shows that the classification results were significantly
different along the employed methods. Fig. 6 shows the box plots for
each of the classifier (using all HU and k values), which clearly
indicates the benefits of the proposed approach.

The ENN classification performances obtained here were

slightly lower than previous studies reported in [16], [17], [18].

This was likely due to the significant increase in the size of the VEP

data set. In terms of the algorithm complexity, ENN is much more

algorithmically complex than kNN and requires tedious analysis

in the design stage (architecture, learning algorithm) in addition to

requiring longer training time. The kNN, in contrast, requires no

explicit training. A major disadvantage of kNN is its longer

computation time during testing, since in order to classify a test

VEP feature vector, its distance to all the training VEP feature

vectors needs to be calculated.
Notice that gamma band oscillations are evoked during visual

perception, especially when a stimulus is being recognized and

that these oscillations contribute to the feature binding process

(which is necessary during stimulus perception [19]). The overall

high classification results indicate that the feature binding process

has different properties for different subjects. It is speculated in the
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3. The previous method used in [16] will be denoted as EL, while the
method used in [17] as SMT.

TABLE 1
Averaged ENN Classification Results (Standard Deviation)

Using EL, SMT, and Improved Features

TABLE 2
Averaged kNN Classification Results (Standard Deviation)

Using EL, SMT, and Improved Features

Fig. 6. Box plots of overall classification results using (a) ENN and (b) kNN.

Method 1: EL features, Method 2: SMT features, and Method 3: improved features.



literature that this feature binding process could have a direct

relation to the genetic material though only clinical trials would be

able to give conclusive results.

7 CONCLUSION

This study has analyzed the potential of dominant frequency

powers in gamma band VEP signals as a biometrics. A framework

for the VEP data analysis has been established and the existing

results in the signal conditioning, feature extraction, and classifica-

tion stage have been summarized. The proposed approach was

tested on a large group of subjects with a high number of VEP

signals. The proposed framework, supported by the analysis and

simulations has clearly indicated the significant potential of brain

electrical activity as a biometrics.
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