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Abstract. An auditory feedback for Brain Computer Interface (BCI)
applications is proposed. This is achieved based on the so-called sonifica-
tion of the mental states of humans, captured by Electro-Encephalogram
(EEG) recordings. Two time-frequency signal decomposition techniques,
the Bump Modelling and Empirical Mode Decomposition (EMD), are
used to map the EEG recordings onto musical scores. This auditory
feedback proves to have extremely high potential in the development
of on-line BCI interfaces. Examples based on the responses from visual
stimuli support the analysis.

1 Introduction

Brain Computer Interface (BCI) techniques have received much attention re-
cently, owing to the exciting possibility of computer-aided communication with
the outside world. This is achieved in a non-invasive manner, which poses several
important and difficult challenges. In terms of signal processing these include the
detection, estimation and interpretation of brain signals, and cross-user trans-
parency [1]. It comes as no surprise, therefore, that this technology is envisaged
to be at the core of future “intelligent” prosthetics, and is particularly suited
to the needs of the handicapped and paralyzed. Other industries which would
benefit greatly from the development of BCI include the entertainment, com-
puter games, and automotive industries, where the control and navigation in a
computer-aided application is achieved without resorting to using hands, or ges-
tures. Instead, the onset of “planning an action” recorded from the head (scalp)
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surface, and the relevant information is “decoded” from this information car-
rier. Notice the is notoriously difficult due to the “blind” nature of the problem,
lack of any sort of feedback, and overwhelming noise presence within the signal.
Apart from purely signal conditioning problems, in most BCI experiments other
issues such us user training and adaptation, which inevitably causes difficulties
and limits in wide spread of BCI technology due to the lack of “generality”
caused by cross-user differences [2]. To help mitigate some of these issues, we
propose to make use of an auditory feedback during BCI training or utilization
which will inform the user about the “goodness” of brain activities. In our ap-
proach, experiments based on visual stimuli were conducted within the so-called
Steady State Visual Evoked Potential (SSVEP) mode. Within this framework,
the subjects are asked to focus their attention on simple flashing stimuli, whose
frequency is known to cause a physiologically stable response present in EEG
[3,4]. In the next step EEG signals are mapped into the auditory domain us-
ing two signal decomposition techniques one wavelet based and the other based
on a decomposition onto a set of AM-FM basis functions. This way, the pro-
posed multimodal BCI scheme uses the EEGs captured with several electrodes,
subsequently preprocessed, and transformed into informative and pleasant arti-
ficial music, in order for the user to efficiently control the states of their mind
(neurofeedback).

2 Methods

Sonification of EEG signals is a procedure in which electrical brain activity cap-
tured from human scalp is transformed into an auditory representation [5]. This
paper proposes two novel approaches based on multimodal information fusion,
whereby the so introduced “audio” modality provides perceptual feedback, but
for which there is no unique generation procedure (see a conceptual diagram of
the proposed approach in Figure 1).

We aim at looking at the level of detail (richness of information source) ob-
tainable, and compare the usefulness of two signal decomposition approaches in
this context. The first approach is based on a sparse signal representation in the
Time-Frequency (TF) domain by standard wavelet transformations and is re-
ferred to as the Bump Modeling Sonification (BUS) technique. The second one
is referred to as the Empirical Mode Decomposition Sonification (EMDSonic)
technique, which rests on the identification of signal’s non-stationary and non-
linear features, these also represent different “mind” modalities captured by the
sensors. This novel method, as shown later, allows us to create slowly modulated
tones representing changing brain activities.

2.1 Bump Modelling for Sparse EEG Sonification

A direct mapping of a signal or its wavelet TF representation onto a music file
would produce a highly noisy result, this is due to the nature of EEG signals
generation and recording techniques [6]. To reduce such artifacts, and provide a
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Fig. 1. Block diagram of the proposed EEG sonification scheme for brain computer
interfaces. An auditory feedback i.e. a mapping from EEG features onto a discrete set
of musical variables, provides a convenient insight into the dynamics and patterns of
EEG events.

simplified, yet rich in information representation, the bump modeling technique
[7,8] has been proposed, which extracts interesting patterns from the TF maps.
The main idea of this method is to approximate a TF map with a set of pre-
defined elementary parameterized functions called bumps, whereby the map is
represented by the set of parameters of the bumps. This provides a very sparse
encoding of the map, resulting in information compression rates that range from
a hundred to a thousand (further details about bump modeling are given in
[7,8]). Prior to bump modeling, we compute the so-called “z-score” from the
TF map [7]. This way, high normalized amplitude values represent “significant”
patterns. Therefore, the bump modeling will extract “interesting” patterns of
activity from the background containing the most relevant information in the
EEG signal. The algorithm can be outlined in the following steps:

(i) partition the map to define the zones to be modeled (those windows form a
set of overlapping areas of the map);

(ii) find the window that contains the maximum amount of energy;
(iii) adapt a bump b to the selected zone, and withdraw it from the original map;
(iv) should the amount of information modeled by the bumps reaches a threshold,

stop; otherwise return to (iii).

To isolate “islands” of significant EEG activities, we used half-ellipsoid functions,
defined by [8]:

ϕb(f, t) =

{
a
√

1 − ν for 0 ≤ ν ≤ 1
0 for ν > 1

(1)
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where ν =
(
e2

f + e2
t

)
with ef = (f − μf ) /lf and et = (t − μt) /lt. The variables

μf and μt are the coordinates of the center of the ellipsoid, lf and lt are the
half-lengths of the principal axes, a is the amplitude of the function, t and f the
time and frequency index.

2.2 Empirical Mode Decomposition for EEG Sonification

Empirical Mode Decomposition (EMD) [10] utilizes empirical knowledge of os-
cillations intrinsic to a time series is in order to represent them as a into su-
perposition of components with well defined instantaneous frequencies. These
components are called Intrinsic Mode Functions (IMF). IMFs, which should ap-
proximately obey the requirements of (i) completeness; (ii) orthogonality; (iii)
locality; and (iv) adaptiveness. To obtain an IMF it is necessary to remove lo-
cal riding waves and asymmetries, which are estimated from local envelope of
minima and maxima of the waveform. The Hilbert spectrum for a particular
IMF allows us to represent in the amplitude - instantaneous frequency - time
plane. An IMF satisfies thus the two conditions: (i) in the whole data set, the
number of extrema and the number of zero crossings should be equal or differ
at most by one; (ii) at any point of IMF the mean value of the envelope defined
by the local maxima and the envelope defined by the local minima should be
zero. The technique of finding IMFs corresponds thus to finding limited-band
signals. It also corresponds to eliminating riding-waves from the signal, which
ensures that the instantaneous frequency will not have fluctuations caused by
an asymmetric wave form. IMF in each cycle is defined by the zero crossings.
Every IMF involves only one mode of oscillation, no complex riding waves are
thus allowed. Notice that an IMF is not limited to be a narrow band signal,
as it would be in traditional Fourier or wavelets decomposition, in fact, it can
be both amplitude and frequency modulated at once, and also non-stationary
or non-linear. The procedure to obtain IMF components from a signal, called
sifting [10] and consists of the following steps:

– Identify the extrema of the signal waveform x(t);
– Generate “signal envelopes” by connecting local maxima by a cubic spline.

Connect signal minima by another cubic spline;
– Determine the local mean, m1, by averaging the two spline envelopes;
– Subtract the mean from the data to obtain:

hi = x(t) − mi; (2)

– Repeat as necessary until there are no more possible IMF to extract.
– Proper IMF is a first component containing the finest temporal scale in the

signal;
– The residue ri should be generated by subtracting out proper IMF found

from the data;
– The residue contains information about longer periods which will be further

resifted to find additional IMFs.
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Fig. 2. An example of EEG signal decomposition using EMD technique. Clockwise from
top left panel: (a) Raw EEG signal recorded from single frontal (Fp1) electrode. The pan-
els (c1)-(c9) present nine IMF components extracted sequentially IMFs represent oscilla-
tions occurring in EEG from higher to lower frequencies. (b) The oscillatory components
ranging from 1Hz to 50Hz are combined in form of Hilber-Huang spectrum [9].

An example of EEG data decomposition using the above procedure is illustrated
in Figure 2.2 where single channel EEG signal in panel (a) was decomposed into
eight oscillatory components as in panel (b) of that figure. It is easy to spot a
very low frequency component which represents very slow amplitude drift caused
by amplifiers or a loosely connected reference electrode. The higher frequency
oscillations are ordered into ascending components. Using the above procedure,
EEG signals from chosen electrodes were decomposed separately forming subsets
of IMF functions, from which low frequency drifts and high frequency spikes
were further removed. From the obtained IMFs corresponding spectrograms were
produced by applying the Hilbert transform to each component, as first suggested
in [10]. The Hilbert transform allows us to depict the variable amplitude and
the instantaneous frequency in the form of functions of frequency and time (in
contrast to Fourier expansion, for example, where frequencies and amplitudes are
fixed for its bases). Such an approach is very suitable for the non-stationary EEG
and subsequent sonification results have slow changing frequency components
indicating drifts in phase and amplitudes.

2.3 From Time-Frequency Representation into MIDI

TheTFrepresentationsofEEGintroducedintheabovesectionscanbetransformed
into musical scores using MIDI procedures [11]. In both cases of EMDSonic or
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Fig. 3. An example of TF domain bumps modeling for EEG sonification. The above
diagrams present: (a) The original raw EEG signal captured during a steady state visual
evoked paradigm experiment; (b) wavelets representation the above EEG signal; (c)
sparse bump modeling procedure of the above wavelets; (d) is a translation of obtained
MIDI representation into classical musical sheet.

BUS TF maps, musical tones were obtained via so called “pianorolls” [11], which
directlyrepresentmusicalscores.InthecaseofEMDSonictechnique,thismappingis
performedasshowninFigure4.(b)and(c),wheretheHilbert-Huangspectrumofthe
originalEEGsignal is directlymappedby searching for ridges [12].The locationand
duration of the ridges is transformed into musical notes with appropriate duration.
In case of BUS analysis, the transformation into musical scores is performed as
presented in Figure 3: (i) the velocity was obtained from the amplitude a; (ii) the
note pitch was obtained following a pentatonic scale (the pentatonic scale is based
on five pitch values, for instance: 60− 63 − 65− 67− 70Hz) from μf (for instance,
here 3Hz represents pitch 20Hz and 50Hz pitch 70Hz); (iii) the onset of the note
was obtained from μt using and lt/2; (iv) the duration was computed from lt.

3 Experiments

EEG sonification experiments were conducted for subjects performing SSVEP
based BCI management. Subjects were asked to try to concentrate on a single
flashing chessboard whose frequency was later recognized by an separate pro-
cedure. The EMDSonic or BUS algorithms were used to inform the user via
auditory feedback about the level of concentration in every single trial, which
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Fig. 4. An example of EMD domain oscillatory components modeling for EEG sonifi-
cation. The above diagrams present: (a) The original raw EEG signal captured during
a steady state visual evoked paradigm experiment; (b) Huang-Hilbert spectrum of the
above EEG signal; (c) so called “pianoroll” composed from the Huang-Hilbert spectro-
gram (similarity of both diagrams in (b) and (c) shows the accuracy of presented EEG
to midi sound transformation); (d) is a translation of obtained MIDI representation
into classical musical sheet.

is necessary to accurately classify attentionality enhanced frequency of flashing
stimuli. Results of EEG sonification using both procedures are depicted in Fig-
ure 3 and 4, where same EEG channel and trial was transformed into music.
From the figures the differences between the two approaches become apparent.

4 Conclusions

We have presented two approaches to sonify EEG data for direct application
in BCI environments. EMDSonic have shown novel and very interesting natural
response in auditory domain due to very powerful ability to track slowly varying
oscillations in EEG. In online application this approach also introduces delay
related to data window analysis and simple decomposition, which is not destruc-
tive for monitoring slow cortical potentials in EEG [3]. For EMDSonic it was also
easy to segregate MIDI scores into separate channels, later assigned to different
instruments, due to filter banks alike EMD decomposition (see middle panel in
Figure 2.2). On the other hand more traditional approach using wavelets to-
gether with still emerging bumps decomposition allowed us to create very sparse
musical scores. Due to a very high computational cost, bump modeling is suit-
able only for offline EEG sonification. However this limit can be overcome by
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an extraction of a TF masks, computed from several significant (e.g. training)
trials. Both approaches are somehow complementary due to focus on different
components in EEG and they provide insights into brain waves visualization and
auditory feedback for BCI.

References

1. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.:
Braincomputer interfaces for communication and control. Clinical Neurophysiology
113 (2002) 767–791

2. Wolpaw, J.R., McFarland, D.J.: Control of a two-dimensional movement signal
by a noninvasive brain-computer interface in humans. Proceedings of National
Academy of Sciences of the United States America 101(51) (2004) 17849–17854

3. Niedermeyer, E., Da Silva, F.L., eds.: Electroencephalography: Basic Principles,
Clinical Applications, and Related Fields. 5 edn. Lippincott Williams & Wilkins
(2004)

4. Kelly, S.P., Lalor, E.C., Finucane, C., McDarby, G., Reilly, R.B.: Visual spatial
attention control in an independent brain-computer interface. IEEE Transactions
on Biomedical Engineering 52(9) (2005) 1588–1596

5. Miranda, E., Brouse, A.: Interfacing the brain directly with musical systems: On
developing systems for making music with brain signals. LEONARDO 38(4) (2005)
331–336

6. Jovanov, E., Starcevic, D., Samardzic, A., Marsh, A., Obrenovic, Z.: EEG analysis
in a telemedical virtual world. Future Generation Computer Systems 15 (1999)
255–263

7. Vialatte, F.: Modelisation en bosses pour l’analyse des motifs oscilla-
toires reproductibles dans l’activite de populations neuronales : applica-
tions a l’apprentissage olfactif chez l’animal et a la detection precoce de
la maladie d’Alzheimer. PhD thesis, Paris VI University, Paris (2005)
http://www.neurones.espci.fr/Theses PS/VIALATTE F.pdf.

8. Vialatte, F., Cichocki, A., Dreyfus, G., Musha, T., Rutkowski, T., Gervais, R.:
Blind source separation and sparse bump modelling of time frequency represen-
tation of EEG signals: New tools for early detection of Alzheimer’s disease. In:
Proceedings of the 2005 IEEE Signal Processing Society Workshop on Machine
Learning for Signal Processing, Mystic CT, USA, IEEE (2005) 27–32

9. Rilling, G., Flandrin, P., Goncalves, P.: On empirical mode decomposition and
its algorithms. In: Proceedings of IEEE-EURASIP Workshop on Nonlinear Signal
and Image Processing, NSIP-03, IEEE (2003)

10. Huang, N., Shen, Z., Long, S., Wu, M., Shih, H., Zheng, Q., Yen, N.C., Tung,
C., Liu, H.: The empirical mode decomposition and the hilbert spectrum for
nonlinear and non-stationary time series analysis. Proceedings of the Royal Society
A: Mathematical, Physical and Engineering Sciences 454(1971) (1998) 903–995

11. Eerola, T., Toiviainen, P.: MIR in Matlab: The MIDI toolbox. In: Proceedings
of The 5th International Conference on Music Information Retrieval, ISMIR2004,
Barcelona, Spain, Audiovisual Institute, Universitat Pompeu Fabra (2004) 22–27

12. Przybyszewski, A., Rutkowski, T.: Processing of the incomplete representation of
the visual world. In: Proceedings of the First Warsaw International Seminar on
Intelligent Systems, WISIS’04, Warsaw, Poland (2004)


	Introduction
	Methods
	Bump Modelling for Sparse EEG Sonification
	Empirical Mode Decomposition for EEG Sonification
	From Time-Frequency Representation into MIDI

	Experiments
	Conclusions

